
Some Recent Algorithmic Questions
in Deep Reinforcement Learning  

CS 285

Instructor: Aviral Kumar

UC Berkeley

What Will We Discuss Today?
So far, we have gone over several interesting RL algorithms, and some
theoretical aspects in RL

• Which algorithmic decisions in theory actually translate to practice,
especially for Q-learning algorithms? 

• Phenomena that happen in deep RL, and how we can try understanding
them…. 

• What affects performance of various deep RL algorithms? 

• Some open questions in algorithm design in deep RL

Disclaimer: Most material covered in this lecture is very recent and being
still actively researched upon. I will present some of my perspectives on
these questions in this lecture, but this is certainly not exhaustive.

Part 1: Q-Learning Algorithms

Sutton’s Deadly Triad in Q-learning
Boostrapping

Off-policy
Sampling

Function
Approximation

}=) Divergence

Function
Approximation Few parameters

diverges
More parameters

converges

Hasselt et al. Deep Reinforcement Learning and the Deadly Triad. ArXiv 2019.

More expressive
functions

approximators
work fine?

min
Q

Es,a2D
⇥
((r(s, a) + �Q(s0, a0))�Q(s, a))2

⇤

What aspects will we cover?

• Divergence: Divergence can happen with the deadly triad and several
algorithms tailored towards preventing this divergence. But does it actually
happen in practice?

• “Overfitting”/Sampling Error: As with any learning problem, we would expect
training neural network Q-learning schemes to suffer from some kind of
overfitting. Do these methods suffer from any overfitting?

• Data distribution: Off-policy distributions can be bad, moreover narrow data
distributions can give brittle solutions? So, which data distributions are good,
and how do we get those distributions?

Large part of theory focused on fixing divergence

Worst-case bounds exist, but we do not know how things behave in practice

(Too) worst-case bounds, but how do things behave in practice?

Divergence in Deep Q-Learning
While Q-values are overestimated, there is not really significant divergence

Large neural networks just seem
fine in an FQI-style setting

Hasselt et al. Deep Reinforcement Learning and the Deadly Triad. ArXiv 2019. 
Fu*, Kumar*, Soh, Levine. Diagnosing Bottlenecks in Deep Q-Learning Algorithms. ICML 2019

0.9% divergence

Overfitting in Deep Q-Learning
Does overfitting happen for real in FQI with neural networks?

Replay buffer prevents overfitting, even though it is
off-policy

Few samples leads to poor
performance

When moving from FQI to DQN/Actor-critic what happens?

Fu*, Kumar*, Soh, Levine. Diagnosing Bottlenecks in Deep Q-Learning Algorithms. ICML 2019

min
Q

Es,a⇠µ

⇥
((r(s, a) + �Q(s0, a0))�Q(s, a))2

⇤
X

s,a2D

Overfitting in Deep Q-Learning
More gradient steps per environment step?

K

N
= gradient steps per environment step

Fu*, Kumar*, Soh, Levine. Diagnosing Bottlenecks in Deep Q-Learning Algorithms. ICML 2019

1. Sample N samples from
the environment 

2. Train for K steps before
sampling next

More gradient steps hurt
performance

Overfitting in Deep Q-Learning
Why does performance degrade with more training?

• Possibility 1: Large deep networks overfit, and that can cause poor
performance — so more training leads to worse performance…  

• Possibility 2: Is there something else with the deep Q-learning update?

Early stopping helps

Although this is with “oracle
access” to Bellman error on all

states…. so not practical

Fu*, Kumar*, Soh, Levine. Diagnosing Bottlenecks in Deep Q-Learning Algorithms. ICML 2019

Overfitting in Deep Q-Learning

Self-creating labels for training can hurt

Preliminaries: Gradient descent with deep networks has an implicit
regularisation effect in supervised learning, i.e. it regularizes the solution in
overparameterized settings.

min
X

||AX � y||22

min
X

||X||2F s.t. AX = y

If gradient descent converges to a
good solution, it converges to a

minimum norm solution

Gunasekar et al. Implicit Regularization in Matrix Factorization. NeurIPS 2017.

Arora et al. Implicit Regularization in Deep Matrix Factorization. NeurIPS 2019.

Mobahi et al. Self-Distillation Amplifies Regularization in Hilbert Space. NeurIPS 2020.

• Possibility 2 is also a major contributor: Performance often depends on the
fact that optimization uses a bootstrapped objective — i.e. uses labels from
itself for training

Check Arora et al. (2019) for a discussion of how this regularization is more complex…

Implicit Under-Parameterization
When training Q-functions with bootstrapping on the same dataset, more gradient
steps lead to a loss of expressivity due to excessive regularization, that manifests
as a loss of rank of the feature matrix.

Learned by a
neural network

Kumar*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. 2020.

Effective rank

Offline Online

� = Udiag{�i(�)}V T

Implicit Under-Parameterization

Compounding effect of rank drop over time, since we regress to labels generated from
our own previous instances (boostrapping)

Kumar*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. 2020.

Implicit Under-Parameterization
Does implicit under-parameterization happen due to bootstrapping?

