Meta-Learning

CS 285

Instructor: Sergey Levine UC Berkeley

So far...

- Forward transfer: source domain to target domain
 - Diversity is good! The more varied the training, the more likely transfer is to succeed
- Multi-task learning: even more variety
 - No longer training on the same kind of task
 - But more variety = more likely to succeed at transfer
- How do we represent transfer knowledge?
 - Model (as in model-based RL): rules of physics are conserved across tasks
 - Policies requires finetuning, but closer to what we want to accomplish
 - What about *learning methods*?

What is meta-learning?

- If you've learned 100 tasks already, can you figure out how to *learn* more efficiently?
 - Now having multiple tasks is a huge advantage!
- Meta-learning = *learning to learn*
- In practice, very closely related to multi-task learning
- Many formulations
 - Learning an optimizer
 - Learning an RNN that ingests experience
 - Learning a representation

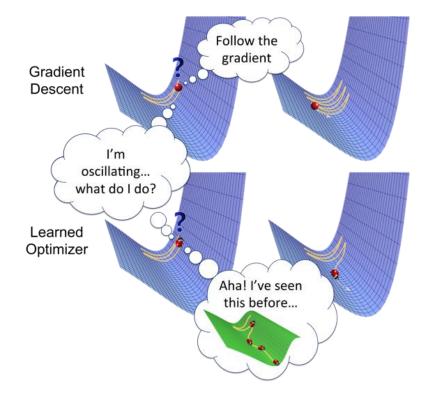


image credit: Ke Li

Why is meta-learning a good idea?

- Deep reinforcement learning, especially model-free, requires a huge number of samples
- If we can meta-learn a faster reinforcement learner, we can learn new tasks efficiently!
- What can a *meta-learned* learner do differently?
 - Explore more intelligently
 - Avoid trying actions that are know to be useless
 - Acquire the right features more quickly

Meta-learning with supervised learning

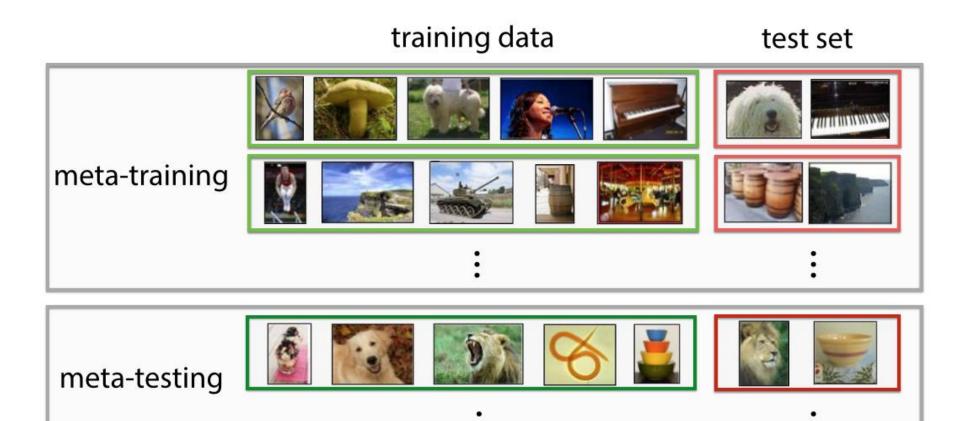
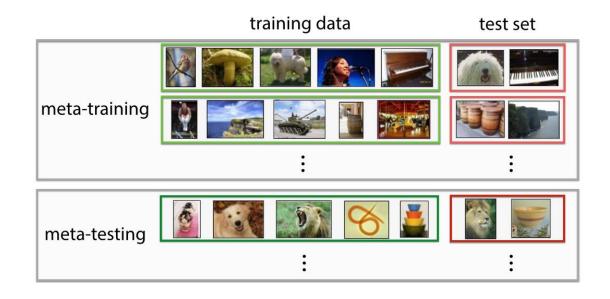
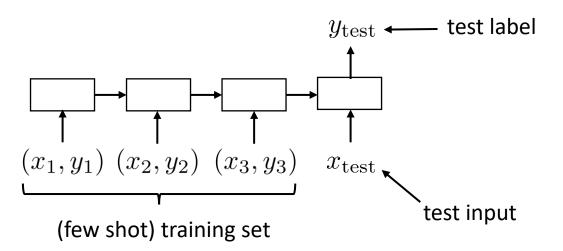


image credit: Ravi & Larochelle '17

Meta-learning with supervised learning



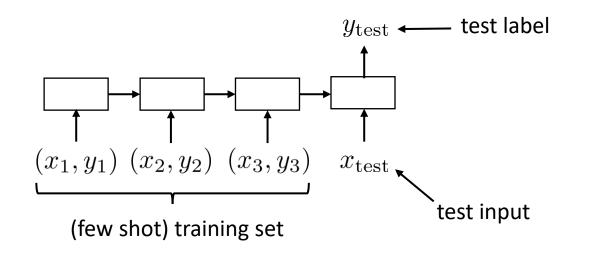


supervised learning: $f(x) \rightarrow y$ $f \qquad \uparrow$ input (e.g., image) output (e.g., label)

supervised meta-learning: $f(\mathcal{D}^{\mathrm{tr}}, x) \to y$ ftraining set

- How to read in training set?
 - Many options, RNNs can work
 - More on this later

What is being "learned"?



supervised meta-learning: $f(\mathcal{D}^{\mathrm{tr}}, x) \to y$

"Generic" learning: $\theta^{\star} = \arg\min_{\theta} \mathcal{L}(\theta, \mathcal{D}^{\mathrm{tr}})$ $= f_{\mathrm{learn}}(\mathcal{D}^{\mathrm{tr}})$

"Generic" meta-learning:

$$\theta^{\star} = \arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(\phi_i, \mathcal{D}_i^{\text{ts}})$$

where $\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$

What is being "learned"?

