Introduction to Reinforcement Learning

CS 285

Instructor: Sergey Levine
UC Berkeley

Definitions

Terminology & notation

S; — state
0; — observation mg(as|o;) — policy
a; — action mo(a¢|s¢) — policy (fully observed)

Markov property
independent of s;_1

Imitation Learning

supervised
data learning

training 7o (az|oy)

Images: Bojarski et al. ‘16, NVIDIA

Reward functions

which action is better or worse? s, a, 7(s,a), and p(s'|s,a) define
r(s,a): reward function Markov decision process

tells us which states and actions are better

low reward

Definitions

Markov chain

M={S,T}

S — state space states s € S (discrete or continuous)

7T — transition operator p(si11]5¢) Andrey Markov
why “operator”? let pe = p(se = 1) fi; is a vector of probabilities

let T;j = p(si+1 = i[s¢ = j) then fipy1 =T

Markov property
independent of s;_1

=) :
) TS ey 9/

Definitions

Markov decision process M={S,AT,r}
S — state space states s € S (discrete or continuous)
A — action space actions a € A (discrete or continuous)

T — transition operator (now a tensor!)

let pe; = p(se =7)

Js

let 'E,j,k = p(8t+1 — i’3t =J,a; = k)

Rinkizey Bésirkaw

Definitions

Markov decision process M={S,AT,r}
S — state space states s € S (discrete or continuous)
A — action space actions a € A (discrete or continuous)

Richard Bellman

7 — transition operator (now a tensor!)

r — reward function r:SxA—R

r(s¢, a¢) — reward

Definitions

partially observed Markov decision process M={S5,A0,T,E r}
S — state space states s € § (discrete or continuous)

A — action space actions a € A (discrete or continuous)

O — observation space observations o € O (discrete or continuous)

T — transition operator (like before)
£ — emission probability p(o¢|s;)

r — reward function r:SxA—R

; . o

The goal of reinforcement learning

we’ll come back to partially observed later

\
\ \
1 1
AW W] \:3 \
” |13 3:- \—\I—'\ 13 £e’| [dens =] =)
N -
384 \
Max -
pppp 4056 409

(s'|s,a)
_J

T
po(s1 1,87, 87) = pls: H (a¢|se)p(ses1lse, ar)

po(T)

0* = arg max Eorpe (1) [Zt: r(st, at)]

The goal of reinforcement learning

. B

(s'|s,a)
_J

po(si,a1,...,sr,ar) =p(s1) | | mo(arls:)p(sisilse, a)
l Y ' t=1" Y J
po(T) Markov chain on (s, a)

The goal of reinforcement learning

@ﬁ

(s'|s,a)
_J

po(si,a1,...,sr,ar) =p(s1) | | mo(arls:)p(sisilse, a)
l T ' t=1" Y
po(T) Markov chain on (s, a)

p((St+1,at41)|(St,a)) =
©) (=)

P(St+1 |St, at)ﬂ'e(at—H |St—{—1)

v

v

©l9)

Finite horizon case: state-action marginal

0* = arg mgx Erpy () [Z r(s¢, at)]

t
T

— arg mgmx Z E(St,at)wpg (s¢,a¢) [T(St, at)] Do (St, at) state-action marginal
t=1

p((st+1,ai11)|(st,a1)) =

P(St+1 |St, at)’ﬁe(atﬂ |St+1)
SR SR
&

©©
®

Infinite horizon case: stationary distribution

T
6* = arg max ; E(s, a,)~po(si,a.) T (St at)]

what if T = o0?
does p(s¢,a;) converge to a stationary distribution?

w="Tu (T — I)LL — () n = pg(s, a) stationary distribution

N\ / p is eigenvector of 7 with eigenvalue 1!
stationary = the

same before and (always exists under some regularity conditions)
after transition

&)

—

state-action transition operator

(St41) _ 7—(St) St4+k _ Tk St
a1 ag A4k at

© ¢

® ®

Infinite horizon case: stationary distribution

1 T

0" = argmax — 2_) Es, a0)~po(se.a0) [T (5t 21)] = E(s.a)mpo(s.a)[7 (s, 2)]
(in the limit as T — 00)

what if T = o0?
does p(s¢,a;) converge to a stationary distribution?

w="Tu (T — I)LL — 0 nw = pg(s, a) stationary distribution
N/ p is eigenvector of 7 with eigenvalue 1!

stationary = the
same before and (always exists under some regularity conditions)

after transition

—

state-action transition operator

(St41) _ 7—(St) St4+k _ Tk St
ag+1 at At+k ay

© ¢

® ®

Expectations and stochastic systems

T
0" = arg max B(s a)p, (s.2)[1(5,2)] 0* = arg max Y " Es, a0)mpo(se,an) [7(St, at)]
t=1
infinite horizon case finite horizon case

In RL, we almost always care about expectations

r(x) — not smooth
71'9(8. — fall) =0
E.,|r(x)] — smooth in 0!

