
Model-Based Policy Learning

CS 285

Instructor: Sergey Levine
UC Berkeley



Last time: model-based RL with MPC
ev

er
y 

N
 s

te
p

s



The stochastic open-loop case

why is this suboptimal?



The stochastic closed-loop case



Backpropagate directly into the policy?

backprop backprop
backprop

easy for deterministic policies, but also possible for stochastic policy



What’s the problem with backprop into policy?

big gradients here small gradients here

backprop backprop
backprop



What’s the problem with backprop into policy?

backprop backprop
backprop



What’s the problem with backprop into policy?

• Similar parameter sensitivity problems as shooting methods
• But no longer have convenient second order LQR-like method, 

because policy parameters couple all the time steps, so no dynamic 
programming

• Similar problems to training long RNNs with BPTT
• Vanishing and exploding gradients
• Unlike LSTM, we can’t just “choose” a simple dynamics, dynamics 

are chosen by nature

backprop backprop
backprop



What’s the solution?

• Use derivative-free (“model-free”) RL algorithms, with the model 
used to generate synthetic samples
• Seems weirdly backwards

• Actually works very well

• Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
• LQR with learned models (LQR-FLM – Fitted Local Models)

• Train local policies to solve simple tasks

• Combine them into global policies via supervised learning



Model-Free Learning With a Model



What’s the solution?

• Use derivative-free (“model-free”) RL algorithms, with the model 
used to generate synthetic samples
• Seems weirdly backwards

• Actually works very well

• Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
• LQR with learned models (LQR-FLM – Fitted Local Models)

• Train local policies to solve simple tasks

• Combine them into global policies via supervised learning



Model-free optimization with a model

• Policy gradient might be more stable (if enough samples are used) 
because it does not require multiplying many Jacobians

• See a recent analysis here:
• Parmas et al. ‘18: PIPP: Flexible Model-Based Policy Search Robust to the 

Curse of Chaos

Policy gradient:

Backprop (pathwise) gradient:



Model-free optimization with a model

Richard S. Sutton. Integrated architectures for learning, planning, and 

reacting based on approximating dynamic programming. 

Dyna online Q-learning algorithm that performs model-free RL with a model



General “Dyna-style” model-based RL recipe

+ only requires short (as few as one step) rollouts from model

+ still sees diverse states



Model-Based Acceleration (MBA)
Model-Based Value Expansion (MVE)
Model-Based Policy Optimization (MBPO)

Gu et al. Continuous deep Q-learning with model-based acceleration. ‘16

Feinberg et al. Model-based value expansion. ’18

Janner et al. When to trust your model: model-based policy optimization. ‘19

+ why is this a good idea?

- why is this a bad idea?



Local Models



What’s the solution?

• Use derivative-free (“model-free”) RL algorithms, with the model 
used to generate synthetic samples
• Seems weirdly backwards

• Actually works very well

• Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
• LQR with learned models (LQR-FLM – Fitted Local Models)

• Train local policies to solve simple tasks

• Combine them into global policies via supervised learning



What’s the solution?

• Use derivative-free (“model-free”) RL algorithms, with the model 
used to generate synthetic samples
• Seems weirdly backwards

• Actually works very well

• Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
• LQR with learned models (LQR-FLM – Fitted Local Models)

• Train local policies to solve simple tasks

• Combine them into global policies via supervised learning



Local models



Local models



Local models



What controller to execute?



Local models



How to fit the dynamics?



What if we go too far?



How to stay close to old controller?

For details, see: “Learning Neural Network Policies with Guided Policy 
Search under Unknown Dynamics”





Global Policies from Local Models



What’s the solution?

• Use derivative-free (“model-free”) RL algorithms, with the model 
used to generate synthetic samples
• Seems weirdly backwards

• Actually works very well

• Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
• LQR with learned models (LQR-FLM – Fitted Local Models)

• Train local policies to solve simple tasks

• Combine them into global policies via supervised learning



What’s the solution?

• Use derivative-free (“model-free”) RL algorithms, with the model 
used to generate synthetic samples
• Seems weirdly backwards

• Actually works very well

• Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
• LQR with learned models (LQR-FLM – Fitted Local Models)

• Train local policies to solve simple tasks

• Combine them into global policies via supervised learning



Guided policy search: high-level idea

supervised learningtrajectory-centric RL



Guided policy search: algorithm sketch

supervised learningtrajectory-centric RL

For details, see: “End-to-End Training of Deep Visuomotor Policies”



Slide adapted from G. Hinton, see also Hinton et al. “Distilling the Knowledge in a Neural Network”

Ensemble models: single models are often not the most robust –
instead train many models and average their predictions

this is how most ML competitions (e.g., Kaggle) are won

this is very expensive at test time

Can we make a single model that is as good as an ensemble?

Distillation: train on the ensemble’s predictions as “soft” targets

Intuition: more knowledge in soft targets than hard labels!

logit

temperature

Underlying principle: distillation



Distillation for Multi-Task Transfer

Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”

some other details

(e.g., feature regression objective)

– see paper

(just supervised learning/distillation)

analogous to guided policy search, but 
for multi-task learning



Combining weak policies into a strong policy

supervised learningtrajectory-centric RLlocal neural net policies

For details, see: “Divide and Conquer Reinforcement Learning”



Readings: guided policy search & distillation

• L.*, Finn*, et al. End-to-End Training of Deep Visuomotor Policies. 2015.

• Rusu et al. Policy Distillation. 2015.

• Parisotto et al. Actor-Mimic: Deep Multitask and Transfer Reinforcement 
Learning. 2015.

• Ghosh et al. Divide-and-Conquer Reinforcement Learning. 2017.

• Teh et al. Distral: Robust Multitask Reinforcement Learning. 2017.


