
Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2022

Assignment 5: Exploration Strategies and Offline Reinforcement Learning

Due Monday, November 21, 11:59 pm

1 Introduction

This assignment requires you to implement and evaluate a pipeline for exploration and offline learning. You
will first implement an exploration method called random network distillation (RND) and collect data using
this exploration procedure, then perform offline training on the data collected via RND using conservative
Q-learning (CQL), Advantage Weighted Actor Critic (AWAC), and Implicit Q-Learning (IQL). You will also
explore with variants of exploration bonuses – where a bonus is provided alongside the actual environment
reward for exploration. This assignment would be easier to run on a CPU as we will be using gridworld
domains of varying difficulties to train our agents.

The questions will require you to perform multiple runs of Offline RL Training, which can take quite a long
time as we ask you to analyze the emperical significance of specific hyperparameters and thus sweep over them.
Furthermore, depending on your implementation, you may find it necessary to tweak some of the parameters,
such as learning rates or exploration schedules, which can also be very time consuming. We would highly
recommend starting early on this assignment to allocate enough time to finish the assignment effectively.

1.1 File overview

The starter code for this assignment can be found at

https://github.com/berkeleydeeprlcourse/homework_fall2022/tree/master/hw5

We will be building on the code that we have implemented in the first four assignments, primarily focusing
on code from Homework 3. All files needed to run your code are in the hw5 folder.

In order to implement RND, CQL, and AWAC you will be writing new code in the following files:

• critics/cql critic.py

• exploration/rnd model.py

• agents/explore or exploit agent.py

• agents/awac agent.py

• agents/iql agent.py

• policies/MLP policy.py

Figure 1: Figures depicting the easy (left), medium (middle) and hard (right) environments.

1.2 Environments

Unlike previous assignments, we will consider some stochastic dynamics, discrete-action gridworld environ-
ments in this assignment. The three gridworld environments you will need for the graded part of this assign-
ment are of varying difficulty: easy, medium and hard. A picture of these environments is shown below. The

https://github.com/berkeleydeeprlcourse/homework_fall2022/tree/master/hw5

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2022

easy environment requires following two hallways with a right turn in the middle. The medium environment
is a maze requiring multiple turns. The hard environment is a four-rooms task which requires navigating
between multiple rooms through narrow passages to reach the goal location. We also provide a very hard
environment for the bonus (optional) part of this assignment.

1.3 Random Network Distillation (RND) Algorithm

A common way of doing exploration is to visit states with a large prediction error of some quantity, for instance,
the TD error or even random functions. The RND algorithm, as covered in Lecture 13, aims at encouraging
exploration by asking the exploration policy to more frequently undertake transitions where the prediction
error of a random neural network function is high. Formally, let f∗θ (s

′) be a randomly chosen vector-valued

function represented by a neural network. RND trains another neural network, f̂ϕ(s
′) to match the predictions

of f∗θ (s
′) under the distribution of datapoints in the buffer, as shown below:

ϕ∗ = argmin
ϕ

Es,a,s′∼D

||f̂ϕ(s′)− f∗θ (s′)||︸ ︷︷ ︸
Eϕ(s′)

 . (1)

If a transition (s, a, s′) is in the distribution of the data buffer, the prediction error Eϕ(s′) is expected to
be small. On the other hand, for all unseen state-action tuples it is expected to be large. To utilize this
prediction error as a reward bonus for exploration, RND trains two critics – an exploitation critic, QR(s, a),
and an exploration critic, QE(s, a), where the exploitation critic estimates the return of the policy under the
actual reward function and the exploration critic estimates the return of the policy under the reward bonus.
In practice, we normalize error before passing it into the exploration critic, as this value can vary widely in
magnitude across states leading to poor optimization dynamics.

In this problem, we represent the random functions utilized by RND, f∗θ (s
′) and f̂ϕ(s

′) via random neural
networks. To prevent the neural networks from having zero prediction error right from the beginning, we
initialize the networks using two different initialization schemes marked as init_method_1 and init_method_2

in exploration/rnd_model.py.