Algorithms

The anatomy of a reinforcement learning algorithm

fit a model/
estimate the return

generate samples
(i.e. run the policy)
; improve the policy

|

A simple example

fit a model/
estimate the return

generate samples
(i.e. run the policy)

improve the policy ENZRSNVESNAVIWITCY

Another example: RL by backprop

fit a model/

estimate the return learn fd’ such that sy ~ fé(st: at)

St+1
generate samples

(i.e. run the policy)

backprop through f4 and r to

improve the policy train my(s;) = ay

Which parts are expensive?

(real robot/car/power\

grid/whatever:

1x real time, until we

\invent time travel

J

MuloCo simulator:

up to 10000x real time

generate samples

(i.e. run the policy)

J(0) = E,

1 X i

trivial, fast
fit a model/

estimate the return
learn St41 ~ f¢(St, at)

expensive

0« 0+ aVeJ(0)

improve the polic
' POREY backprop through f4 and r to

train my(s¢) = ay

Value Functions

How do we deal with all these expectations?

T
ETNP@(T) |:Z T(Stv at):|

t=1

ESlNP(Sl) [Ealw’”(aﬂsl) [T(Shal) + ESQNP(S2|51331) [Ea2N7T(32|52) [T(S% 32) + "'|82] |Slv al} |SlH

| J
I

what if we knew this part?

Q(Slaal) — T(Slaal) + ESsz(SQ|Sl,al) [Eagrwr(a2|52) [T(SQJ 32) + ...|S2] |Sla al}

T
ETNP@(T) [ZT(St’at)] - ESlNP(Sl) [E31NW(31|51) [Q(Sl’a1)|sl]:|

AN

easy to modify mg(ay|s1) if Q(s1,a1) is known!

example: w(ai|s;) = 1 if a; = argmax,, Q(s1,a;)

Definition: Q-function

Q7 (s¢,a) = Zg::t Er, [r(sy,ay)|st, at]: total reward from taking a; in s;

Definition: value function

VT™(st) = ZtT,:t Er, [r(s¢,ap)|st]: total reward from s,

Ve (St) — Eat’\’ﬂ'(aﬂst)[@ﬂ (St’ at)]

Eg, ~p(s1)[V™(s1)] is the RL objective!

Using Q-functions and value functions

Idea 1: if we have policy 7, and we know Q™ (s, a), then we can improve T:
set m'(als) = 1 if a = arg max, Q™ (s, a)
this policy is at least as good as 7 (and probably better)!

and it doesn’t matter what 7 is

Idea 2: compute gradient to increase probability of good actions a:
if Q™ (s,a) > V7(s), then a is better than average (recall that V7 (s) = F[Q™(s,a)] under w(als))

modify 7(als) to increase probability of a if Q™ (s,a) > V7 (s)

These ideas are very important in RL; we’ll revisit them again and again!

The anatomy of a reinforcement learning algorithm

this often uses Q-

fit a model/ <«—— functions or value
estimate the return functions

generate samples
(i.e. run the policy)
; improve the policy

Types of Algorithms

Types of RL algorithms

0* = arg max ETNPQ(T) [Z ’l"(St, at)]

0
t

* Policy gradients: directly differentiate the above objective

* Value-based: estimate value function or Q-function of the optimal policy
(no explicit policy)

e Actor-critic: estimate value function or Q-function of the current policy,
use it to improve policy

* Model-based RL: estimate the transition model, and then...
» Use it for planning (no explicit policy)
e Use it to improve a policy
 Something else

Model-based RL algorithms

fit a model/

: learn p(s;i1lst, a
estimate the return p(st+1lst, ar)

generate samples
(i.e. run the policy)

Tl JE RN Lol [N o, few options

Model-based RL algorithms

improve the policy [ERGCKeIaae:

