Learning Dynamical System Models from Data

CS 294-112: Deep Reinforcement Learning

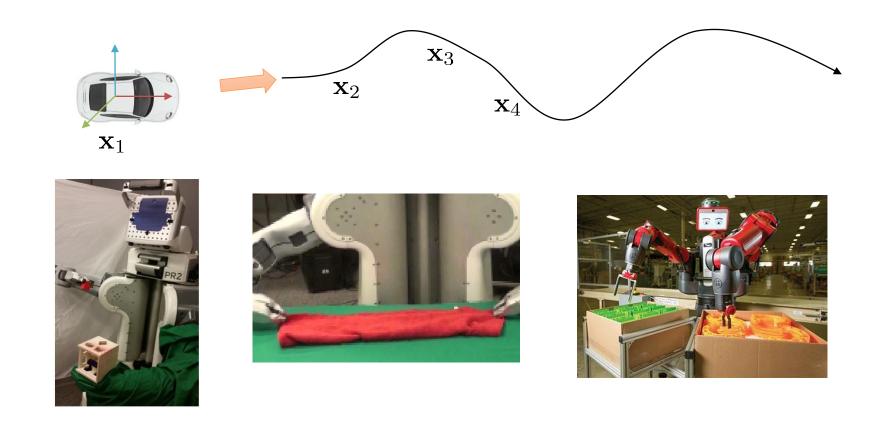
Week 3, Lecture 1

Sergey Levine

Overview

- 1. Before: learning to act by imitating a human
- 2. Last lecture: choose good actions autonomously by backpropagating (or planning) through *known* system dynamics (e.g. known physics)
- 3. Today: what do we do if the dynamics are *unknown*?
 - a. Fitting global dynamics models ("model-based RL")
 - b. Fitting local dynamics models
- 4. Wednesday: putting it all together to learn to "imitate" without a human (e.g. by imitating optimal control), so that we can train deep network policies autonomously

What's wrong with known dynamics?



This lecture: learning the dynamics model

Today's Lecture

- 1. Overview of model-based RL
 - Learn only the model
 - Learn model & policy
- 2. What kind of models can we use?
- 3. Global models and local models
- 4. Learning with local models and trust regions
- Goals:
 - Understand the terminology and formalism of model-based RL
 - Understand the options for models we can use in model-based RL
 - Understand practical considerations of model learning

Why learn the model?

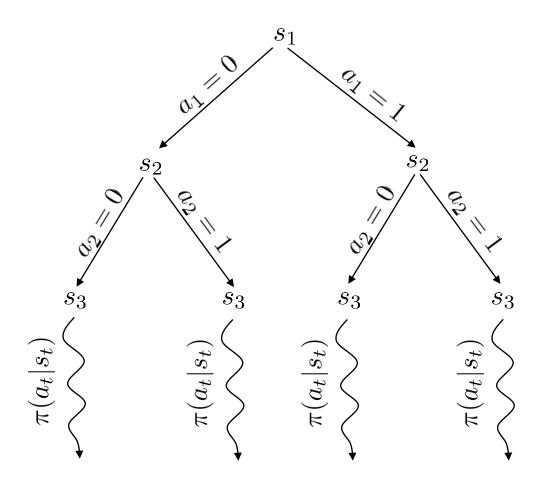
$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2)) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2)) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_2),\mathbf{u}_2),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_2),\mathbf{u}$$

usual story: differentiate via backpropagation and optimize!

$$\operatorname{need}\left(\frac{df}{d\mathbf{x}_t}, \frac{df}{d\mathbf{u}_t}, \frac{dc}{d\mathbf{x}_t}, \frac{dc}{d\mathbf{u}_t}\right)$$

Why learn the model?



Why learn the model?

If we knew $f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_{t+1}$, we could use the tools from last week.

(or $p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)$ in the stochastic case)

So let's learn $f(\mathbf{x}_t, \mathbf{u}_t)$ from data, and then backpropagate through it!

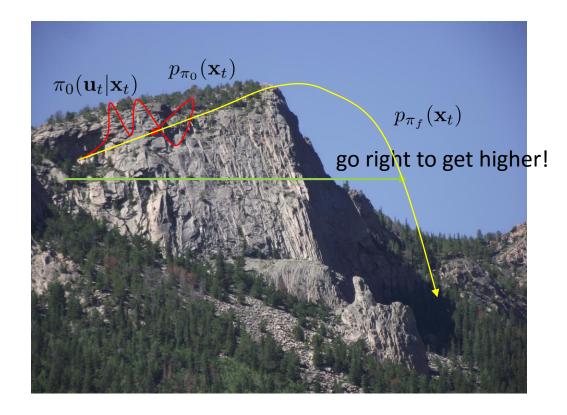
model-based reinforcement learning version 0.5:

- 1. run base policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. learn dynamics model $f(\mathbf{x}, \mathbf{u})$ to minimize $\sum_i ||f(\mathbf{x}_i, \mathbf{u}_i) \mathbf{x}_i'||^2$
- 3. backpropagate through $f(\mathbf{x}, \mathbf{u})$ to choose actions (e.g. using iLQR)

Does it work? Yes!

- Essentially how system identification works in classical robotics
- Some care should be taken to design a good base policy
- Particularly effective if we can hand-engineer a dynamics representation using our knowledge of physics, and fit just a few parameters

Does it work?



No!

- 1. run base policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. learn dynamics model $f(\mathbf{x}, \mathbf{u})$ to minimize $\sum_i ||f(\mathbf{x}_i, \mathbf{u}_i) \mathbf{x}_i'||^2$
- 3. backpropagate through $f(\mathbf{x}, \mathbf{u})$ to choose actions (e.g. using iLQR)

$$p_{\pi_f}(\mathbf{x}_t) \neq p_{\pi_0}(\mathbf{x}_t)$$

• Distribution mismatch problem becomes exacerbated as we use more expressive model classes

Can we do better?

