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What questions do we ask in RL theory?

Lots of different questions! But here are a few common ones:

If I use this algorithm with N samples, k iterations, how good is the result?

Let’s say we're doing Q-learning...

||Qk — Q|| <€  with probability at least 1 — 0 if N > f(e, 6)
Q™ — Q™[] < ¢ We'll focus on these types of questions today

not the same thing! Q™ is the true @Q-function of policy at iteration k

If I use this exploration algorithm, how high is my regret?

Reg(T)<(’)(\/T-N-log¥) + 0T

But there are many others!




What kinds of assumptions do we make?

Effective analysis is very hard in RL without strong assumptions

The trick is to make assumptions that admit interesting conclusions without divorcing us (too much) from reality
Exploration: Performance of RL methods is greatly complicated by exploration —
how likely are we to find (potentially sparse) rewards?

Theoretical guarantees typically address worst case performance,
and worst case exploration is extremely hard

Goal: show that exploration method (e.g., counts) is Poly(|S|, |A|,1/(1—~))

Learning: If we somehow “abstract away” exploration, how many samples do
we need to effectively learn a model or value function that results in
good performance?

“generative model” assumption: assume we can sample from P(s'|s, a)
for any (s,a)

“oracle exploration”: for every (s,a), sample s’ ~ P(s’|s,a) N times



What'’s the point?

1. Prove that our RL algorithms will work perfectly every time

Usually not possible with current deep RL methods, which are often not even guaranteed to
converge

2. Understand how errors are affected by problem parameters
Do larger discounts work better than smaller ones?

If we want half the error, do we need 2x the samples? 4x? something else?

Usually we use precise theory to get imprecise qualitative conclusions about how various
factors influence the performance of RL algorithms under strong assumptions, and try to make
the assumptions reasonable enough that these conclusions are likely to apply to real problems
(but they are not guaranteed to apply to real problems)

Don’t take someone seriously if they say their RL algorithm has “provable guarantees” — the
assumptions are always unrealistic, and theory is at best a rough guide to what might happen



Some basic sample complexity analysis

“oracle exploration”: for every (s,a), sample s’ ~ P(s’|s,a) N times

simple “model based” algorithm:

#(s,a,s)
A N ~
2. Given m, use P to estimate Q)™

1. P(s'|s,a) =

- A with probability at least 1 — ¢
Q" (s,a) — Q" (s,a)||ec <€ if N> f(e,0)

max |Q7(s,a) ~ Q" (s,a)| < ¢

?

how close is Q“ to Q77 <

good to use || - || if we want worst-case performance

1Q*(5,a) — Q*(5,0)||0o < €

optimal Q-function learned under P

how close is Q™ if we learn it using P?

how good is the resulting policy? < |Q*(s,a) — Qﬁ(S, a)lloo <€

the arg max policy corresponding to that Q-function
5

Based on RL Theory Textbook. Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io & slides by Aviral Kumar



https://rltheorybook.github.io/

Concentration inequalities

whenever we need to answer questions about how close a learned function
is to the true function, in terms of # of samples

Lemma A.1l. (Hoeffding’s inequality) Suppose X1, X, ... X,, are a sequence of independent, identically distributed
(i.i.d.) random variables with mean 1. Let X,, = n~1 Z?’Zl X;. Suppose that X; € [b_, b | with probability 1, then

P(XTL :j H — EJ E E—ETMQ{;“_,_I__&_ }2.

Similarly,
PX,<p—e< e~ 2ne /(by—b-)"

interpretation:

if we estimate p with n samples the probability we’re off by more than € is at most 26_2”62/ (b4 —b-)*
equivalently, if we want this probability to be 9:
§ < 2e72ne/(04=b-)° 5 g 0 o —2ne?/(by —b_)? = (by = )" logg > = by —b- 10%"% > €

= 59 = + 70 on 5= V2n 5=
or... n< 502 log 5 error (€) scales as T

Based on RL Theory Textbook. Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io & slides by Aviral Kumar
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Concentration inequalities

#(s,a,5)
N

P(s'ls,a) =

discrete distribution

Proposition A.8. (Concentration for Discrete Distributions) Let z be a discrete random variable that takes values in

{1,...,d}, distributed according to q. We write q as a vector where ¢ = [Pr(z = j)]_";le. Assume we have N iid

samples, and that our empirical estimate of 'is [q]; = :J 1 1[z; = j]/N.

We have that Ve > (: ,
Pr (”;,;;_ ll, > 1/\/E+E) < e N,
which implies that:

Pr ([|g—qll, > VA1/VN +¢)) < e V<.

