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What Will We Discuss Today?

• Notions of Convergence in RL, Assumptions and Preliminaries 

• Optimization Error in RL and Analyses of Fitted Q-Iteration Algorithms 

• Regret Analyses of RL Algorithms: An Introduction 

• RL with Function Approximation: When can we still obtain convergent algorithms?

A brief introduction to some theoretical aspects of RL: In particular error/suboptimality-
analysis of RL algorithms, understanding of regret, and function approximation

This is not at all an exhaustive coverage of topics in RL theory, checkout various resources 
on the last slide of this lecture.



Metrics used to evaluate RL methods
Sample complexity

Regret

How many transitions/episodes do I need to obtain a good policy?

⇡0,⇡1,⇡2, · · · ,⇡N

Used typically for measuring how good 
an exploration scheme is

Used typically for measuring how easy is to 
infer the optimal policy assuming no 

exploration bottlenecks (e.g., in offline RL)
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Assumptions used in RL Analyses
We can breakdown the RL into two parts: 
- the exploration part  
- given data from the exploration policy, we should be able to learn from it

Can we analyze these separately?

To remove the exploration aspect, perform analysis under the “generative model” assumption

access to sampling a model s0 ⇠ P (·|s, a)

P̂ (s0|s, a) = #(s0, a, s)

N

Suppose we can query the true dynamics model of the MDP for each (s, a) pair N times and 
construct an empirical dynamics model

How does the approximation error of this model translate to errors 
in the value function?

Goal: Approximate the Q-function or the value function



Preliminaries
Concentration

Says that average over 
samples gets closer to 

the mean

More complex variants:

We will use this version 
to obtain a worst case 

bound on the 
generative model.

Lemmas from RL Theory Textbook (Draft). Agarwal, Jiang, Kakade, Sun. https://rltheorybook.github.io/



Part 1: Sampling/Optimization Error in RL
Goal: How does error in training translate to error in the value-function?

We will analyze this optimization error in two settings:  
(1) generative model (2) Fitted Q-iteration

We want results of the form:

if ||P̂ (s0|s, a)� P (s0|s, a)||1  " then ||Q(s, a)� Q̂(s, a)||1  �

if ||Q(s, a)� T̂Q(s, a)||1  " then ||Q(s, a)� Q̂(s, a)||1  �

TQ(s, a) = r(s, a) + �Es0⇠P (s0|s,a)

h
max
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ˆTQ(s, a) = r̂(s, a) + �Es0⇠P̂ (s0|s,a)

h
max
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Q(s0, a0)

i

“Empirical” Bellman operator: 
constructed using transition 

samples observed by 
sampling the MDP



Sampling Error with Generative Model
1. Estimate  

2. For a given policy, plan under this 
dynamics model to obtain the Q-
function

P̂ (s0|s, a)

Q̂⇡

P̂ (s0|s, a) = #(s0, a, s)

N

First Step: Bound the difference between the learned and true dynamics model

Use concentration inequalities
with high probability greater than 1� �

m = number of samples used to estimate p(s0|s, a)

The empirical dynamics model and the actual dynamics model are close



Sampling Error with Generative Model
Second step: Compute how the dynamics model affects the Q-function

Q-function depends on the 
dynamics model P(s’|s, a) via 
a non-linear transformation

1. Express Q in the vector form 
2. Express the difference between the 

two vectors in a more closed form 
version and obtain (   - P) in the 
expression

P̂



Third step: Understand how error in the Q-function depends on error in the model

Sampling Error with Generative Model

Define

Triangle inequality ||P⇡||1  1

Thus, ||w||1  ||v||1/(1� �)



Sampling Error with Generative Model
Final step: Completing the Proof

Bound the max element of 
the product by product of 
max elements

Now use the 
previous relation

||Q⇡ � ˆQ⇡||  �
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We want atmost eps 
error in     , compute 
the minimum number 
of samples m needed 

for this..

Q⇡



Proof Takeaways and Summary

• A small error in estimating the dynamics model implies small error in the Q-function 

• However, error “compounds”: Note the (1 - gamma)^2 factor in the denominator of the bound. 

• The more samples we collect, the better our estimate will be, but sadly samples aren’t free!

||Q⇡ � ˆQ⇡||  �
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r
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How does optimization error manifest in model-free variants 
(e.g., fitted Q-iteration)? 



Part 2: Optimization Error in FQI

Which sources of error are we considering here?