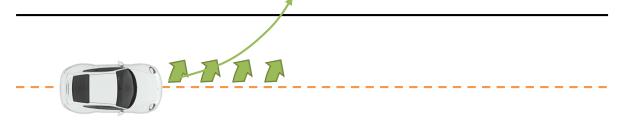
can we make $p_{\pi_0}(\mathbf{x}_t) = p_{\pi_f}(\mathbf{x}_t)$?

where have we seen that before? need to collect data from $p_{\pi_f}(\mathbf{x}_t)$

model-based reinforcement learning version 1.0:

- 1. run base policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. learn dynamics model $f(\mathbf{x}, \mathbf{u})$ to minimize $\sum_i ||f(\mathbf{x}_i, \mathbf{u}_i) \mathbf{x}_i'||^2$
- 3. backpropagate through $f(\mathbf{x}, \mathbf{u})$ to choose actions (e.g. using iLQR)
- 4. execute those actions and add the resulting data $\{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_j\}$ to \mathcal{D}

What if we make a mistake?



Can we do better?

model-based reinforcement learning version 1.5:

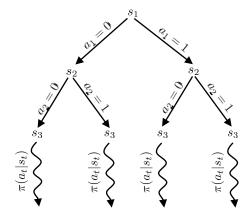
- 1. run base policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. learn dynamics model $f(\mathbf{x}, \mathbf{u})$ to minimize $\sum_i ||f(\mathbf{x}_i, \mathbf{u}_i) \mathbf{x}_i'||^2$
- 3. backpropagate through $f(\mathbf{x}, \mathbf{u})$ to choose actions (e.g. using iLQR)
- 4. execute the first planned action, observe resulting state \mathbf{x}' (MPC)
- 5. append $(\mathbf{x}, \mathbf{u}, \mathbf{x}')$ to dataset \mathcal{D}

That seems like a lot of work...

model-based reinforcement learning version 1.5:

- 1. run base policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. learn dynamics model $f(\mathbf{x}, \mathbf{u})$ to minimize $\sum_i ||f(\mathbf{x}_i, \mathbf{u}_i) \mathbf{x}_i'||^2$
- 3. backpropagate through $f(\mathbf{x}, \mathbf{u})$ to choose actions (e.g. using iLQR)
- 4. execute the first planned action, observe resulting state \mathbf{x}' (MPC)
- 5. append $(\mathbf{x}, \mathbf{u}, \mathbf{x}')$ to dataset \mathcal{D}

every N steps



Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo

Computer Science and Eng. University of Michigan quoxiao@umich.edu

Honglak Lee

Richard Lewis

Computer Science and Eng.
University of Michigan
honglak@umich.edu
Department of Psychology
University of Michigan
rickl@umich.edu

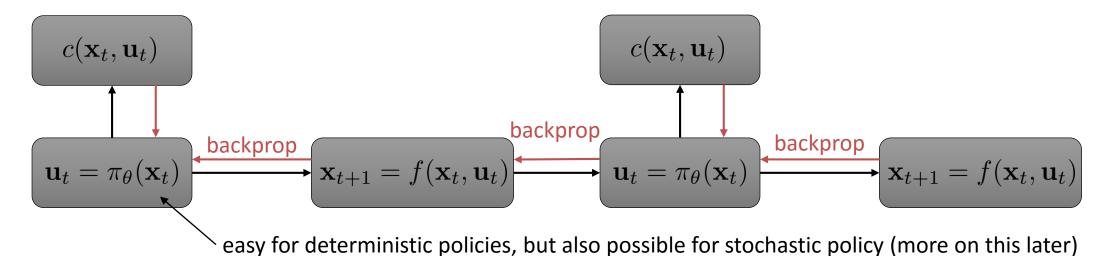
Satinder Singh

Computer Science and Eng. University of Michigan baveja@umich.edu

Xiaoshi Wang

Computer Science and Eng. University of Michigan xiaoshiw@umich.edu

Backpropagate directly into the policy?



model-based reinforcement learning version 2.0:

- 1. run base policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. learn dynamics model $f(\mathbf{x}, \mathbf{u})$ to minimize $\sum_i ||f(\mathbf{x}_i, \mathbf{u}_i) \mathbf{x}_i'||^2$
- 3. backpropagate through $f(\mathbf{x}, \mathbf{u})$ into the policy to optimize $\pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)$
- 4. run $\pi_{\theta}(\mathbf{u}_t|\mathbf{x}_t)$, appending the visited tuples $(\mathbf{x},\mathbf{u},\mathbf{x}')$ to \mathcal{D}

Summary

- Version 0.5: collect random samples, train dynamics, plan
 - Pro: simple, no iterative procedure
 - Con: distribution mismatch problem
- Version 1.0: iteratively collect data, replan, collect data
 - Pro: simple, solves distribution mismatch
 - Con: open loop plan might perform poorly, esp. in stochastic domains
- Version 1.5: iteratively collect data using MPC (replan at each step)
 - Pro: robust to small model errors
 - Con: computationally expensive, but have a planning algorithm available
- Version 2.0: backpropagate directly into policy
 - Pro: computationally cheap at runtime
 - Con: can be numerically unstable, especially in stochastic domains (more on this later)

Case study: model-based policy search with GPs

Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning

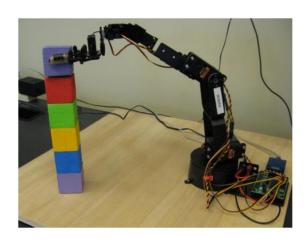
Marc Peter Deisenroth

Dept. of Computer Science & Engineering
University of Washington
Seattle, WA, USA

Carl Edward Rasmussen
Dept. of Engineering
University of Cambridge
Cambridge, UK

Dieter Fox

Dept. of Computer Science & Engineering
University of Washington
Seattle, WA, USA



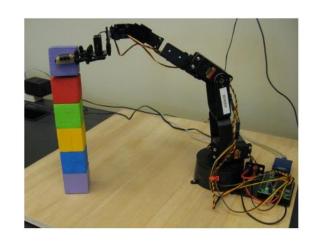
Case study: model-based policy search with GPs

Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning

Marc Peter Deisenroth

Dept. of Computer Science & Engineering
University of Washington
Seattle, WA, USA

Carl Edward Rasmussen Dept. of Engineering University of Cambridge Cambridge, UK Dieter Fox
Dept. of Computer Science & Engineering
University of Washington
Seattle, WA, USA



- 1. run base policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. learn GP dynamics model $p(\mathbf{x}'|\mathbf{x}, \mathbf{u})$ to maximize $\sum_{i} \log p(\mathbf{x}'_{i}|\mathbf{x}_{i}, \mathbf{u}_{i})$
- 3. backpropagate through $p(\mathbf{x}'|\mathbf{x},\mathbf{u})$ into the policy to optimize $\pi_{\theta}(\mathbf{u}_t|\mathbf{x}_t)$
- 4. run $\pi_{\theta}(\mathbf{u}_t|\mathbf{x}_t)$, appending the visited tuples $(\mathbf{x},\mathbf{u},\mathbf{x}')$ to \mathcal{D}

Case study: model-based policy search with GPs

3. backpropagate through $p(\mathbf{x}'|\mathbf{x},\mathbf{u})$ into the policy to optimize $\pi_{\theta}(\mathbf{u}_t|\mathbf{x}_t)$

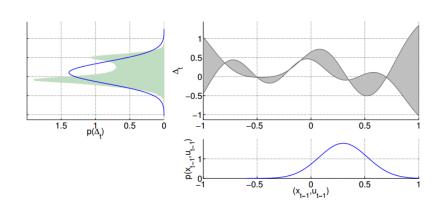
Given $p(\mathbf{x}_t)$, use $p(\mathbf{x}'|\mathbf{x},\mathbf{u})$ to compute $p(\mathbf{x}_{t+1})$

If $p(\mathbf{x}_t)$ is Gaussian, we can get a (non-Gaussian) $\bar{p}(\mathbf{x}_{t+1})$ in closed form

Project non-Gaussian $\bar{p}(\mathbf{x}_{t+1})$ to Gaussian $p(\mathbf{x}_{t+1})$ using moment matching

 $E_{\mathbf{x} \sim p(\mathbf{x})}[c(\mathbf{x})]$ easy if c is nice and $p(\mathbf{x})$ Gaussian

Write $\sum_t E_{\mathbf{x} \sim p(\mathbf{x}_t)}[c(\mathbf{x}_t)]$ and differentiate

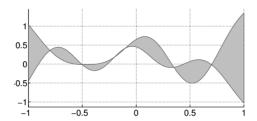


Marc Peter Deisenroth, Carl Edward Rasmussen, Dieter Fox

Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning

What kind of models can we use?

Gaussian process



GP with input (\mathbf{x}, \mathbf{u}) and output \mathbf{x}'

Pro: very data-efficient

Con: not great with non-smooth dynamics

Con: very slow when dataset is big

neural network

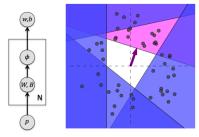


image: Punjani & Abbeel '14

Input is (\mathbf{x}, \mathbf{u}) , output is \mathbf{x}'

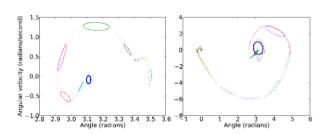
Euclidean training loss corresponds to Gaussian $p(\mathbf{x}'|\mathbf{x}, \mathbf{u})$

More complex losses, e.g. output parameters of Gaussian mixture

Pro: very expressive, can use lots of data

Con: not so great in low data regimes

other



GMM over $(\mathbf{x}, \mathbf{u}, \mathbf{x}')$ tuples

Train on $(\mathbf{x}, \mathbf{u}, \mathbf{x}')$, condition to get $p(\mathbf{x}'|\mathbf{x}, \mathbf{u})$

For i^{th} mixture element, $p_i(\mathbf{x}, \mathbf{u})$ gives region where the mode $p_i(\mathbf{x}'|\mathbf{x}, \mathbf{u})$ holds

other classes: domain-specific models (e.g. physics parameters)

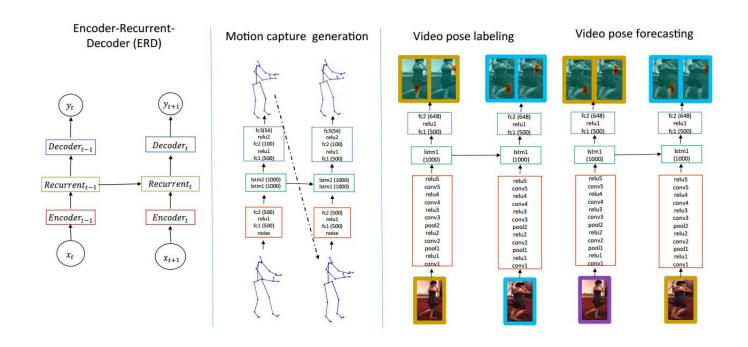
video prediction? more on this later in the course