"Generic" learning:

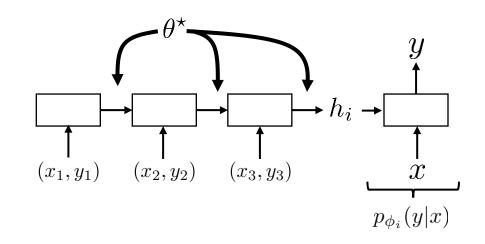
$$\theta^{\star} = \arg\min_{\theta} \mathcal{L}(\theta, \mathcal{D}^{\mathrm{tr}})$$

= $f_{\mathrm{learn}}(\mathcal{D}^{\mathrm{tr}})$

"Generic" meta-learning:

$$\theta^{\star} = \arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(\phi_{i}, \mathcal{D}_{i}^{\mathrm{ts}})$$

where $\phi_{i} = f_{\theta}(\mathcal{D}_{i}^{\mathrm{tr}})$





Meta Reinforcement Learning

The meta reinforcement learning problem

"Generic" learning:

 $\theta^{\star} = \arg\min_{\theta} \mathcal{L}(\theta, \mathcal{D}^{\mathrm{tr}})$

 $= f_{\text{learn}}(\mathcal{D}^{\text{tr}})$

"Generic" meta-learning:

$$\begin{aligned} \theta^{\star} &= \arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(\phi_{i}, \mathcal{D}_{i}^{\mathrm{ts}}) \\ & \text{where } \phi_{i} = f_{\theta}(\mathcal{D}_{i}^{\mathrm{tr}}) \end{aligned}$$

Reinforcement learning:

 $\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}(\tau)}[R(\tau)]$ $= f_{\mathrm{RL}}(\mathcal{M}) \qquad \mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{P}, r\}$ \bigwedge_{MDP}

Meta-reinforcement learning:

 θ

* =
$$\arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$
MDP for task i

The meta reinforcement learning problem

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$

assumption: $\mathcal{M}_i \sim p(\mathcal{M})$

meta test-time:

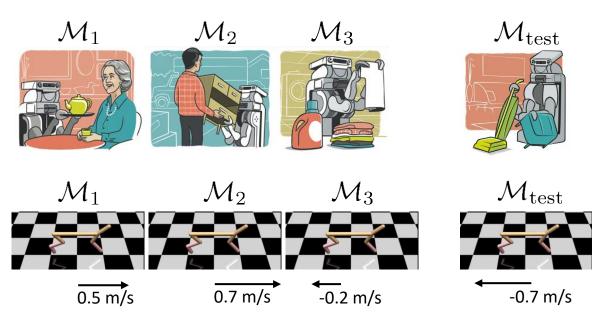
sample $\mathcal{M}_{\text{test}} \sim p(\mathcal{M}), \text{ get } \phi_i = f_{\theta}(\mathcal{M}_{\text{test}})$

$$\{\mathcal{M}_1, \dots, \mathcal{M}_n\}$$

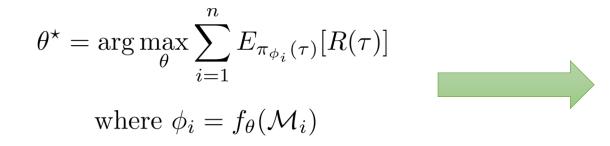
 \bigwedge

meta-training MDPs

Some examples:



Contextual policies and meta-learning



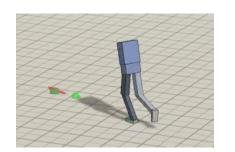
$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\theta}}[R(\tau)]$$
$$\pi_{\theta}(a_t | s_t, s_1, a_1, r_1, \dots, s_{t-1}, a_{t-1}, r_{t-1})$$

context used to infer whatever we need to solve \mathcal{M}_i i.e., z_t or ϕ_i (which are really the same thing)

in meta-RL, the *context* is inferred from experience from \mathcal{M}_i $\pi_{\theta}(a_t|s_t, \phi_i)$ in multi-task RL, the context is typically given



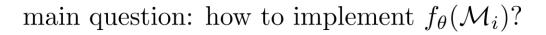
 ϕ : stack location



 ϕ : walking direction

 $\phi{:}$ where to hit puck

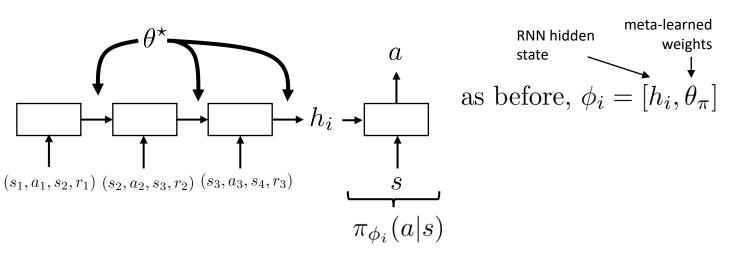
Meta-RL with recurrent policies



what should $f_{\theta}(\mathcal{M}_i) do$?

1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \dots, (s_T, a_T, s_{T+1}, r_T)\}$

2. (new in RL): choose how to interact, i.e. choose a_t meta-RL must also *choose* how to *explore*!



 r_t s_{t+1} \triangleleft pick $a_t \sim \pi_{\theta}(a_t | s_t)$ use (s_t, a_t, s_{t+1}, r_t) to improve π_{θ}

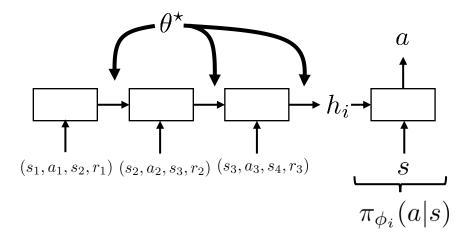
 $\theta^{\star} = \arg \max_{\theta} \sum E_{\pi_{\phi_i}(\tau)}[R(\tau)]$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$