1.4 Boltzman Exploration

Boltzmann exploration is a classic strategy for sequential decision-making under uncertainty, and is one of the
most standard tools in Reinforcement Learning. Actions are chozen with the following exploration strategy:

πexplore(a|s) ∝ exp [−π(a|s)/τ] (2)

You may optionally implement this exploration strategy in the code if you please (ungraded).

1.5 Conservative Q-Learning (CQL) Algorithm

For the first portion of the offline RL part of this assignment, we will implement the conservative Q-learning
(CQL) algorithm. The goal of CQL is to preventing overestimation of the policy value. In order to do that,
a conservative, lower-bound Q-function is learned by additionally minimizing Q-values alongside a standard
Bellman error objective. This is done by augmenting the Q-function training with a regularizer that minimizes
the soft-maximum of the Q-values log (

∑
a exp(Q(s, a))) and maximizes the Q-value on the state-action pair

seen in the dataset, Q(s, a). The overall CQL objective is given by the standard TD error objective augmented

with the CQL regularizer weighted by α: α
[

1
N

∑N
i=1 (log (

∑
a exp(Q(si, a)))−Q(si, ai))

]
. You will tweak this

value of α in later questions in this assignment.

1.6 Advantage Weighted Actor Critic (AWAC) Algorithm

For the second portion of the offline RL part of this assignment, we will implement the AWAC algorithm.
This augments the training of the policy by utilizing the following actor update:

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2022

θ ← argmax
θ

Es,a∼B

[
logπθ(a|s)exp(

1

λ
Aπk(s, a))

]
. (3)

This update is similar to weighted behavior cloning (which it resolves to if the Q function is degenerate).
But with a well-formed Q estimate, we weight the policy towards selecting actions that are high under our
learnt q function. In the update above, the agent regresses onto high-advantage actions with a large weight,
while almost ignoring low-advantage actions. This actor update amounts to weighted maximum likelihood
(i.e., supervised learning), where the targets are obtained by reweighting the state-action pairs observed in the
current dataset by the predicted advantages from the learned critic, without explicitly learning any parametric
behavior model, simply sampling (s, a) from the replay buffer β.

The Q function is learnt with a Temporal Difference (TD) Loss. The objective can be found below.

ED[(Q(s, a)− r(s, a) + γEs′,a′ [Qϕk−1
(s′, a′)])2] (4)

1.7 Implicit Q-Learning (IQL) Algorithm

For the second portion of the offline RL part of this assignment, we will implement the IQL algorithm. This
augments the training of the policy by utilizing the following actor update (same as AWAC):

Lπ(ψ) = −Es,a∼B

[
logπψ(a|s)exp(

1

λ
Aπk(s, a))

]
. (5)

IQL modifies the critic update to use expectile regression. Expectile regression has been thoroughly studied
in applied statistics and econometrics. The expctile τ of a random variable X is defined as

argmin
mτ

Ex∼X [L2(x−mτ)], L
τ
2(µ) = |τ − 1{µ ≤ 0}| (6)

Using this objectives, we can predict an upper expectile of the TD targets that approximates the maximum
of r(s, a) + γQθ(s

′, a′) that is in support of the offline dataset.

However, we can’t naively utilize expectile regression with a single parameteric q function. This is because
it would also incorporate the environment dynamics as s′ ∼ p(·|s, a). For this reason, a parametric value
function is learnt. Finally, the critic is updated with only actions seen in the dataset to avoid querying out
of sample (unseen) actions. This leads to the following loss functions.

LV (ϕ) = E(s,a)∼D[L
τ
2(Qθ(s, a)− Vϕ(s))] (7)

LQ(θ) = E(s,a,s′)∼D[(r(s, a) + γVϕ(s
′)−Qθ(s, a))2] (8)

1.8 Relevant Literature

For more details about the algorithmic implementation, feel free to refer to the following papers: Conservative
Q-Learning for Offline Reinforcement Learning (CQL), Accelerating Online Reinforcement Learning with
Offline Datasets (AWAC), Offline Reinforcement Learning with Implicit Q-Learning (IQL), and Exploration
by Random Network Distillation (RND).

https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2110.06169

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2022

1.9 Implementation

The first part in this assignment is to implement a working version of Random Network Distillation. The
default code will run the easy environment with reasonable hyperparameter settings. Look for the # TODO

markers in the files listed above for detailed implementation instructions.