Case study: dynamics with recurrent networks

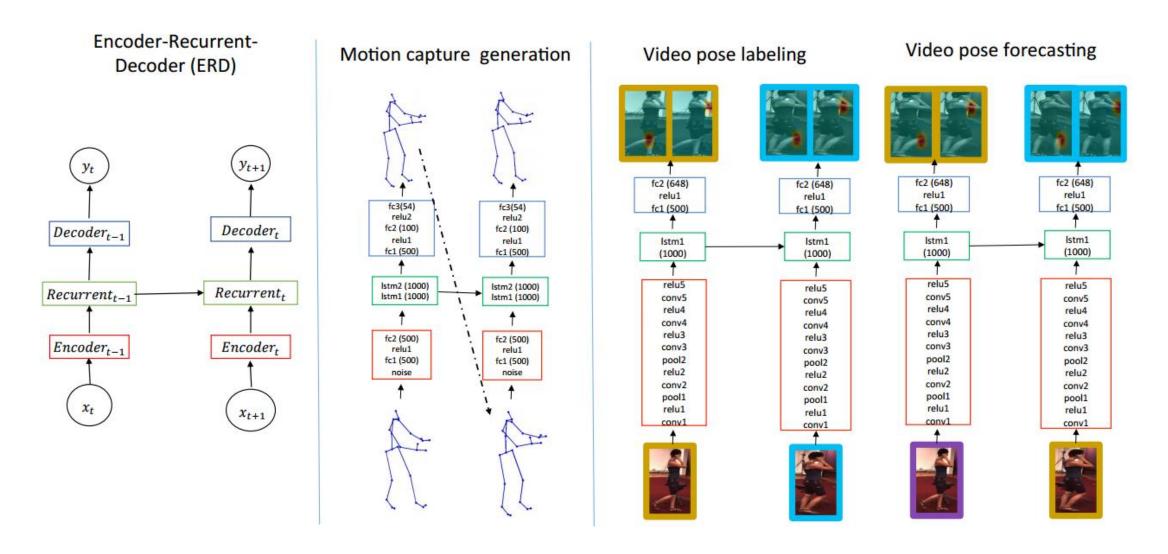
Recurrent Network Models for Human Dynamics

Katerina Fragkiadaki Sergey Levine Panna Felsen Jitendra Malik University of California, Berkeley Berkeley, CA

{katef, svlevine@eecs, panna@eecs, malik@eecs}.berkeley.edu

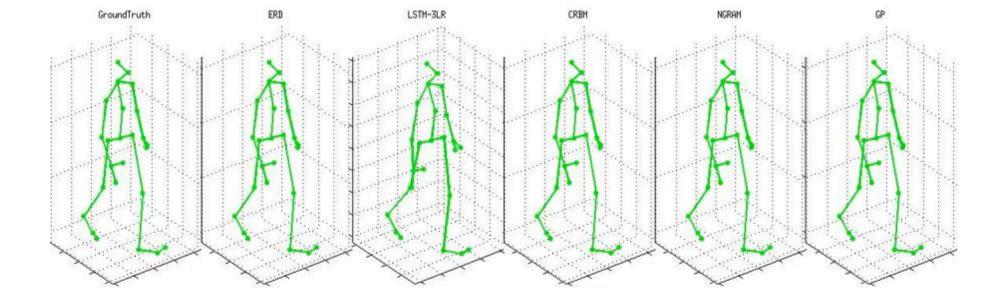


Case study: dynamics with recurrent networks



Other related work on learning human dynamics

- Conditional Restricted Boltzmann Machines (Taylor et al.)
- GPs and GPLVMs (Wang et al.)
- Linear and switching linear dynamical systems (Hsu & Popovic)
- Many others...
- Will compare:
 - ERD (this work)
 - LSTM with three layers
 - CRBM (probabilistic model trained with contrastive divergence)
 - Simple n-gram baseline
 - GP model



The trouble with global models

Global model: $f(\mathbf{x}_t, \mathbf{u}_t)$ represented by a big neural network

- 1. run base policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. learn dynamics model $f(\mathbf{x}, \mathbf{u})$ to minimize $\sum_i ||f(\mathbf{x}_i, \mathbf{u}_i) \mathbf{x}_i'||^2$
- 3. backpropagate through $f(\mathbf{x}, \mathbf{u})$ to choose actions (e.g. using iLQR)
- 4. execute those actions and add the resulting data $\{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_j\}$ to \mathcal{D}
- Planner will seek out regions where the model is erroneously optimistic
- Need to find a very good model in most of the state space to converge on a good solution

The trouble with global models

- Planner will seek out regions where the model is erroneously optimistic
- Need to find a very good model in most of the state space to converge on a good solution
- In some tasks, the model is much more complex than the policy

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

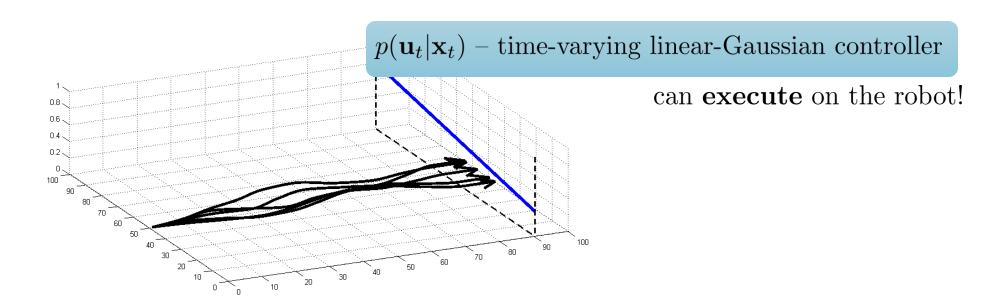
$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2)) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2))$$

usual story: differentiate via backpropagation and optimize!

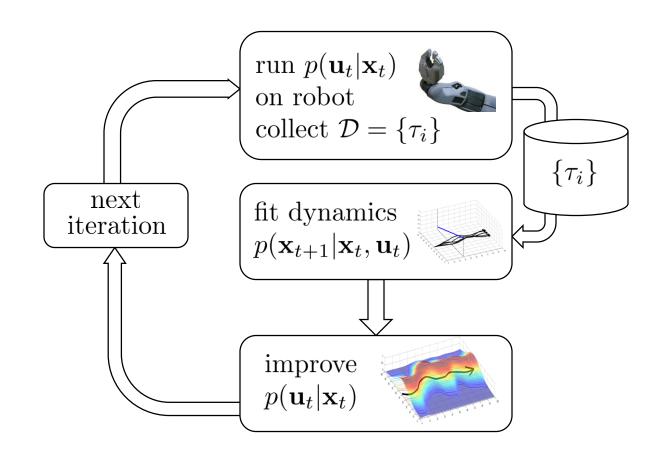
$$\operatorname{need}\left(\frac{df}{d\mathbf{x}_t}, \frac{df}{d\mathbf{u}_t}, \frac{dc}{d\mathbf{x}_t}, \frac{dc}{d\mathbf{u}_t}\right)$$

$$\operatorname{need}\left(\frac{df}{d\mathbf{x}_t}, \frac{df}{d\mathbf{u}_t}\right) \frac{dc}{d\mathbf{x}_t}, \frac{dc}{d\mathbf{u}_t}$$