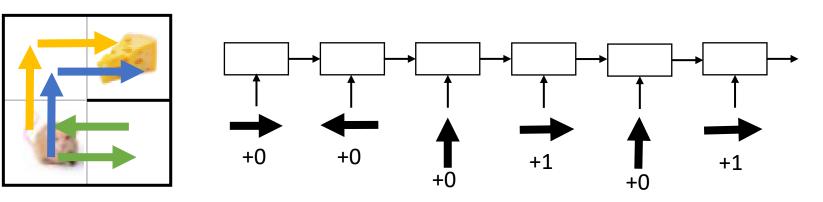
Meta-RL with recurrent policies

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

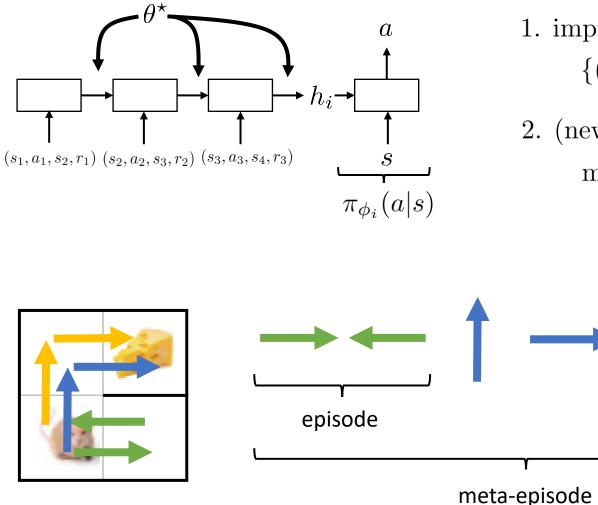
where $\phi_i = f_{\theta}(\mathcal{M}_i)$



so... we just train an RNN policy? yes!



Why recurrent policies *learn to explore*



- 1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \dots, (s_T, a_T, s_{T+1}, r_T)\}$
- 2. (new in RL): choose how to interact, i.e. choose a_t meta-RL must also *choose* how to *explore*!

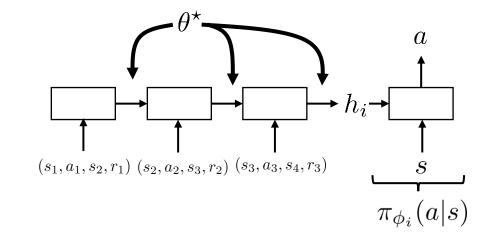
$$\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

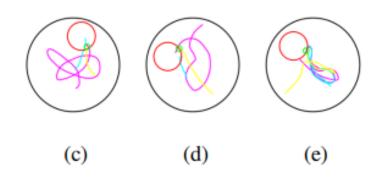
optimizing total reward over the entire **meta**-episode with RNN policy **automatically** learns to explore!

Meta-RL with recurrent policies

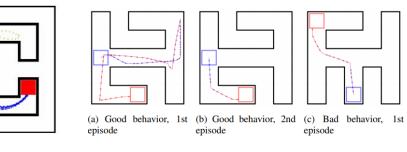
$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$





(a) Labryint I-maze



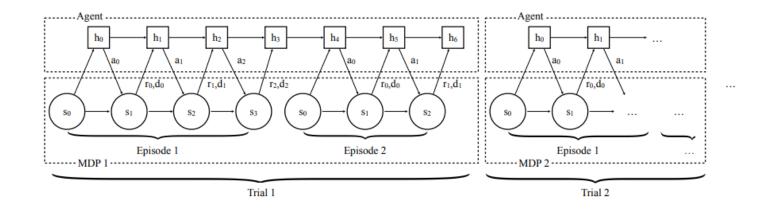
Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, Blundell, Kumaran, Botvinick. Learning to Reinforcement Learning. 2016. Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2: Fast Reinforcement Learning via Slow Reinforcement Learning. 2016.

(d) Bad behavior, 2nd

episode

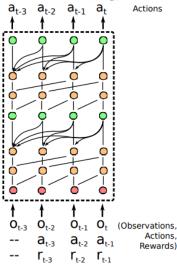
Heess, Hunt, Lillicrap, Silver. Memory-based control with recurrent neural networks. 2015.

Architectures for meta-RL

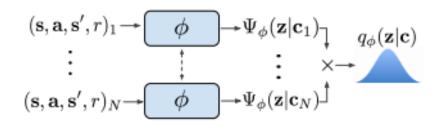


standard RNN (LSTM) architecture

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2: Fast Reinforcement Learning via Slow Reinforcement Learning. 2016.



attention + temporal convolution



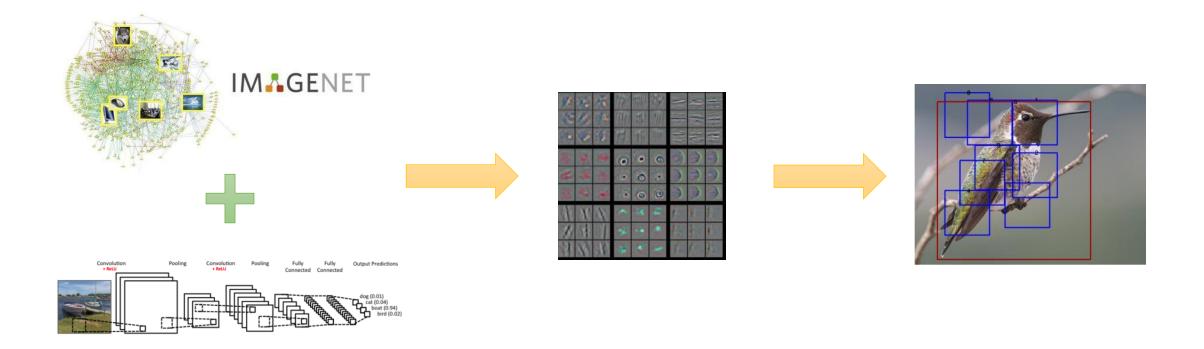
Mishra, Rohaninejad, Chen, Abbeel. A Simple Neural Attentive Meta-Learner.

parallel permutation-invariant context encoder

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables.