Doesn’t happen when bootstrapping is absent

Q(s, a) = r(s, a) + �Es0,a0⇠P (s0|s,a)⇡(a0|s0)[Q(s0, a0)]

Q(s0, a0) =
1X

t=0

�trt(st, at)

It hurts the representability of the optimal Q-function

On the gridworld example from before,
representing the optimal Q-function becomes
hard with more rank drop!

Effective Rank and Performance
Rank collapse corresponds to poor performance

Also observed on the gym environments, rank collapse corresponds…

Kumar*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. 2020.

Data Distributions in Q-Learning
• Deadly triad suggests poor performance due to off-policy distributions,

bootstrapping and function approximation.  

• Are on-policy distributions much better for Q-learning algorithms? 

• If not, then what factor decides which distributions are “good” for deep Q-
learning algorithms?

Experimental Setup

H(p) = �
X

(s,a)

p(s, a) log p(s, a)

min

Q
Es,a⇠p

h
(Q(s, a)� (r(s, a) + �max

a0
¯Q(s0, a0)))2

i

Measures the entropy/
uniformity of weights

Which Data-Distributions are Good?
Compare different data distributions:

Replay On-policy (Pi) Optimal Policy Uniform over (s, a)

Prioritizedmin

Q
max

p
Es,a⇠p

⇥
(Q(s, a)� T ¯Q(s, a))2

⇤

H(p)

High entropy weights are
good for performance

No sampling error here, all
state-action pairs

provided to the algorithm

Not always,  
lead to biased

training

Do replay buffers work
because of more

coverage? Maybe…

Finding Good Data-Distributions

On-policy data
collection

“Corrective
Feedback”

Corrective feedback = the ability of
data collection to correct errors in
the Q-function.

|Qk(s, a)�Q⇤(s, a)|

Includes replay buffer distributions

Function Approximation

What we’ll show is that on-policy
data collection may fail to correct
errors in the target values that are
important to be backed up..

Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurIPS 2020.

Consider This Example…
 • Let’s start with a simple case of an MDP with function approximation

Nodes are aliased with other  
nodes of the same shape}

Data distribution would affect solutions in the presence of aliasing

Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurIPS 2020.

Q-Learning with On-Policy Data Collection

Least frequent
(small “weight”

in the loss)

Used as
targets for other

nodes

Most frequent
(large “weight”

in the loss)

Incorrect
Targets

Bellman Bellman Bellman
backups

Function Approximation +
On-policy distribution =

Incorrect targets Error increases!

Ek = |Qk �Q⇤|

Summary of the Tree MDP Example

Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurIPS 2020.

Q-Learning with On-Policy Data Collection

d⇡k(s, a)

Ek = |Qk �Q⇤|

Policy visitation corresponds to reduced
Bellman error, but overall error may increase!

Q(s, a) = [w1, w2]
T �(s, a)

�(·, a0) = [1, 1]

�(·, a1) = [1, 1.001]

[w1, w2]init = [0, 1e� 4] Check that overall error increases!

Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurIPS 2020.

What does this tell us?
• While on-policy data collection is sufficient for “error correction”/ convergence

in the absence of function approximation, function approximation can make it
ineffective in error correction… 

• We saw that more gradient updates under such a distribution lead to poor
features (due to the implicit under-parameterization phenomenon), which can
potentially lead to poor solutions after that…. 

• We saw that entropic distributions are better — but we have no control over
what comes in the buffer, unless we actually change the exploration strategy, so
can we do better?

Part 2: Policy Gradient Algorithms

Initial State Distribution in Policy Gradients
Policy gradients maximize expected value at the initial state

Agarwal, Kakade, Lee, Mahajan. On the Theory of Policy Gradient Methods. 2019

max

⇡
J(⇡) = V ⇡

(s0)

Poor solutions are sort of “equally poor” and the depth of the chain makes
it hard to find any gradient of improvement

Policy gradient can be nearly
0, leading to poor solutions!  

 
Ignore ? Reward shaping?

re-weighting?
�t

Policy Gradient Plateaus: What and Why?
Policy gradient + function approximation + on-policy data

Schaul, Borsa, Modayil, Pascanu. Ray interference: A source of plateaus in deep RL. 2019

Might end up optimizing one
component of the objective

more than others

If you hit a saddle point of the
expected return function

(corners), then stays there

Initialization, etc become
important now!

Also affected by attraction to suboptimal solutions during training!

J1 + J2

Importance of Initialization and Rewards
Reward values affect policy gradient methods a lot!

Consider a 3-armed bandit (1-step RL) problem with
arm 1 being the optimal arm.

“Good” initialization

“Bad” initialization

Mei, Xiao, Szepesvari, Schuurmans. On the Global Convergence of Softmax Policy Gradient Methods. ICML 2020.

Initialization matters, reward values matter. Also matter in offline settings.

Summary and Takeaways

• Overfitting in RL consists of more than just sampling error in standard
supervised learning — we discussed how the update in Q-learning leads
to poor solutions. 

• Data-distributions matter a lot for RL problems: for both Q-learning
algorithms and policy-gradient algorithms, only started understanding the
surface in this domain 

• Iterated training and changing objectives can be heavily affected by
initialization, coverage, function approximation, etc in both Q-learning and
policy gradient methods

Several open questions along these lines, have the
potential to lead to stable and efficient algorithms

