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The goal of reinforcement learning
we’ll come back to partially observed later
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The goal of reinforcement learning



Finite horizon case: state-action marginal

state-action marginal



Infinite horizon case: stationary distribution

stationary distribution

stationary = the 
same before and 
after transition



Infinite horizon case: stationary distribution

stationary distribution

stationary = the 
same before and 
after transition



Expectations and stochastic systems

infinite horizon case finite horizon case

In RL, we almost always care about expectations

+1 -1



Algorithms



The anatomy of a reinforcement learning algorithm

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



A simple example

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Another example: RL by backprop

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Which parts are expensive?

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

real robot/car/power 
grid/whatever:
1x real time, until we 
invent time travel

MuJoCo simulator:
up to 10000x real time

trivial, fast

expensive



Value Functions



How do we deal with all these expectations?

what if we knew this part?



Definition: Q-function

Definition: value function



Using Q-functions and value functions



The anatomy of a reinforcement learning algorithm

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

this often uses Q-
functions or value 
functions



Types of Algorithms



Types of RL algorithms

• Policy gradients: directly differentiate the above objective

• Value-based: estimate value function or Q-function of the optimal policy 
(no explicit policy)

• Actor-critic: estimate value function or Q-function of the current policy, 
use it to improve policy

• Model-based RL: estimate the transition model, and then…
• Use it for planning (no explicit policy)

• Use it to improve a policy

• Something else



Model-based RL algorithms

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Model-based RL algorithms

improve the policy

1. Just use the model to plan (no policy)
• Trajectory optimization/optimal control (primarily in continuous spaces) –

essentially backpropagation to optimize over actions
• Discrete planning in discrete action spaces – e.g., Monte Carlo tree search

2. Backpropagate gradients into the policy
• Requires some tricks to make it work

3. Use the model to learn a value function
• Dynamic programming
• Generate simulated experience for model-free learner



Value function based algorithms

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Direct policy gradients

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Actor-critic: value functions + policy gradients

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Tradeoffs Between Algorithms



Why so many RL algorithms?

• Different tradeoffs
• Sample efficiency

• Stability & ease of use

• Different assumptions
• Stochastic or deterministic?

• Continuous or discrete?

• Episodic or infinite horizon?

• Different things are easy or hard in 
different settings
• Easier to represent the policy?

• Easier to represent the model?

generate 
samples (i.e. 

run the policy)

fit a model/ 
estimate return

improve the 
policy



Comparison: sample efficiency

• Sample efficiency = how many samples 
do we need to get a good policy?

• Most important question: is the 
algorithm off policy?
• Off policy: able to improve the policy 

without generating new samples from that 
policy

• On policy: each time the policy is changed, 
even a little bit, we need to generate new 
samples

generate 
samples (i.e. 

run the policy)

fit a model/ 
estimate return

improve the 
policy

just one gradient step



Comparison: sample efficiency

More efficient 
(fewer samples)

Less efficient 
(more samples)

on-policyoff-policy

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!

evolutionary or 
gradient-free 
algorithms

on-policy policy 
gradient 
algorithms

actor-critic
style 
methods

off-policy 
Q-function 
learning

model-based 
deep RL

model-based 
shallow RL



Comparison: stability and ease of use

Why is any of this even a question???

• Does it converge?

• And if it converges, to what?

• And does it converge every time?

• Supervised learning: almost always gradient descent

• Reinforcement learning: often not gradient descent
• Q-learning: fixed point iteration

• Model-based RL: model is not optimized for expected reward

• Policy gradient: is gradient descent, but also often the least 
efficient!



Comparison: stability and ease of use

• Value function fitting
• At best, minimizes error of fit (“Bellman error”)

• Not the same as expected reward

• At worst, doesn’t optimize anything
• Many popular deep RL value fitting algorithms are not guaranteed to 

converge to anything in the nonlinear case

• Model-based RL
• Model minimizes error of fit

• This will converge

• No guarantee that better model = better policy

• Policy gradient
• The only one that actually performs gradient descent (ascent) on 

the true objective



Comparison: assumptions

• Common assumption #1: full observability
• Generally assumed by value function fitting 

methods

• Can be mitigated by adding recurrence

• Common assumption #2: episodic learning
• Often assumed by pure policy gradient methods

• Assumed by some model-based RL methods

• Common assumption #3: continuity or 
smoothness
• Assumed by some continuous value function 

learning methods

• Often assumed by some model-based RL 
methods



Examples of Algorithms



Examples of specific algorithms

• Value function fitting methods
• Q-learning, DQN
• Temporal difference learning
• Fitted value iteration

• Policy gradient methods
• REINFORCE
• Natural policy gradient
• Trust region policy optimization

• Actor-critic algorithms
• Asynchronous advantage actor-critic (A3C)
• Soft actor-critic (SAC)

• Model-based RL algorithms
• Dyna
• Guided policy search

We’ll learn about 
most of these in the 

next few weeks!



Example 1: Atari games with Q-functions

• Playing Atari with deep 
reinforcement learning, 
Mnih et al. ‘13

• Q-learning with 
convolutional neural 
networks



Example 2: robots and model-based RL

• End-to-end training of 
deep visuomotor 
policies, L.* , Finn* ’16

• Guided policy search 
(model-based RL) for 
image-based robotic 
manipulation



Example 3: walking with policy gradients

• High-dimensional 
continuous control with 
generalized advantage 
estimation, Schulman et 
al. ‘16

• Trust region policy 
optimization with value 
function approximation



Example 4: robotic grasping with Q-functions

• QT-Opt, Kalashnikov et 
al. ‘18

• Q-learning from images 
for real-world robotic 
grasping