Gradient-Based Meta-Learning

Back to representations...



is pretraining a type of meta-learning?
better features = faster learning of new task!

Meta-RL as an optimization problem

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$

1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \dots, (s_T, a_T, s_{T+1}, r_T)\}$

what if $f_{\theta}(\mathcal{M}_i)$ is *itself* an RL algorithm?

 $f_{\theta}(\mathcal{M}_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$

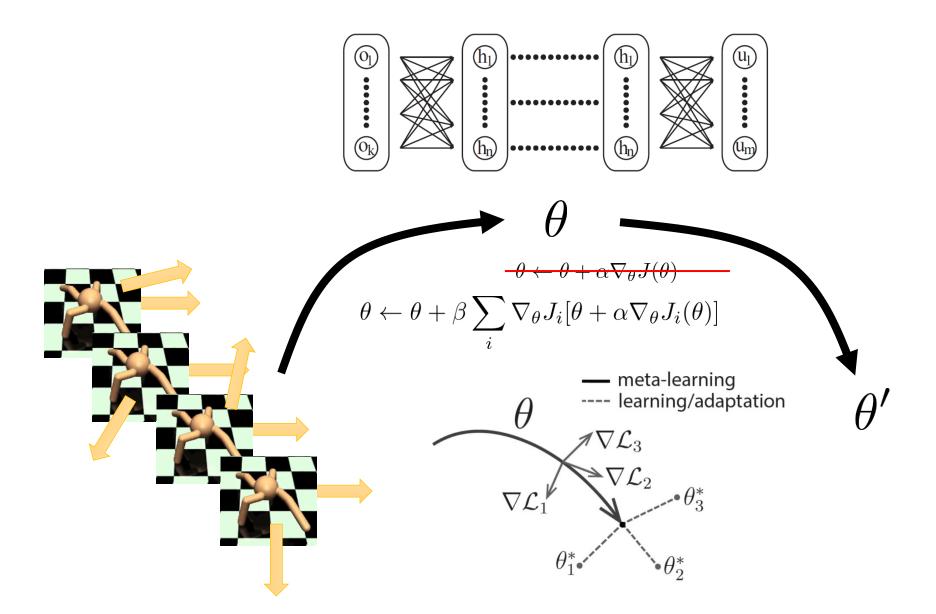
requires interacting with \mathcal{M}_i to estimate $\nabla_{\theta} E_{\pi_{\theta}}[R(\tau)]$ standard RL:

$$\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}(\tau)}[R(\tau)]$$
$$J(\theta)$$
$$\theta^{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta^k} J(\theta^k)$$

this is model-agnostic meta-learning (MAML) for RL!

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.

MAML for RL in pictures



What did we just do??

supervised learning: $f(x) \to y$

supervised meta-learning: $f(\mathcal{D}^{\mathrm{tr}}, x) \to y$

model-agnostic meta-learning: $f_{\text{MAML}}(\mathcal{D}^{\text{tr}}, x) \to y$

$$\mathcal{J}_{\text{MAML}}(\mathcal{D}^{'}, x) = \mathcal{J}_{\theta'}(x)$$
$$\theta' = \theta - \alpha \sum_{(x,y) \in \mathcal{D}^{\text{tr}}} \nabla_{\theta} \mathcal{L}(f_{\theta}(x), y)$$

 $f_{1} = (\mathcal{D}^{\mathrm{tr}} m) - f_{1}(m)$

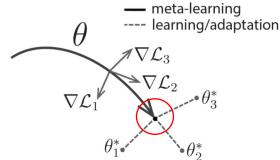
Just another computation graph... Can implement with any autodiff package (e.g., TensorFlow) But has favorable inductive bias...

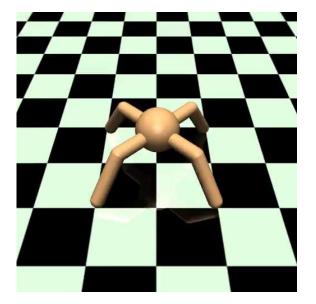
MAML for RL in videos

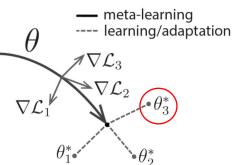
after MAML training

after 1 gradient step

(forward reward)

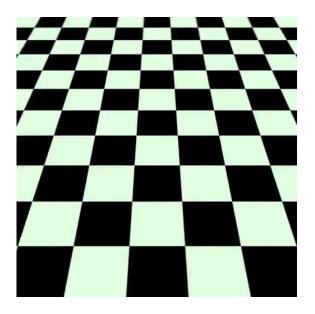






after 1 gradient step

(backward reward)



 $\begin{array}{c} & & & \text{meta-learning} \\ & & & \text{---- learning/adaptation} \\ & & & \nabla \mathcal{L}_3 \\ & & & \nabla \mathcal{L}_2 \\ & & & \nabla \mathcal{L}_2 \\ & & & & \nabla \mathcal{L}_2 \\ & & & & & \partial_3^* \\ & & & & & & \partial_3^* \end{array}$

More on MAML/gradient-based meta-learning for RL

MAML meta-policy gradient estimators:

- Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.
- Foerster, Farquhar, Al-Shedivat, Rocktaschel, Xing, Whiteson. DiCE: The Infinitely Differentiable Monte Carlo Estimator.
- Rothfuss, Lee, Clavera, Asfour, Abbeel. ProMP: Proximal Meta-Policy Search.

Improving exploration:

- Gupta, Mendonca, Liu, Abbeel, Levine. Meta-Reinforcement Learning of Structured Exploration Strategies.
- Stadie*, Yang*, Houthooft, Chen, Duan, Wu, Abbeel, Sutskever. Some Considerations on Learning to Explore via Meta-Reinforcement Learning.