Once you implement RND, answering some of the questions will require changing hyperparameters, which
should be done by changing the command line arguments passed to run_hw5_expl.py or by modifying the
parameters of the Args class from within the Colab notebook.

For the second part of this assignment, you will implement the conservative Q-learning algorithm as described
above. Look for the # TODO markers in the files listed above for detailed implementation instructions. You
may also want to add additional logging to understand the magnitude of Q-values, etc, to help debugging.
Finally, you will also need to implement the logic for switching between exploration and exploitation, and
controlling for the number of offline-only training steps in the agents/explore_or_exploit_agent.py as we
will discuss in problems 2 and 3.

1.10 Evaluation

Once you have a working implementation of RND, Boltzman Exploration, CQL, AWAC, and IQL, you should
prepare a report. The report should consist of one figure for each question below (each part has multiple
questions). You should turn in the report as one PDF and a zip file with your code. If your code requires
special instructions or dependencies to run, please include these in a file called README inside the zip file.

1.11 Problems

What you will implement: the RND algorithm for exploration. You will be changing the following files:

1. exploration/rnd_model.py

2. agents/explore_or_exploit_agent.py

3. critics/cql_critic.py

Part 1: “Unsupervised” RND and exploration performance. Implement the RND algorithm and
use the argmax policy with respect to the exploration critic to generate state-action tuples to populate
the replay buffer for the algorithm. In the code, this happens before the number of iterations crosses
num_exploration_steps, which is set to 10k by default. You need to collect data using the ArgmaxPolicy

policy which chooses to perform actions that maximize the exploration critic value.

In experiment log directories, you will find heatmap plots visualizing the state density in the replay buffer, as
well as other helpful visuals. You will find these in the experiment log directory, as they are output during
training. Pick two of the three environments and compare RND exploration to random (epsilon-
greedy) exploration. Include all the state density plots and a comparative evaluation of the learning curves
obtained via RND and random exploration in your report.

The possible environments are: ’PointmassEasy-v0’, ’PointmassMedium-v0’, ’PointmassHard-v0’.

python cs285/scripts/run_hw5_expl.py --env_name *Chosen Env 1* --use_rnd \

--unsupervised_exploration --exp_name q1_env1_rnd

python cs285/scripts/run_hw5_expl.py --env_name *Chosen Env 1* \

--unsupervised_exploration --exp_name q1_env1_random

python cs285/scripts/run_hw5_expl.py --env_name *Chosen Env 2* --use_rnd \

--unsupervised_exploration --exp_name q1_env2_rnd

python cs285/scripts/run_hw5_expl.py --env_name *Chosen Env 2* \

--unsupervised_exploration --exp_name q1_env2_random

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2022

For debugging this problem, note that on the easy environment we would expect to obtain a mean reward
(100 episodes) of -25 within 4000 iterations of online exploitation. The density of the state-action pairs on this
easy environment should be, as expected, more uniformly spread over the reachable parts of the environment
(that are not occupied by walls) with RND as compared to random exploration where most of the density
would be concentrated around the starting state.

For the second sub-part of this problem, you need to implement a separate exploration strategy of your
choice. This can be an existing method, but feel free to design one of your own. To provide some starting
ideas, you could try out count-based exploration methods (such as pseudo counts and EX2) or prediction
error based approaches (such as exploring states with high TD error) or approaches that maximize marginal
state entropy. Compare and contrast the chosen scheme with respect to RND, and specify possible reasons
for the trends you see in performance. The heatmaps and trajectory visualizations will likely be helpful in
understanding the behavior here.