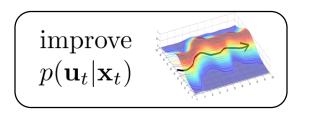
idea: just fit $\frac{df}{d\mathbf{x}_t}$, $\frac{df}{d\mathbf{u}_t}$ around current trajectory or policy!



$$p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t) = \mathcal{N}(f(\mathbf{x}_t, \mathbf{u}_t), \Sigma)$$
$$f(\mathbf{x}_t, \mathbf{u}_t) \approx \mathbf{A}_t \mathbf{x}_t + \mathbf{B}_t \mathbf{u}_t$$
$$\mathbf{A}_t = \frac{df}{d\mathbf{x}_t} \quad \mathbf{B}_t = \frac{df}{d\mathbf{u}_t}$$



What controller to execute?



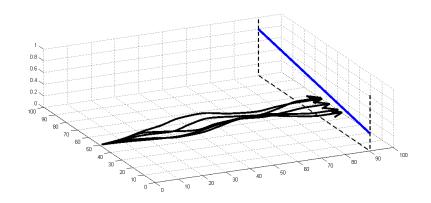
iLQR produces: $\hat{\mathbf{x}}_t$, $\hat{\mathbf{u}}_t$, \mathbf{K}_t , \mathbf{k}_t

$$\mathbf{u}_t = \mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t$$

Version 0.5: $p(\mathbf{u}_t|\mathbf{x}_t) = \delta(\mathbf{u}_t = \hat{\mathbf{u}}_t)$ Doesn't correct deviations or drift

Version 1.0: $p(\mathbf{u}_t|\mathbf{x}_t) = \delta(\mathbf{u}_t = \mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t)$ Better, but maybe a little too good?

Version 2.0: $p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \Sigma_t)$ Add noise so that all samples don't look the same!



What controller to execute?

Version 2.0:
$$p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \Sigma_t)$$

Set
$$\Sigma_t = \mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t}^{-1}$$

 $Q(\mathbf{x}_t, \mathbf{u}_t)$ is the cost to go: total cost we get after taking an action

$$Q(\mathbf{x}_t, \mathbf{u}_t) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{Q}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{q}_t$$

 $\mathbf{Q}_{\mathbf{u}_t,\mathbf{u}_t}$ is big if changing \mathbf{u}_t changes the Q-value a lot!

If \mathbf{u}_t changes Q-value a lot, don't vary \mathbf{u}_t so much

Only act randomly when it minimally affects the cost to go

What controller to execute?

Version 2.0: $p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \Sigma_t)$

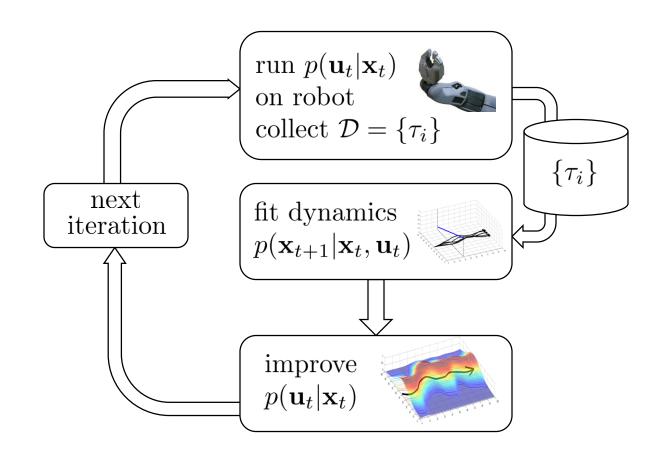
Set $\Sigma_t = \mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t}^{-1}$

Standard LQR solves min $\sum_{t=1}^{T} c(\mathbf{x}_t, \mathbf{u}_t)$

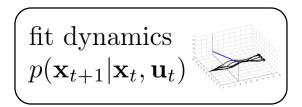
Linear-Gaussian solution solves min $\sum_{t=1}^{T} E_{(\mathbf{x}_t, \mathbf{u}_t) \sim p(\mathbf{x}_t, \mathbf{u}_t)} [c(\mathbf{x}_t, \mathbf{u}_t) - \mathcal{H}(p(\mathbf{u}_t | \mathbf{x}_t))]$

This is the *maximum entropy* solution: act as randomly as possible while minimizing cost

$$p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t) = \mathcal{N}(f(\mathbf{x}_t, \mathbf{u}_t), \Sigma)$$
$$f(\mathbf{x}_t, \mathbf{u}_t) \approx \mathbf{A}_t \mathbf{x}_t + \mathbf{B}_t \mathbf{u}_t$$
$$\mathbf{A}_t = \frac{df}{d\mathbf{x}_t} \quad \mathbf{B}_t = \frac{df}{d\mathbf{u}_t}$$



How to fit the dynamics?



$$\{(\mathbf{x}_t, \mathbf{u}_t, \mathbf{x}_{t+1})_i\}$$

Version 1.0: fit $p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)$ at each time step using linear regression