Hybrid algorithms (not necessarily gradient-based):

- Houthooft, Chen, Isola, Stadie, Wolski, Ho, Abbeel. Evolved Policy Gradients.
- Fernando, Sygnowski, Osindero, Wang, Schaul, Teplyashin, Sprechmann, Pirtzel, Rusu. Meta-Learning by the Baldwin Effect.

Meta-RL as a POMDP

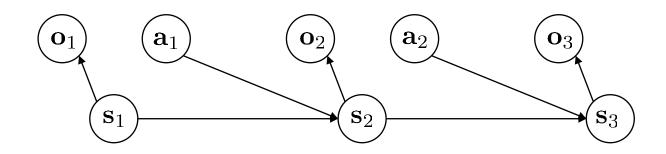
Meta-RL as... partially observed RL?

 $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{D}, \mathcal{P}\}, \mathcal{E}, r\}$

 \mathcal{O}

- observation space observations $o \in \mathcal{O}$ (discrete or continuous)

 \mathcal{E} – emission probability $p(o_t|s_t)$

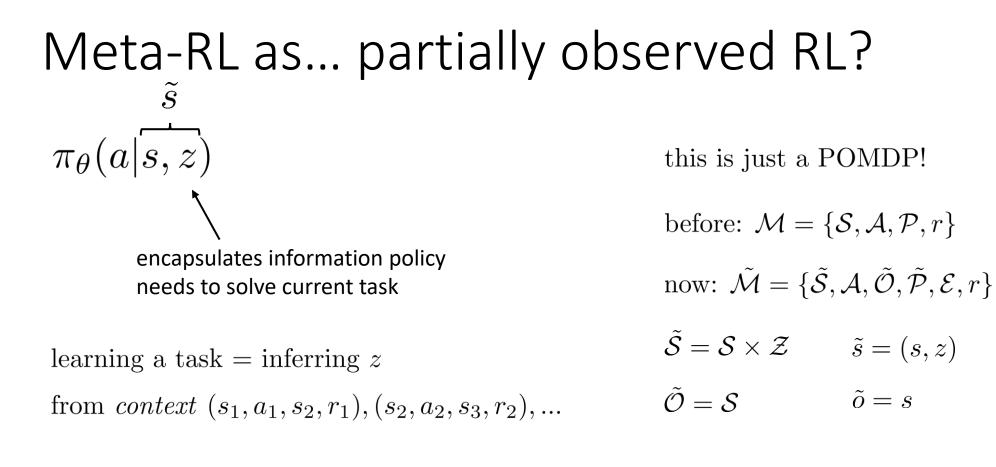


policy must act on observations $o_t!$

 $\pi_{\theta}(a|o)$

typically requires *either*:

explicit state estimation, i.e. to estimate $p(s_t|o_{1:t})$ policies with memory



key idea: solving the POMDP $\tilde{\mathcal{M}}$ is equivalent to meta-learning!

Meta-RL as... partially observed RL?

encapsulates information policy
needs to solve current task

learning a task = inferring z

 $\pi_{\theta}(a|s,z)$

from context $(s_1, a_1, s_2, r_1), (s_2, a_2, s_3, r_2), \dots$

this is just a POMDP!

typically requires *either*:

explicit state estimation, i.e. to estimate $p(s_t|o_{1:t})$

policies with memory

```
need to estimate p(z_t|s_{1:t}, a_{1:t}, r_{1:t})
```

exploring via posterior sampling with latent context 1. sample $z \sim \hat{p}(z_t|s_{1:t}, a_{1:t}, r_{1:t})$ \leftarrow some approximate posterior 2. act according to $\pi_{\theta}(a|s, z)$ to collect more data \rightarrow act as though z was correct! this is not optimal! why? but it's pretty good, both in theory and in practice!

See, e.g. Russo, Roy. Learning to Optimize via Posterior Sampling.

Variational inference for meta-RL

policy: $\pi_{\theta}(a_t|s_t, z_t)$

inference network: $q_{\phi}(z_t|s_1, a_1, r_1, \dots, s_t, a_t, r_t)$

$$(\theta, \phi) = \arg \max_{\theta, \phi} \frac{1}{N} \sum_{i=1}^{n} E_{z \sim q_{\phi}, \tau \sim \pi_{\theta}} [R_i(\tau) - D_{\mathrm{KL}}(q(z|\dots) || p(z))]$$

$$\max_{\theta, \phi} \sum_{i=1}^{n} E_{z \sim q_{\phi}, \tau \sim \pi_{\theta}} [R_i(\tau) - D_{\mathrm{KL}}(q(z|\dots) || p(z))]$$

$$\max_{\theta, \phi} \sum_{i=1}^{n} E_{z \sim q_{\phi}, \tau \sim \pi_{\theta}} [R_i(\tau) - D_{\mathrm{KL}}(q(z|\dots) || p(z))]$$

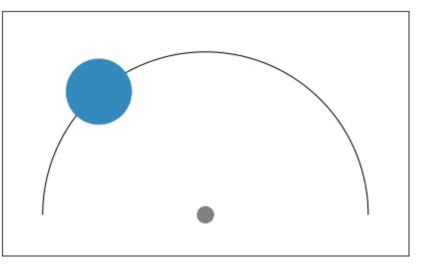
$$\max_{\theta, \phi} \sum_{i=1}^{n} E_{z \sim q_{\phi}, \tau \sim \pi_{\theta}} [R_i(\tau) - D_{\mathrm{KL}}(q(z|\dots) || p(z))]$$

$$\max_{\theta, \phi} \sum_{i=1}^{n} E_{z \sim q_{\phi}, \tau \sim \pi_{\theta}} [R_i(\tau) - D_{\mathrm{KL}}(q(z|\dots) || p(z))]$$

$$\max_{\theta, \phi} \sum_{i=1}^{n} E_{z \sim q_{\phi}, \tau \sim \pi_{\theta}} [R_i(\tau) - D_{\mathrm{KL}}(q(z|\dots) || p(z))]$$

$$\max_{\theta, \phi} \sum_{i=1}^{n} E_{z \sim q_{\phi}, \tau \sim \pi_{\theta}} [R_i(\tau) - D_{\mathrm{KL}}(q(z|\dots) || p(z))]$$

 $z_t \sim q_\phi(z_t | s_1, a_1, r_1, \dots, s_t, a_t, r_t)$



conceptually very similar to RNN meta-RL, but with stochastic z

stochastic z enables exploration via posterior sampling

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables. ICML 2019.