§<e N o < log 1 |P(s']s,a) — P(s|s,a)|l1 <+/|S|(1/VN +¢)  with prob1—4

ﬁ

1 1 L , S| \/|S|10g1/(5 \/|S|10g1/(5
- — <4/ — <
= Ng > log g |P(s"|s,a) — P(s'|s,a)|]1 <1/ N + N <c N
7
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A few useful lemmas

Next goal: relate error in P to error in QW QT =r+~yP™Q"
Relating P to Q7: QT —vP"Q" =r

™ T I —~P™ [
Q (37 OD) — ?“(8, CL) + fYES’NP(S’|s,a,)[V (3,)] ( Y )Q r

Q= —~yP")"r
Q™ (s,a) =7r(s,a) + fyz P(s'|s,a)V7™(s")

Qﬂ' T P V’?T
QT =r+7PVT siAl Hisial flysya B9
S
11
VT =1Q" S| QT =r+yPTQ"
5114 R

Based on RL Theory Textbook. Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io & slides by Aviral Kumar
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A few useful lemmas

™ __ T\ —1 AT Ay —1
Q - (I_fYP ) " Q o (I _FYP ) r true value

/

Simulation lemma;: QT — Q" =~(I — »Yﬁﬂ)—l(p _ IS)VW
J

| Y
evaluation difference in
operator probabilities

Q" Q"= Q" —(—Pm)"
= (I —~P")" I —4P)Q™ — (I —~vP7")~!
= (I —~P™) (I —yP™)Q™ — (I —yP™) (I — vP™)Q"
= (I —~+P") " H((R—7P™) — L —~vP"))Q"
[ —~P™)"YP" — PMQ™
— yP™)7H(PII - PINQ™
[ —~P™)"YP — P)IQ"
I—~P")" Y (P-P)VT™

|
iiii

»\4

\g

Based on RL Theory Textbook. Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io & slides by Aviral Kumar



https://rltheorybook.github.io/

A few useful lemmas

Another useful lemma: given P™ and any vector v € RISIIAl we have:
(I = ~7P™) " ol < olleo/(1 =)

“Q-function” corresponding to “reward” v is at most 1/(1 —~) times larger

1—
let w= (I —~vP™)"tv Z,},tc __ ¢
t=0 L=

V]l = [I(T =vPTwllos = |Jw]|oc =[P w[loe 2 [[wl]loe = 7l[w]loo = (1 = )l[wl]oo

T T

triangle inequality ||P7T||OO <1 ||’U||OO/(1 — ’Y) > ||w||oo
[la = b[| = [[al] — |[b]]

Based on RL Theory Textbook. Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io & slides by Aviral Kumar
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Putting them together...

(T =~vP™) " olloo < [J0]loc/(1 =)

\ ||QW_QW||OOZ||’7(I_'Yﬁ7r)_1(P_p)VW||oo

~ . < 1 T
8 » T
] < (IgaaXHPHSaa) - PUs. )l ) 1V

can we bound |[V™||?  joqime R =1 RN

00 o0 / < L . B p .

Z,yt,rt < Z'YtRmaX _ 1 R — (1 - ) max ‘ ( ’8,&) ( ‘8,0&)“1

t=0 t=0 L=~

\/|S log1/8
N
. log1/6
| P(s"|s,a) — P(s|s, a) \/|S| og 1/

technically need to use the union
bound here to account for probabilities
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What does this mean?

s T Y |S|10g1/6

/ \

error grows quadratically in the horizon

more samples = lower error

each backup “accumulates” error

Based on RL Theory Textbook. Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io & slides by Aviral Kumar
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Some simple implications...

s AT Y |S|10g1/6
_ < e

what about ||Q* — Q*||a0? |sup f(z) —sup g(z)| < sup|f(z)— g(z)

1Q* = Q% lloo = [15up Q7 — sup Q]| oc < sup||Q™ — 7| <€

what about ||Q* — Q™ ||s0? /Q
1Q" = Q7 [loe = 1@ = Q7 + Q0™ — Q" ||oe Q" = Q7 || +IQT = Q" [l < 2¢

\ /

same policy
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What About Model-Free RL?