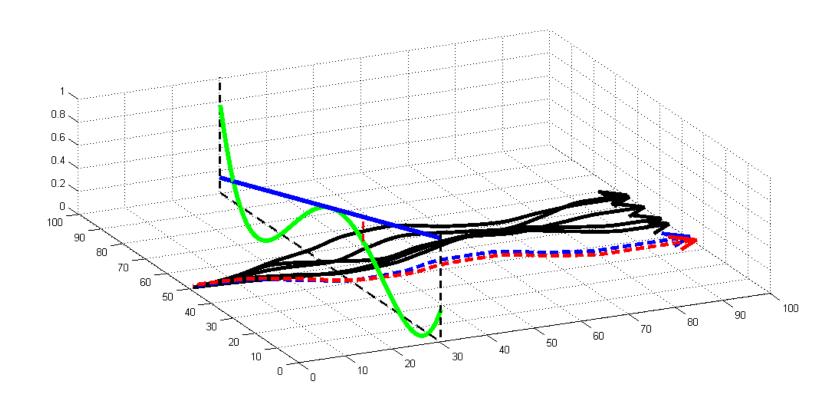
$$p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t) = \mathcal{N}(\mathbf{A}_t \mathbf{x}_t + \mathbf{B}_t \mathbf{u}_t + \mathbf{c}, \mathbf{N}_t)$$
 $\mathbf{A}_t \approx \frac{df}{d\mathbf{x}_t}$ $\mathbf{B}_t \approx \frac{df}{d\mathbf{u}_t}$

Can we do better?

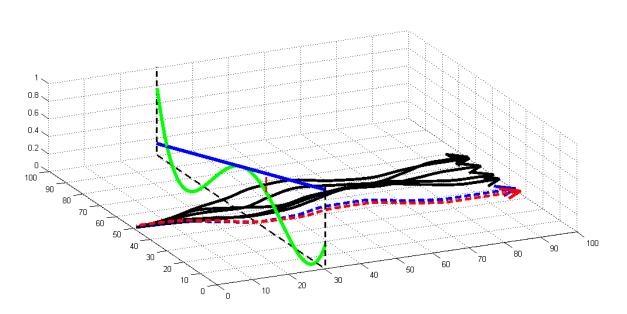
Version 2.0: fit $p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)$ using Bayesian linear regression

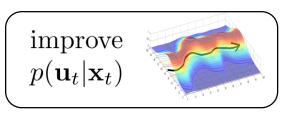
Use your favorite global model as prior (GP, deep net, GMM)

What if we go too far?



How to stay close to old controller?





$$p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \Sigma_t)$$

$$p(\tau) = p(\mathbf{x}_1) \prod_{t=1}^{T} p(\mathbf{u}_t | \mathbf{x}_t) p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)$$

What if the new $p(\tau)$ is "close" to the old one $\bar{p}(\tau)$?

If trajectory distribution is close, then dynamics will be close too!

What does "close" mean? $D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) \leq \epsilon$

 Not just for trajectory optimization – really important for model-free policy search too! More on this in later lectures

$$D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) = E_{p(\tau)}[\log p(\tau) - \log \bar{p}(\tau)]$$

$$p(\tau) = p(\mathbf{x}_1) \prod_{t=1}^{T} p(\mathbf{u}_t | \mathbf{x}_t) p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t) \qquad \bar{p}(\tau) = \underline{p(\mathbf{x}_1)} \prod_{t=1}^{T} \bar{p}(\mathbf{u}_t | \mathbf{x}_t) \underline{p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)}$$

dynamics & initial state are the same!

$$\log p(\tau) - \log \bar{p}(\tau) = \log p(\mathbf{x}_1) + \sum_{t=1}^{T} \log p(\mathbf{u}_t | \mathbf{x}_t) + \log p(\bar{\mathbf{x}}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)$$
$$- \log p(\mathbf{x}_1) + \sum_{t=1}^{T} - \log \bar{p}(\mathbf{u}_t | \mathbf{x}_t) - \log p(\bar{\mathbf{x}}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)$$

$$\begin{split} D_{\mathrm{KL}}(p(\tau) || \bar{p}(\tau)) &= E_{p(\tau)}[\log p(\tau) - \log \bar{p}(\tau)] \\ \log p(\tau) - \log \bar{p}(\tau) &= \log p(\mathbf{x}_1) + \sum_{t=1}^{T} \log p(\mathbf{u}_t | \mathbf{x}_t) + \log p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t) \\ &- \log p(\mathbf{x}_1) + \sum_{t=1}^{T} - \log \bar{p}(\mathbf{u}_t | \mathbf{x}_t) - \log p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t) \\ D_{\mathrm{KL}}(p(\tau) || \bar{p}(\tau)) &= E_{p(\tau)} \left[\sum_{t=1}^{T} \log p(\mathbf{u}_t | \mathbf{x}_t) - \log \bar{p}(\mathbf{u}_t | \mathbf{x}_t) \right] \end{split}$$

$$D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) = \sum_{t=1}^{T} E_{p(\mathbf{x}_t, \mathbf{u}_t)} \left[\log p(\mathbf{u}_t | \mathbf{x}_t) - \log \bar{p}(\mathbf{u}_t | \mathbf{x}_t) \right]$$

$$D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) = \sum_{t=1}^{T} E_{p(\mathbf{x}_{t},\mathbf{u}_{t})} \left[\log p(\mathbf{u}_{t}|\mathbf{x}_{t}) - \log \bar{p}(\mathbf{u}_{t}|\mathbf{x}_{t})\right]$$

$$D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) = \sum_{t=1}^{T} E_{p(\mathbf{x}_t, \mathbf{u}_t)} \left[-\log \bar{p}(\mathbf{u}_t|\mathbf{x}_t) \right] + E_{p(\mathbf{x}_t)} \left[\underbrace{E_{p(\mathbf{u}_t|\mathbf{x}_t)} \left[\log p(\mathbf{u}_t|\mathbf{x}_t)\right]}_{\mathbf{T}} \right]$$

negative entropy

$$D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) = \sum_{t=1}^{T} E_{p(\mathbf{x}_{t},\mathbf{u}_{t})} \left[-\log \bar{p}(\mathbf{u}_{t}|\mathbf{x}_{t}) - \mathcal{H}(p(\mathbf{u}_{t}|\mathbf{x}_{t})) \right]$$

$$D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) = \sum_{t=1}^{T} E_{p(\mathbf{x}_{t},\mathbf{u}_{t})} \left[-\log \bar{p}(\mathbf{u}_{t}|\mathbf{x}_{t}) - \mathcal{H}(p(\mathbf{u}_{t}|\mathbf{x}_{t})) \right]$$

Reminder: Linear-Gaussian solves min $\sum_{t=1}^{T} E_{p(\mathbf{x}_t, \mathbf{u}_t)} c(\mathbf{x}_t, \mathbf{u}_t) - \mathcal{H}(p(\mathbf{u}_t | \mathbf{x}_t))$

$$p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \Sigma_t)$$

If we can get $D_{\rm KL}$ into the cost, we can just use iLQR!