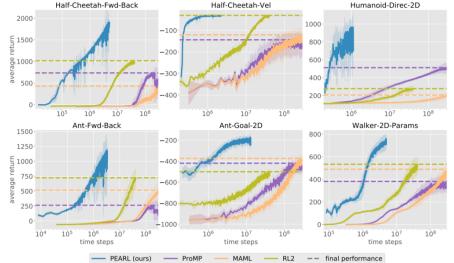
Specific instantiation: PEARL

policy: $\pi_{\theta}(a_t|s_t, z_t)$

inference network: $q_{\phi}(z_t|s_1, a_1, r_1, \dots, s_t, a_t, r_t)$

$$(\theta, \phi) = \arg \max_{\theta, \phi} \frac{1}{N} \sum_{i=1}^{n} E_{z \sim q_{\phi}, \tau \sim \pi_{\theta}} [R_i(\tau) - D_{\mathrm{KL}}(q(z|\dots) || p(z))]$$

perform maximization using soft actor-critic (SAC), state-of-the-art off-policy RL algorithm



 $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)_1$

 $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)_N$

 $\rightarrow \Psi_{\phi}(\mathbf{z}|\mathbf{c}_{1})$

 $\rightarrow \Psi_{\phi}(\mathbf{z}|\mathbf{c}_N)$

 $q_{\phi}(\mathbf{z}|\mathbf{c})$

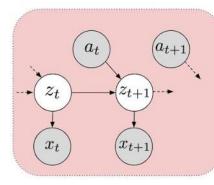
 ϕ

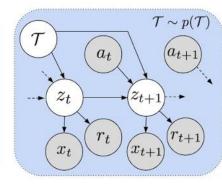
 ϕ

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables. ICML 2019.

MELD: Model-Based Meta-RL with Images

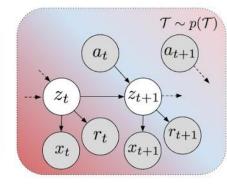
meta-learning can be viewed as a (kind of) POMDP



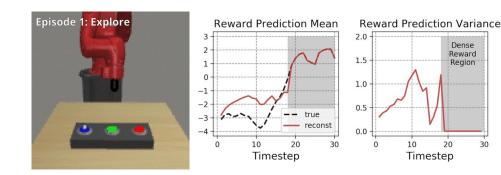


regular POMDP

meta-RL



MELD



Using this latent variable model generalizes meta-learning **and** POMDPs Turns out to work very well as a meta-learning algorithm!

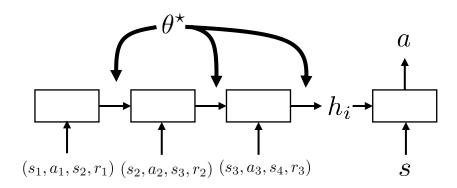
Zhao, Nagabandi, Rakelly, Finn, Levine. MELD: Meta-Reinforcement Learning from Images via Latent State Models. '20

References on meta-RL, inference, and POMDPs

- Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables. ICML 2019.
- Zintgraf, Igl, Shiarlis, Mahajan, Hofmann, Whiteson.
 Variational Task Embeddings for Fast Adaptation in Deep Reinforcement Learning.
- Humplik, Galashov, Hasenclever, Ortega, Teh, Heess. Meta reinforcement learning as task inference.

The three perspectives on meta-RL

Perspective 1: just RNN it



Perspective 2: bi-level optimization

 $f_{\theta}(\mathcal{M}_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$ MAML for RL

Perspective 3: it's an inference problem! $\pi_{\theta}(a|s, z)$ $z_t \sim p(z_t|s_{1:t}, a_{1:t}, r_{1:t})$ everything needed to solve task

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

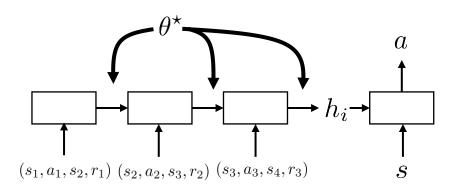
where $\phi_i = f_{\theta}(\mathcal{M}_i)$

what should $f_{\theta}(\mathcal{M}_i) \ do$?

- 1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \dots, (s_T, a_T, s_{T+1}, r_T)\}$
- 2. (new in RL): choose how to interact, i.e. choose a_t meta-RL must also *choose* how to *explore*!