python cs285/scripts/run_hw5_expl.py --env_name PointmassMedium-v0

--unsupervised_exploration <add arguments for your method> --exp_name q1_alg_med

python cs285/scripts/run_hw5_expl.py --env_name PointmassHard-v0

--unsupervised_exploration <add arguments for your method> --exp_name q1_alg_hard

Part 2: Offline learning on exploration data. Now that we have implemented RND for collecting
exploration data that is (likely) useful for performing exploitation, we will perform offline RL on this dataset
and see how close the resulting policy is to the optimal policy. To begin, you will implement the conservative
Q-learning algorithm in this question which primarily needs to be added in critic/cql_critic.py and you
need to use the CQL critic as the extrinsic critic in agents/explore_or_exploit_agent.py. Once CQL is
implemented, you will evaluate it and compare it to a standard DQN critic.

For the first sub-part of this problem, you will write down the logic for disabling data collection in
agents/explore_or_exploit_agent.py after exploitation begins and only evaluate the performance of the
extrinsic critic after training on the data collected by the RND critic. To begin, run offline training at the
default value of num_exploration_steps which is set to 10000. Compare DQN to CQL on the medium

environment.

cql_alpha = 0 => DQN, cql_alpha = 0.1 => CQL

python cs285/scripts/run_hw5_expl.py --env_name PointmassMedium-v0 --exp_name q2_dqn \

--use_rnd --unsupervised_exploration --offline_exploitation --cql_alpha=0

python cs285/scripts/run_hw5_expl.py --env_name PointmassMedium-v0 --exp_name q2_cql \

--use_rnd --unsupervised_exploration --offline_exploitation --cql_alpha=0.1

Examine the difference between the Q-values on state-action tuples in the dataset learned by CQL vs DQN.
Does CQL give rise to Q-values that underestimate the Q-values learned via a standard DQN? If not, why?
To answer this question, first you might find it illuminating to try the experiment shown below, marked as a
hint and then reason about a common cause behind both of these phenomena.

Hint: Examine the performance of CQL when utilizing a transformed reward function for training the ex-
ploitation critic. Do not change any code in the environment class, instead make this change in
agents/explore_or_exploit_agent.py. The transformed reward function is given by:

r̃(s, a) = (r(s, a) + shift)× scale

The choice of shift and scale is up to you, but we used shift = 1, and scale = 100. On any one domain of your
choice test the performance of CQL with this transformed reward. Is it better or worse? What do you think
is the reason behind this difference in performance, if any?

For the second sub-part of this problem, perform an ablation study on the performance of the offline
algorithm as a function of the amount of exploration data. In particular vary the amount of exploration

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2022

data for atleast two values of the variable num_exploration_steps in the offline setting and report a table
of performance of DQN and CQL as a function of this amount. You need to do it on the medium or hard

environment. Feel free to utilize the scaled and shifted rewards if they work better with CQL for you.

python cs285/scripts/run_hw5_expl.py --env_name *Chosen Env* --use_rnd \

--num_exploration_steps=[5000, 15000] --offline_exploitation --cql_alpha=0.1 \

--unsupervised_exploration --exp_name q2_cql_numsteps_[num_exploration_steps]

python cs285/scripts/run_hw5_expl.py --env_name *Chosen Env* --use_rnd \

--num_exploration_steps=[5000, 15000] --offline_exploitation --cql_alpha=0.0 \

--unsupervised_exploration --exp_name q2_dqn_numsteps_[num_exploration_steps]

For the third sub-part of this problem, perform a sweep over two informative values of the hyperparameter
α besides the one you have already tried (denoted as cql_alpha in the code; some potential values shown
in the run command below) to find the best value of α for CQL. Report the results for these values in your
report and compare it to CQL with the previous α and DQN on the medium environment. Feel free to utilize
the scaled and shifted rewards if they work better for CQL.

python cs285/scripts/run_hw5_expl.py --env_name PointmassMedium-v0 --use_rnd \

--unsupervised_exploration --offline_exploitation --cql_alpha=[0.02, 0.5] \

--exp_name q2_alpha[cql_alpha]

Interpret your results for each part. Why or why not do you expect one algorithm to be better than the other?
Do the results align with this expectation? If not, why?