1. Just use the model to plan (no policy)

* Trajectory optimization/optimal control (primarily in continuous spaces) —
essentially backpropagation to optimize over actions

* Discrete planning in discrete action spaces — e.g., Monte Carlo tree search

2. Backpropagate gradients into the policy
* Requires some tricks to make it work

3. Use the model to learn a value function
* Dynamic programming
* Generate simulated experience for model-free learner

Value function based algorithms

fit a model/
ﬁ estimate the return fit) or Q(S’ a)
generate samples
(i.e. run the policy)

IS set 7(s) = arg max, (s, a)

Direct policy gradients

fit a model/ evaluate returns
estimate the return [FiouEe= Zt T(St, at)

generate samples

(i.e. run the policy)

improve the policy RS RN AVIYI P I(-:15]

Actor-critic: value functions + policy gradients

fit a model/ 6
ﬁ estimate the return ! V) Q(S a)
generate samples
(i.e. run the policy)

Tradeoffs Between Algorithms

Why so many RL algorithms?

e Different tradeoffs

e Sample efficiency
* Stability & ease of use

fit a model/
ﬁ estimate return

* Different assumptions

i inictic? generate
e Stochastic or deterministic: (e
e Continuous or discrete? run the policy)

 Episodic or infinite horizon? ‘ improve the

* Different things are easy or hard in o
different settings
* Easier to represent the policy?
e Easier to represent the model?

Comparison: sample efficiency

e Sample efficiency = how many samples
do we need to get a good policy?

* Most important question: is the
algorithm off policy?

* Off policy: able to improve the policy
without generating new samples from that
policy

* On policy: each time the policy is changed,
even a little bit, we need to generate new
samples

fit a model/
estimate return
generate
samples (i.e.
run the policy)
improve the
policy

0« 0+ aVeE|) , r(st,ar)]

/

just one gradient step

Comparison: sample efficiency

off-policy < » on-policy
More efficient Less efficient
(fewer samples) (more samples)
—
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!

Comparison: stability and ease of use

* Does it converge?
* And if it converges, to what?
* And does it converge every time?

Why is any of this even a question???

e Supervised learning: almost always gradient descent

* Reinforcement learning: often not gradient descent
* Q-learning: fixed point iteration
 Model-based RL: model is not optimized for expected reward

* Policy gradient: is gradient descent, but also often the least
efficient!

Comparison: stability and ease of use

* Value function fitting
* At best, minimizes error of fit (“Bellman error”)
* Not the same as expected reward

e At worst, doesn’t optimize anything

 Many popular deep RL value fitting algorithms are not guaranteed to
converge to anything in the nonlinear case

* Model-based RL

* Model minimizes error of fit
* This will converge

* No guarantee that better model = better policy

* Policy gradient

* The only one that actually performs gradient descent (ascent) on
the true objective

Comparison: assumptions

* Common assumption #1: full observability

e Generally assumed by value function fitting
methods

e Can be mitigated by adding recurrence

* Common assumption #2: episodic learning
e Often assumed by pure policy gradient methods
* Assumed by some model-based RL methods

* Common assumption #3: continuity or
smoothness

* Assumed by some continuous value function
learning methods

e Often assumed by some model-based RL
methods

Examples of Algorithms

Examples of specific algorithms

* Value function fitting methods
* Q-learning, DQN
* Temporal difference learning
* Fitted value iteration

* Policy gradient methods ;
« REINFORCE We’'ll learn about

* Natural policy gradient most of these in the

* Trust region policy optimization
N . next few weeks!
* Actor-critic algorithms
* Asynchronous advantage actor-critic (A3C)

» Soft actor-critic (SAC)

* Model-based RL algorithms
* Dyna
e Guided policy search

Example 1: Atari games with Q-functions

* Playing Atari with deep
reinforcement learning,
Mnih et al. ‘13

* Q-learning with
convolutional neural
networks

Example 2: robots and model-based RL

* End-to-end training of
deep visuomotor
policies, L.* , Finn* '16

* Guided policy search
(model-based RL) for
image-based robotic
manipulation

Various Experiments
Including the policy input

Example 3: walking with policy gradients

lteration O

* High-dimensional
continuous control with
generalized advantage
estimation, Schulman et
al. ‘16

* Trust region policy
optimization with value
function approximation

Example 4: robotic grasping with Q-functions

* QT-Opt, Kalashnikov et
al. ‘18

* Q-learning from images
for real-world robotic

grasping