The three perspectives on meta-RL

Perspective 1: just RNN it

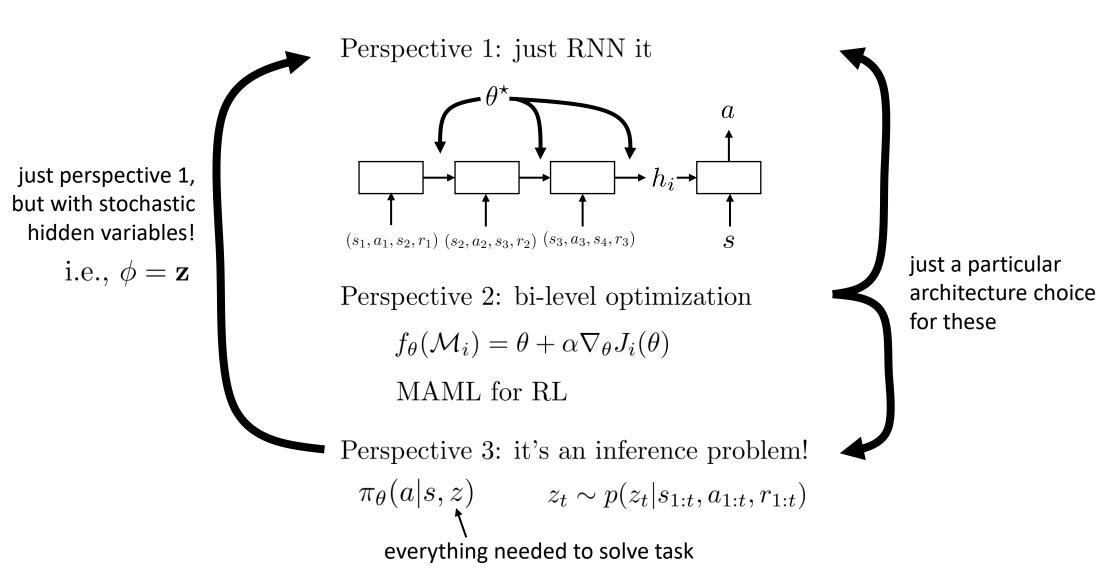


Perspective 2: bi-level optimization $f_{\theta}(\mathcal{M}_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$ MAML for RL

Perspective 3: it's an inference problem! $\pi_{\theta}(a|s, z) \qquad z_t \sim p(z_t|s_{1:t}, a_{1:t}, r_{1:t})$ everything needed to solve task

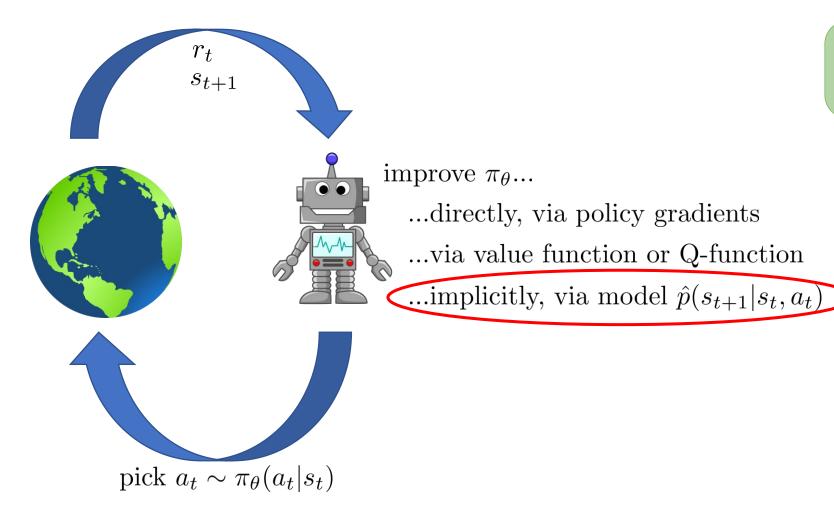
- + conceptually simple
- + relatively easy to apply
- vulnerable to meta-overfitting
- challenging to optimize in practice
- + good extrapolation ("consistent")
- + conceptually elegant
- complex, requires many samples
- + simple, effective exploration via posterior sampling
- + elegant reduction to solving a special POMDP
- vulnerable to meta-overfitting
- challenging to optimize in practice

But they're not that different!



Model-Based Meta-RL

$$\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}(\tau)} \left[R(\tau) \right]$$



short sketch of model-based RL:

1. collect data \mathcal{B} 2. use \mathcal{B} to get $\hat{p}(s_{t+1}|s_t, a_t)$ 3. use $\hat{p}(s_{t+1}|s_t, a_t)$ to plan a

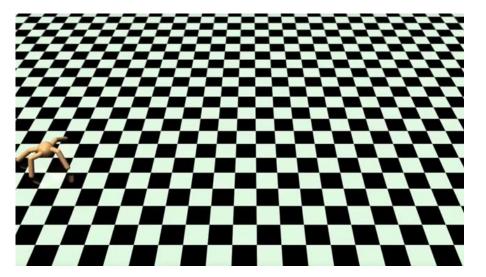
why?

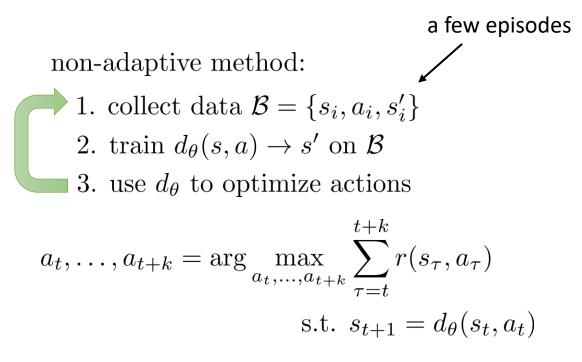
+ requires much less data vs model-free

+ a bit different due to model

+ can adapt extremely quickly!

example task: ant with broken leg





adaptive method:

nice idea, but how much can we really adapt in just *one* (or a few) step(s)? 1. take one step, get $\{s, a, s'\}$ 2. $\theta \leftarrow \theta - \alpha \nabla_{\theta} || d_{\theta}(s, a) - s' ||^2$ 3. use d_{θ} to optimize a_t, \ldots, a_{t+k} , take a_t

meta-training time

$$\mathcal{D}_{\text{meta-train}} = \{ (\mathcal{D}_{1}^{\text{tr}}, \mathcal{D}_{1}^{\text{ts}}), \dots, (\mathcal{D}_{n}^{\text{tr}}, \mathcal{D}_{n}^{\text{ts}}) \}$$
 adaptive method:

$$\mathcal{D}_{i}^{\text{tr}} = \{ (x_{1}^{i}, y_{1}^{i}), \dots, (x_{k}^{i}, y_{k}^{i}) \}$$

$$\mathcal{D}_{i}^{\text{ts}} = \{ (x_{1}^{i}, y_{1}^{i}), \dots, (x_{l}^{i}, y_{l}^{i}) \}$$