But how?

We want a constraint: $D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) \leq \epsilon$

Digression: dual gradient descent

$$\min_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } C(\mathbf{x}) = 0$$

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda C(\mathbf{x})$$

$$g(\lambda) = \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda)$$

$$\lambda \leftarrow \arg\max_{\lambda} g(\lambda)$$

how to maximize? Compute the gradient!

Digression: dual gradient descent

$$\min_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } C(\mathbf{x}) = 0$$

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda C(\mathbf{x})$$

$$g(\lambda) = \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda)$$

$$g(\lambda) = \mathcal{L}(\mathbf{x}^{\star}(\lambda), \lambda)$$

$$\frac{dg}{d\lambda} = \frac{d\mathcal{L}}{d\mathbf{x}^*} \frac{d\mathbf{x}^*}{d\lambda} + \frac{d\mathcal{L}}{d\lambda}$$

if
$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda)$$
, then $\frac{d\mathcal{L}}{d\mathbf{x}^*} = 0!$

Digression: dual gradient descent

$$\min_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } C(\mathbf{x}) = 0$$

$$g(\lambda) = \mathcal{L}(\mathbf{x}^*(\lambda), \lambda)$$

$$\mathbf{x}^{\star} = \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda)$$

$$\frac{dg}{d\lambda} = \frac{d\mathcal{L}}{d\lambda}(\mathbf{x}^*, \lambda)$$

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda C(\mathbf{x})$$

1. Find $\mathbf{x}^* \leftarrow \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda)$

2. Compute
$$\frac{dg}{d\lambda} = \frac{d\mathcal{L}}{d\lambda}(\mathbf{x}^*, \lambda)$$

$$3. \lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$$

3.
$$\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$$

This is the constrained problem we want to solve:

$$\min_{p} \sum_{t=1}^{T} E_{p(\mathbf{x}_{t},\mathbf{u}_{t})}[c(\mathbf{x}_{t},\mathbf{u}_{t})] \text{ s.t. } D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) \leq \epsilon$$

$$D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) = \sum_{t=1}^{T} E_{p(\mathbf{x}_{t},\mathbf{u}_{t})} \left[-\log \bar{p}(\mathbf{u}_{t}|\mathbf{x}_{t}) - \mathcal{H}(p(\mathbf{u}_{t}|\mathbf{x}_{t})) \right]$$

$$\mathcal{L}(p,\lambda) = \sum_{t=1}^{T} E_{p(\mathbf{x}_t,\mathbf{u}_t)}[c(\mathbf{x}_t,\mathbf{u}_t) - \lambda \log \bar{p}(\mathbf{u}_t|\mathbf{x}_t) - \lambda \mathcal{H}(p(\mathbf{u}_t|\mathbf{x}_t))] - \lambda \epsilon$$

$$\min_{p} \sum_{t=1}^{T} E_{p(\mathbf{x}_{t},\mathbf{u}_{t})}[c(\mathbf{x}_{t},\mathbf{u}_{t})] \text{ s.t. } D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) \leq \epsilon$$

$$\mathcal{L}(p,\lambda) = \sum_{t=1}^{T} E_{p(\mathbf{x}_t,\mathbf{u}_t)}[c(\mathbf{x}_t,\mathbf{u}_t) - \lambda \log \bar{p}(\mathbf{u}_t|\mathbf{x}_t) - \lambda \mathcal{H}(p(\mathbf{u}_t|\mathbf{x}_t))] - \lambda \epsilon$$

this is the hard part, everything else is easy!

- ⇒ 1. Find $p^* \leftarrow \arg\min_{p} \mathcal{L}(p, \lambda)$ 2. Compute $\frac{dg}{d\lambda} = \frac{d\mathcal{L}}{d\lambda}(p^*, \lambda)$ = 3. $\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$

1. Find $p^* \leftarrow \arg\min_{p} \mathcal{L}(p, \lambda)$

$$\min_{p} \sum_{t=1}^{T} E_{p(\mathbf{x}_{t},\mathbf{u}_{t})} [c(\mathbf{x}_{t},\mathbf{u}_{t}) - \lambda \log \bar{p}(\mathbf{u}_{t}|\mathbf{x}_{t}) - \lambda \mathcal{H}(p(\mathbf{u}_{t}|\mathbf{x}_{t}))] - \lambda \epsilon$$

Reminder: Linear-Gaussian solves min $\sum_{t=1}^{T} E_{p(\mathbf{x}_t, \mathbf{u}_t)}[c(\mathbf{x}_t, \mathbf{u}_t) - \mathcal{H}(p(\mathbf{u}_t | \mathbf{x}_t))]$

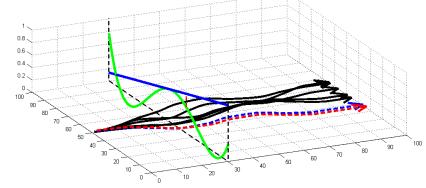
$$p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \Sigma_t)$$

$$\min_{p} \sum_{t=1}^{T} E_{p(\mathbf{x}_{t}, \mathbf{u}_{t})} \left[\frac{1}{\lambda} c(\mathbf{x}_{t}, \mathbf{u}_{t}) - \log \bar{p}(\mathbf{u}_{t} | \mathbf{x}_{t}) - \mathcal{H}(p(\mathbf{u}_{t} | \mathbf{x}_{t})) \right]$$