Part 3: “Supervised” exploration with mixed reward bonuses. So far we have looked at an “unsu-
pervised” exploration procedure – where we just train the exploration critic In this part, we will implement a
different variant of RND exploration that will not utilize the exploration reward and the environment reward
separately (as you did in Part 1), but will use a combination of both rewards for exploration as compared
to performing fully “supervised” exploration via the RND critic and then finetune the resulting exploitation
policy in the environment. To do so, you will modify the exploration_critic to utilize a weighted sum of
the RND bonus and the environment reward of the form:

rmixed = explore weight× rexplore + exploit weight× renv

The weighting is controlled in agents/explore_or_exploit_agent.py. The exploitation critic is only trained
on the environment reward and is used for evaluation. Once you have implemented this mechanism, run this
part using:

python cs285/scripts/run_hw5_expl.py --env_name PointmassMedium-v0 --use_rnd \

--num_exploration_steps=20000 --cql_alpha=0.0 --exp_name q3_medium_dqn

python cs285/scripts/run_hw5_expl.py --env_name PointmassMedium-v0 --use_rnd \

--num_exploration_steps=20000 --cql_alpha=1.0 --exp_name q3_medium_cql

python cs285/scripts/run_hw5_expl.py --env_name PointmassHard-v0 --use_rnd \

--num_exploration_steps=20000 --cql_alpha=0.0 --exp_name q3_hard_dqn

python cs285/scripts/run_hw5_expl.py --env_name PointmassHard-v0 --use_rnd \

--num_exploration_steps=20000 --cql_alpha=1.0 --exp_name q3_hard_cql

Feel free to utilize the scaled and shifted rewards if they work better with CQL for you. For these experiments,
compare the performance of this part to the second sub-part of Part 2 (i.e. results obtained via purely offline
learning in Part 2) for a given number of num_exploration_steps. Include the learning curves for both DQN
and CQL-based exploitation critics on these environments in your report.

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2022

Further, how do the results compare to Part 1, for the default value of num_exploration_steps? How
effective is (supervised) exploration with a combination of both rewards as compared to purely RND based
(unsupervised) exploration and why?

Evaluate this part on the medium and hard environments. As a debugging hint, for the hard environment,
with a reward transformation of scale = 100 and shift = 1, you should find that CQL is better than DQN.

Part 4: Offline Learning with AWAC Similar to parts 1-3 above, we will attempt to replicate this process
for another offline rl algorithm AWAC. The changes here primarily need to be added to agents/awac_agent.py
and policies/MLP_policy.py.

Once you have implemented AWAC, we will test the algorithm on two Pointmaze environments. Again, we
will be looking at unsupervised and supervised exploration with RND. We will also need to tune the λ value
in the AWAC update, which controls the conservatism of the algorithm. Consider what this value signifies
and how the performance compares to BC and DQN given different λ values.

Below are some commands that you can use to test your code. You should expect to see a return of above -60
for the PointmassMedium task and above -30 for PointmassEasy.

python cs285/scripts/run_hw5_awac.py --env_name PointmassEasy-v0 \

--exp_name q4_awac_easy_unsupervised_lam{} --use_rnd --num_exploration_steps=20000 \

--unsupervised_exploration --awac_lambda={0.1,1,2,10,20,50}

python cs285/scripts/run_hw5_awac.py --env_name PointmassEasy-v0 --use_rnd \

--num_exploration_steps=20000 --awac_lambda={0.1,1,2,10,20,50}

--exp_name q4_awac_easy_supervised_lam{0.1,1,2,10,20,50}

python cs285/scripts/run_hw5_awac.py --env_name PointmassMedium-v0 \

--exp_name q4_awac_medium_unsupervised_lam{} --use_rnd --num_exploration_steps=20000 \

--unsupervised_exploration --awac_lambda={0.1,1,2,10,20,50}

python cs285/scripts/run_hw5_awac.py --env_name PointmassMedium-v0 --use_rnd \

--num_exploration_steps=20000 --awac_lambda={0.1,1,2,10,20,50} \

--exp_name q4_awac_medium_supervised_lam{0.1,1,2,10,20,50}

In your report, please report your learning curves for each of these tasks. Also please consider λ values outside
of the range suggested above and consider how it may affect performance both empirically and theoretically.