$$x \leftarrow (s, a) \quad y \leftarrow s'$$
 assumes past expenses each $\mathcal{D}_{i}^{\text{tr}}, \mathcal{D}_{i}^{\text{ts}}$:

$$\text{sample subsequence } s_{t}, a_{t}, \dots, s_{t+k}, a_{t+k}, s_{t+k+1} \text{ from past experience}$$

$$\mathcal{D}_{i}^{\text{tr}} \leftarrow \{ (s_{t}, a_{t}, s_{t+1}), \dots, (s_{t+k-1}, a_{t+k-1}, s_{t+k}) \}$$

$$\mathcal{D}_{i}^{\text{ts}} \leftarrow \{ (s_{t+k}, a_{t+k}, s_{t+k+1}) \}$$

$$\mathcal{D}_{i}^{\text{ts}} \leftarrow \{ (s_{t+k}, a_{t+k}, s_{t+k+1}) \}$$

$$\mathcal{D}_{i}^{\text{tr}} \mathcal{D}_{i}^{\text{ts}}$$

meta-test time

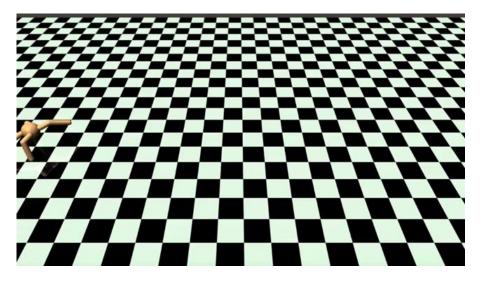
1. take one step, get
$$\{s, a, s'\}$$

2. $\theta \leftarrow \theta - \alpha \nabla_{\theta} || d_{\theta}(s, a) - s' ||^2$
3. use d_{θ} to optimize a_t, \ldots, a_{t+k} , take a_t

past experience has ferent dynamics

5)

example task: ant with broken leg



See also:

Saemundsson, Hofmann, Deisenroth. Meta-Reinforcement Learning with Latent Variable Gaussian Processes. Nagabandi, Finn, Levine. Deep Online Learning via Meta-Learning: Continual Adaptation for Model-Based RL.

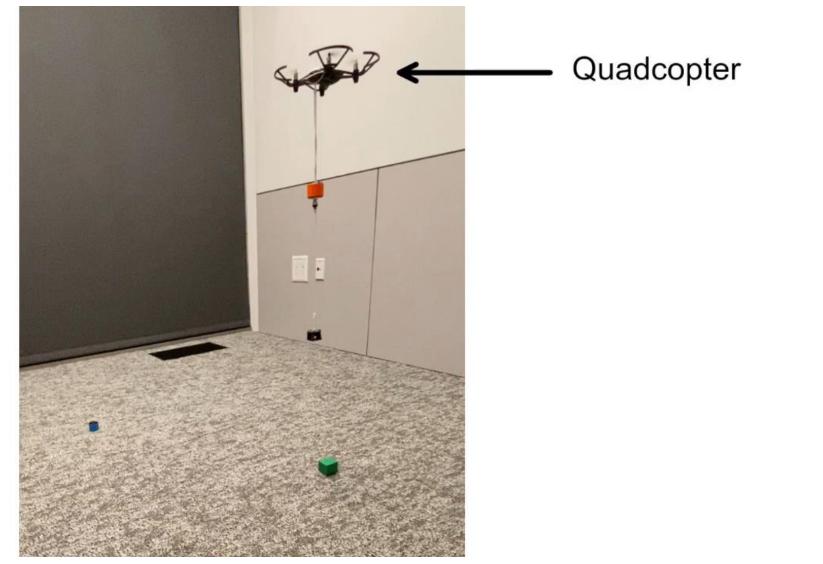
Nagabandi^{*}, Clavera^{*}, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning. ICLR 2019.

meta-test time

adaptive method:

- 1. take one step, get $\{s, a, s'\}$ 2. $\theta \leftarrow \theta - \alpha \nabla_{\theta} \| d_{\theta}(s, a) - s' \|^2$
- **3**. use d_{θ} to optimize a_t, \ldots, a_{t+k} , take a_t

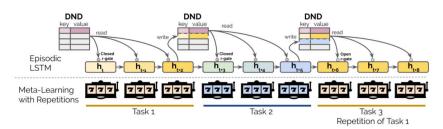
Model-Based Meta-RL for Quadrotor Control



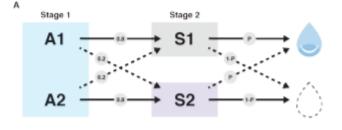
Belkhale, Li, Kahn, McAllister, Calandra, Levine. Model-Based Meta-Reinforcement Learning for Flight with Suspended Payloads. '20

Meta-RL and emergent phenomena

meta-RL gives rise to episodic learning

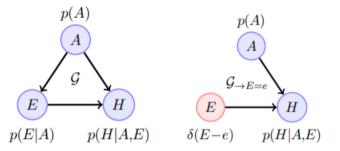


model-free meta-RL gives rise to model-based adaptation



causal reasoning (!)

meta-RL gives rise to



Dasgupta, Wang, Chiappa, Mitrovic, Ortega, Raposo, Hughes, Battaglia, Botvinick, Kurth-Nelson. **Causal Reasoning from Meta-Reinforcement Learning.**

Ritter, Wang, Kurth-Nelson, Jayakumar, Blundell, Pascanu, Botvinick. Been There, Done That: Meta-Learning with Episodic Recall.

Wang, Kurth-Nelson, Kumaran, Tirumala, Soyer, Leibo, Hassabis, Botvinick. **Prefrontal Cortex as a Meta-Reinforcement Learning System.**

Humans and animals *seemingly* learn behaviors in a variety of ways:

- Highly efficient but (apparently) model-free RL
- Episodic recall
- Model-based RL
- Causal inference
- ▶ etc.

Perhaps each of these is a separate "algorithm" in the brain

But maybe these are all emergent phenomena resulting from meta-RL?