Fitted Q-iteration runs a sequence of backups by minimizing mean-squared error

initial Q-value Q0 Qk+1  min
Q

||Q� T̂Qk||22

if we use T instead of

ˆT and ||Qk+1 � TQk|| = 0

then FQI converges to the optimal Q-function Q⇤

ˆTQ(s, a) = r̂(s, a) + �Es0⇠P̂ (s0|s,a)

h
max

a0
Q(s0, a0)

i

TQ(s, a) = r(s, a) + �Es0⇠P (s0|s,a)

h
max

a0
Q(s0, a0)

i

- T is inexact, “sampling error” due to limited samples 
- Bellman errors in that                            may not be 0|Qk+1 � TQk|



Optimization Error in Fitted Q-Iteration
First Step: Bound the difference between the empirical and actual Bellman backup
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Triangle inequality, 
bound each term 

separately

:= |
X

s0

(

ˆP (s0|s, a)� P (s0|s, a))max
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 ||P̂ (·|s, a)� P (·|s, a)||1 ||Q||1

Vector-form 

Sum of product ≤ sum of product of absolute values, 
Q-values bounded by the ∞-norm

Directly apply 
Hoeffding’s

 2R
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r
log(1/�)

2m



Optimization Error in Fitted Q-Iteration
Combining the bounds on the previous slide, and taking a max over (s, a) we get:

Second step: How does error in each fitting iteration affect optimality

|| ˆTQ� TQ||1  2R
max

c
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||Q|1
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"kLet’s say, we incur        error in each fitting step of FQI, i.e.,  ||Qk+1 � TQk||1  "k

||Qk �Q⇤||1 ?Then, what can we say about:

||Qk �Q⇤||1  ||TQk�1 + (Qk � TQk�1)� TQ⇤||
= || (TQk�1 � TQ⇤) + (Qk � TQk�1) ||  ||TQk�1 � TQ⇤||+ ||Qk � TQk�1||

= || (TQk�1 � TQ⇤) + (Qk � TQk�1) ||  ||TQk�1 � TQ⇤||+ ||Qk � TQk�1||

 �||Qk�1 �Q⇤||1 + "k



Optimization Error in Fitted Q-Iteration

||Qk �Q⇤||1  �||Qk�1 �Q⇤||1 + "k

 �2||Qk�2 �Q⇤||1 + �"k�1 + "k
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We pay a price for each 
error term, and the total 
error in the worst-case is 
scaled by the (1 - gamma) 
factor in the denominator.



Optimization Error in Fitted Q-Iteration
Completing the Proof

||Qk � TQk�1||1 = ||Qk � T̂Qk�1 + T̂Qk�1 � TQk�1||1
 ||Qk � T̂Qk�1||1 + ||T̂Qk�1 � TQk�1||1

Optimization error: how 
easily can we minimize 

Bellman error

Sampling error: depends 
on number of times we 

see each (s, a)

lim

k!1
||Qk �Q⇤||1  1

1� �
max

k
||Qk � TQk�1||1  · · ·

So far, we have seen how errors in the Bellman error can accumulate to form error against Q* 
 
What is the total error in the Bellman error?  
- optimization error  
- “sampling error” due to limited data

"k



Proof Takeaways and Summary
• Error compounds with FQI or DQN-style methods: especially a problem in offline RL settings, 

where the “sampling error” component is also quite high 

• A stringent requirements with these bounds is that they directly ∞-norm of the error in the Q-
function: but can we ever practically bound the error at the worst state-action pair? — Mostly not 
since we can’t even enumerate the state or action-space! 

Can we remove the dependency on the ∞-norm?

||Qk �Q⇤||µp =
�
Es,a⇠µ(s,a)[|Qk(s, a)�Q⇤(s, a)|p]

�1/p
Yes! Can derive similar results for other data-distributions (µ) and Lp norms

• So far we’ve looked at the generative model setting, where we have oracle MDP access to 
compute an approximate dynamics model. What happens in the substantially harder setting 
without this access, where we need exploration strategies? Coming up next…



Part 3: Analysis of Exploration Strategies
So far, we have analyzed RL algorithms in terms of optimization error and sampling error, however 
when the algorithm is provided with data, but we haven’t seen where this data comes from. So, in 
the next part, we evaluate these algorithms on the cost of collecting data. 