Part 5: Offline Learning with IQL Similar to parts 1-4 above, we will attempt to replicate this process
for another offline rl algorithm IQL. The changes here primarily need to be added to agents/iql_agent.py

and critics/iql_critic.py, and will build on your implementation of AWAC from Part 4.

Once you have implemented IQL, we will test the algorithm on two Pointmaze environments. Again, we will
be looking at unsupervised and supervised exploration with RND. We will also need to tune the τ value for
expectile regression in the IQL update. Consider what this value signifies and how the performance compares
to BC and SARSA given different τ values.

Below are some commands that you can use to test your code. You should expect to see a return of above -50
for the PointmassMedium task and above -30 for PointmassEasy.

python cs285/scripts/run_hw5_iql.py --env_name PointmassEasy-v0 \

--exp_name q5_easy_supervised_lam{}_tau{} --use_rnd \

--num_exploration_steps=20000 \

--awac_lambda={best lambda part 4} \

--iql_expectile={0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}

python cs285/scripts/run_hw5_iql.py --env_name PointmassEasy-v0 \

--exp_name q5_easy_unsupervised_lam{}_tau{} --use_rnd \

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2022

--unsupervised_exploration \

--num_exploration_steps=20000 \

--awac_lambda={best lambda part 4} \

--iql_expectile={0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}

python cs285/scripts/run_hw5_iql.py --env_name PointmassMedium-v0 \

--exp_name q5_iql_medium_supervised_lam{}_tau{} --use_rnd \

--num_exploration_steps=20000 \

--awac_lambda={best lambda part 4} \

--iql_expectile={0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}

python cs285/scripts/run_hw5_iql.py --env_name PointmassMedium-v0 \

--exp_name q5_iql_medium_unsupervised_lam{}_tau{} --use_rnd \

--unsupervised_exploration \

--num_exploration_steps=20000 \

--awac_lambda={best lambda part 4} \

--iql_expectile={0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}

In your report, please report your learning curves for each of these tasks. Also please consider how the τ values
in the range suggested above affected performance both empirically and theoretically. In addition, compare
the performance of the three offline learning algorithms — CQL, IQL and AWAC.

2 Submitting the code and experiment runs

In order to turn in your code and experiment logs, create a folder that contains the following:

• A folder named data with all the experiment runs from this assignment. Do not change the names
originally assigned to the folders, as specified by exp name in the instructions. Video logging
is not utilized in this assignment, as visualizations are provided through plots, which are
outputted during training.

• The cs285 folder with all the .py files, with the same names and directory structure as the original
homework repository (excluding the data folder). Also include any special instructions we need to run
in order to produce each of your figures or tables (e.g. “run python myassignment.py -sec2q1” to generate
the result for Section 2 Question 1) in the form of a README file.

If you are a Mac user, do not use the default “Compress” option to create the zip. It creates artifacts
that the autograder does not like. You may use zip -vr submit.zip submit -x "*.DS Store" from your
terminal.

Turn in your assignment on Gradescope. Upload the zip file with your code and log files to HW5 Code, and
upload the PDF of your report to HW5.

As an example, the unzipped version of your submission should result in the following file structure. Make
sure that the submit.zip file is below 15MB and that they include the prefix q1 , q2 , q3 , etc.

submit.zip

data

q1...

events.out.tfevents.1567529456.e3a096ac8ff4

...

cs285

...

...

	Introduction
	File overview
	Environments
	Random Network Distillation (RND) Algorithm
	Boltzman Exploration
	Conservative Q-Learning (CQL) Algorithm
	Advantage Weighted Actor Critic (AWAC) Algorithm
	Implicit Q-Learning (IQL) Algorithm
	Relevant Literature
	Implementation
	Evaluation
	Problems

	Submitting the code and experiment runs

