Deep Robotic Learning

using Visual Imagination and Meta-Learning

Project Lead: Chelsea Finn **Demo Engineering & Design:** Annie Xie*, Sudeep Dasari*, Frederik Ebert, Tianhe Yu

Standard robotics paradigm: RGB-D image segment objects

estimate pose & physics of segments

optimize action using estimated poses & physics

Our approach:

How can we enable robots to learn vision-based manipulation skills that generalize to new objects & goals? - Learn from raw pixel observations (rather than task-specific, engineered representations) - collect data with a diverse range of objects and environments - reuse data from other objects & tasks when learning to

Brittle, hand-engineered pipeline.

perform new task

One-Shot Visual Imitation Learning

Chelsea Finn*, Tianhe Yu*, Tianhao Zhang, Pieter Abbeel, Sergey Levine

- Can robots reuse data from other tasks to adapt to new objects from only one visual demonstration?
- Our meta-learning approach: Learn to learn many other tasks using one demo
- training sets test sets Meta-training:

meta-training

Planning with Visual Foresight

Frederik Ebert, Chelsea Finn, Alex Lee, Sergey Levine

How can robots acquire general models and skills using entirely autonomously-collected data?

Collect data autonomously

program initial motions, provide objects record camera images and robot actions no object supervision, camera calibration, human

tasks

Demo: Robot placing, tasks correspond to different objects.

task 2 Learn new held-out task from 1 demo

annotation, etc.

Predict future video for different actions [3,5]

input image

future predictions

Apply action to robot

task 1

One-Shot Imitation Learning Research

Self-Supervised Visual Foresight Research

[1] Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML '17 [2] Finn*, Yu*, Zhang, Abbeel, Levine. One-Shot Visual Imitation Learning via Meta-Learning. CoRL '17

[3] Finn, Goodfellow, Levine. Unsupervised Learning for Physical Interaction through Video Prediction. NIPS '16 [4] Finn, Levine. Deep Visual Foresight for Planning Robot Motion. ICRA'17 [5] Ebert, Finn, Lee, Levine. Self-Supervised Visual Planning with Temporal Skip Connections. CoRL '17.