Multi-Armed Bandits “1-step” RL

1.  N possible arms/actions a1, a2, · · · , aN

2. Pull i-th arm in round t and observe corresponding (sampled) reward
rt(ai) ⇠ D(ai), where E[rt(ai)] = r̄(ai)

3. Agent observes the resulting sampled reward and records it

Reg(T ) = T r̄(a⇤)�
TX

t=1

r̄(at)
Cumulative regret: How much are we losing by 

not picking the best arm in hindsight on the 
actual expected reward (not sampled reward)

If the regret grows sublinearly, then we are converging to the optimal action at infinity and thus 
learning “efficiently”



Exploration in Multi-Armed Bandits
UCB Algorithm / Optimistic exploration

in round t pick arm at such that at := arg max

i=1,··· ,N

 
r̃t(ai) +

s
log(2NT/�)

2nt
(ai)

!

in round t pick arm at such that at := arg max

i=1,··· ,N

 
r̃t(ai) +

s
log(2NT/�)

2nt
(ai)

!

r̃t(ai)
Average of observed 
sample rewardsnt(ai) # times an arm was pulled

Mean reward
Reward bonus

Where does this reward bonus come from?

w.h.p. � 1� �, 8 i 2 [1, · · · , N ], t 2 [1, · · · , T ] |r̃t(ai)� r̄(ai)|  b(ai)

Hoeffding inequality



Exploration in Multi-Armed Bandits

With high probability, the true reward for any arm lies in this interval defined by the bonus

r̃t(ai)� b(ai)  r̄(ai)  r̃t(ai) + b(ai)

How can we use this fact to obtain a bound on the regret?

Reg(T ) =
TX
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Hint: Write down the 

expression for the bonus, 
and try to re-organize 

terms to bound the sum 

+�T

+�T

Chosen arm 
maximizes this!



Proof Takeaways and Summary

Reg(T ) = O
 s

T ·N · log
✓
NT

�

◆!
+ � · T

Sublinear (sqrt) Appears linear.. though 
we can set �

• By ensuring we are optimistic (i.e. add bonuses such that suboptimal arms look more optimal) 
and that the optimism decays over time at the right rate, we can get good performance! 

• Similar analysis also works for RL, though it is more complicated — but the skeleton is quite 
similar. Analysis techniques are definitely more complex.

r̃ ! Ṽ

T ! # episodes



Part 4: RL with Function Approximation
We have seen that when function approximation is used to represent the Q-function or the policy, 
there’s not any guarantees we can give on convergence and divergence can happen

Under which special cases would RL work with function approximation?

Q(s, a) ⇡ wT�(s, a)

• Policy evaluation using TD-learning: Under nice data-distributions, if the linear function class 
can represent the desired Q-function (realizability), then this converges 

Q⇡(s, a) = r(s, a) + �Es0⇠P (s0|s,a),a0⇠⇡[Q
⇡(s0, a0)]

9 w⇤, Q⇡(s, a) = w⇤T�(s, a)

• If the Q-function for the policy is not expressible in the linear function class, then divergence 
occurs generally

Remember: this is not saying anything about neural networks



RL with Function Approximation
What about actual online RL?

• Deterministic MDP + linear optimal Q-function (Wen & Van Roy, 2013)

9 w⇤, Q⇤(s, a) = w⇤T�(s, a)

• Approximate linear          for all        + data-distribution “covers” all policies 
(see concentrability assumption in Munos 20005, Antos et al. 2008)

Q⇡ ⇡

polynomial samples with “wide” initial state-distributions or generative model

• Appproximately linear         :         No! See Du et al. 2020 for counterexamplesQ⇤

But when the feature representation is “informative” and “compressed 
enough”, this works! (see Van Roy and Dong, 2019)

…. many more: under “structural assumptions” on the MDP, we can get convergent  and 
efficient algorithms!

Collective Table at: Du, Kakade, Wang, Yang. Is a Good Representation Sufficient for Sample Efficient RL? ICLR 2020



Suggested Readings
• Material taken from the RL Theory Book (Agarwal, Jiang, Kakade, Sun) 2020. https://

rltheorybook.github.io/ — one place to find a lot of RL theory material

• Nan Jiang’s statistical RL class at UIUC https://nanjiang.cs.illinois.edu/cs598/  
Wen Sun’s Foundations of RL class at Cornell https://wensun.github.io/CS6789.html 

• Fitted Q-Iteration: 
- Munos, 2003. Error Bounds for Approximate Policy Iteration. 
- Munos, 2005. Error Bounds for Approximate Value Iteration 
- Chen and Jiang, 2019. Information Theoretic Considerations in Batch RL. 

• Generative Model: 
- Azar, Munos, Kappen, 2012. On the Sample Complexity of RL with a Generative Model.

• Exploration:  
- Jaksch, Ortner, Auer, 2010. Near-Optimal Regret Bounds for Reinforcement Learning 
- Osband and Van Roy, 2015. Why is Posterior Sampling Better than Optimism for RL? 
(aims to answer why posterior sampling (lecture 13) is more desirable)  
- Azar, Osband, Munos, 2017. Minimax Regret Bounds for RL (UCB-value iteration)

https://rltheorybook.github.io/
https://rltheorybook.github.io/
https://nanjiang.cs.illinois.edu/cs598/
https://wensun.github.io/CS6789.html