. . 1 " Bellman operator
Analyzing fitted Q-iteration /TQ:Tj,YngXQ

abstract model of exact Q-iteration: Qr+1 < TQr which norm?
X ) o / no convergence if || - ||2
abstract model of approximate fitted Q-iteration: Qr+1 < argmin||Q — T'Qx]| we'll assume || - ||

Question: as k — o0, Qr —7
approximate Bellman operator

Tim [[Qr — Q][ <7 TQ = 7+ 4P maxQ
where do errors come from? / \P , . N(s,a,¢)
) 7(s,a) = N(s py 25 (si,a;) = (s,a))r; (s']s,a) = N(s.a)
T #T “sampling error”

Note: these are not models, this is the effect of

o A " : ) averaging together transitions in the data!
Qk+1 # T'Qy approximation error”
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Let’s analyze sampling error

Qk+1<—argm5nHQ T#T

VS. TQk

|TQ(87 a’) o TQ(Sa a)| — ’72(87 a) o T(Sa CL) + /Y(Elf’(sﬂs,a)[ng}XQ(S,a al)] T EP(S’|s,a) [HE}XQ(Sla CL,)])‘

< 17(5,0) = (5, 0)] + V(B p(ypa 035 Q" 0))] = Epa)s o) [max Q(s', ')

\ ) \ )

Y Y
estimation error of continuous random variable Z(P(S"sj a) — P(s'|s,a)) max Q(s',a’)
just use Hoeffding’s inequality directly! s’ a’
<Y I1P(s']s,a) = P(s]s, )| max Q(s', )
~ log 1/(5 s’.a’
17(s,a) — r(s,a)| < 2Rmax oN s/

=[|P(]s.a) = P(]s,a)[11]|Qll

log 1/
N

§‘ﬂmmhm
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Let’s analyze sampling error

Qkﬂ%al“gmén\@ T#T

VS. TQk

r log1/6 log1/8
TQ(s,a) —TQ(s,a)| < QRmaX\/q—l— CHQHOO\/W

,\ g IST1A1/0 [T
17Q ~ TQllse < 2R pueery) A o1y /2B LS

Based on RL Theory Textbook. Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io & slides by Aviral Kumar
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Let’s analyze approximation error

approximation error assumption: ||Qri1 — TQkllco < €k This is a strong assumption!

\

we’ll analyze the exact backup operator for now,
but we’ll come back to approximate backups later!

||Qk — Q|| = ||Qk B TQk—l n TQk—l B Q*Hoo/using fact that (Q* is fixed point of T
= [|(@k — TQr—1) + (TQx-1 — TQ")||
< 1@k = TQr-1lo0 + | TQr-1 — TQ*||c
< o1 | TQr-1 — TQ*||so

using fact that 7" is a y-contraction
< ép—1+V||Qr—1 — Q7]

Based on RL Theory Textbook. Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io & slides by Aviral Kumar
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Let’s analyze approximation error

||Qk — Q|0 < €1+ ’Y||Qk—1 — Q™|
< €p—1 + Y€k—2 + ’Y2||Qk—2 — Q"] oo
< €p—1 t+ Y€k—2 + ’72619—3 + 73||@k—2 — Q"] oo

k—1
< Z’Yzek—i—l +75|Q0 — Q*|oe
i—0

approximation error scales with “horizon”

Based on RL Theory Textbook. Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io & slides by Aviral Kumar
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Putting it together

- ]. S A 6 ]. S 6 " H ”
TQ —TQ||s < 2Rmaxcl\/ og |S||4]/ +62\|Q||oo\/ og |5/ sampling error
2N N
1 S * 1 1 a ~ " H H ”
klgxgo Qr — QF|oo < T maxer = —— m]?XHQk — TQr—1|| approximation error

N

how much Qk—l—l diffofs from TQ,
due to: sampling &rror (T #T)
approxmation error (Qk + TQk_l)
1Qk — TQx-1]loo = [|Qk — TQr—1 +TQ1 — TQr—1||
<@k — TQr—1lloo + [|[TQr-1 — TQr—1]|

||
approximation sampling

Based on RL Theory Textbook. Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io & slides by Aviral Kumar
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What does it all mean? C(R —%ﬂ

maxl_
~ ]. S A 6 ]. S 6 o" . ”
TQ — TQ||o §2Rmaxc1\/0g| A1/ +c2\|Q||OO\/Og| / sampling error
2N N
lim ||Q — Q"] <—1 max e ——1 Q TQ “approximation error”
by o k 00—1_,)/ i k—l_,}/m]?XH k — k—1]] o0 PP

1Ok — TQr-1llso < |1Qk = TQh—1]loc + [|TQr—1 — TQr—1]|oc

error “compounds” with horizon, over iterations and due to sampling

so far we needed strong (infinity norm) assumptions

more advanced results can be derived with p-norms under some distribution:

1@k — Q]

pit = (Blooyantem [Qa(5,0) = Q*(5,) "]

Based on RL Theory Textbook. Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io & slides by Aviral Kumar
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