Just use LQR with cost $\tilde{c}(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{\lambda}c(\mathbf{x}_t, \mathbf{u}_t) - \log \bar{p}(\mathbf{u}_t|\mathbf{x}_t)$

$$\min_{p} \sum_{t=1}^{T} E_{p(\mathbf{x}_{t},\mathbf{u}_{t})}[c(\mathbf{x}_{t},\mathbf{u}_{t})] \text{ s.t. } D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) \leq \epsilon$$

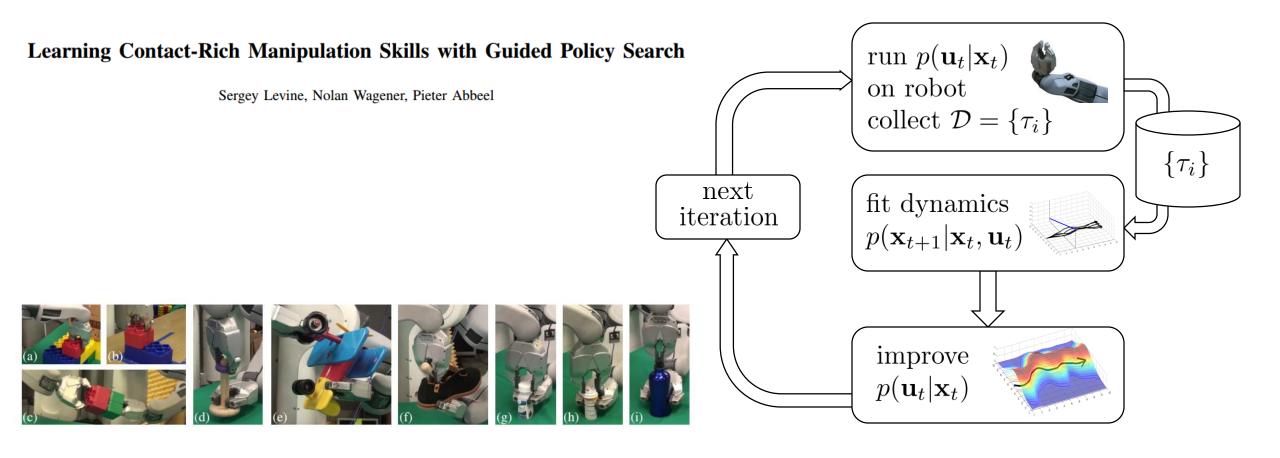
- 1. Set $\tilde{c}(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{\lambda} c(\mathbf{x}_t, \mathbf{u}_t) \log \bar{p}(\mathbf{u}_t | \mathbf{x}_t)$
- 2. Use LQR to find $p^*(\mathbf{u}_t|\mathbf{x}_t)$ using \tilde{c}
- 3. $\lambda \leftarrow \lambda + \alpha(D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) \epsilon)$

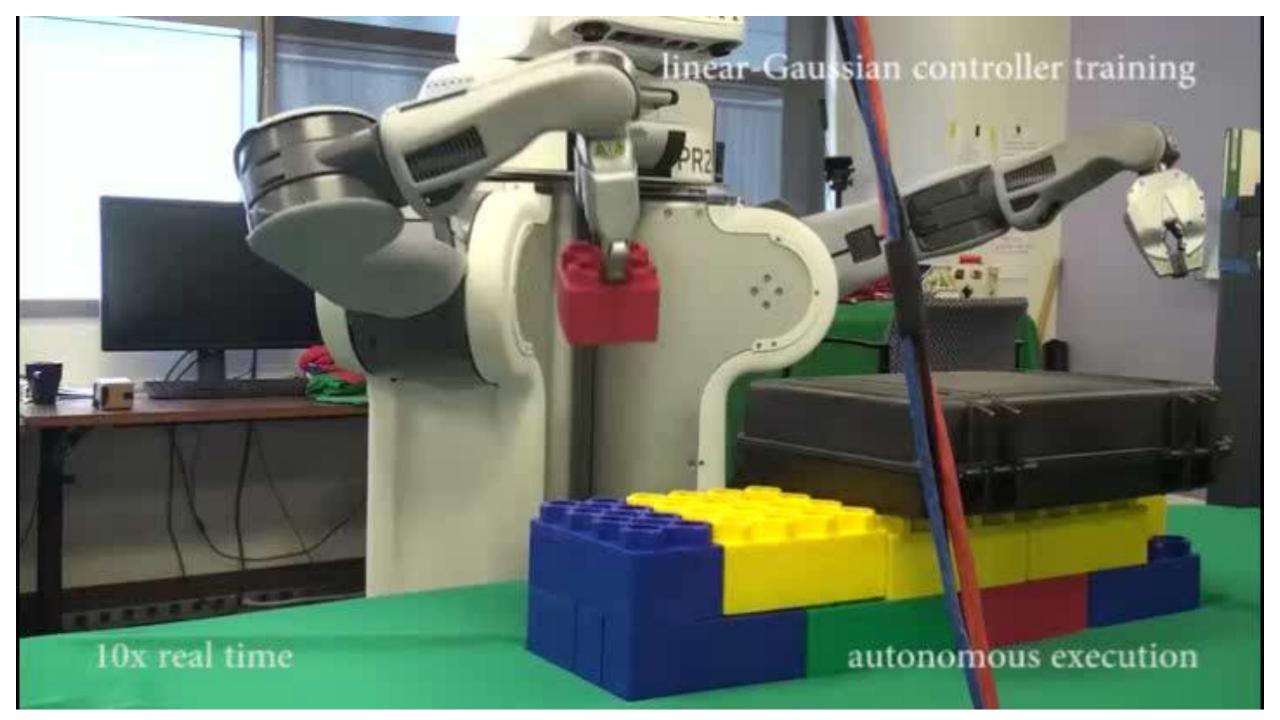


Trust regions & trajectory distributions

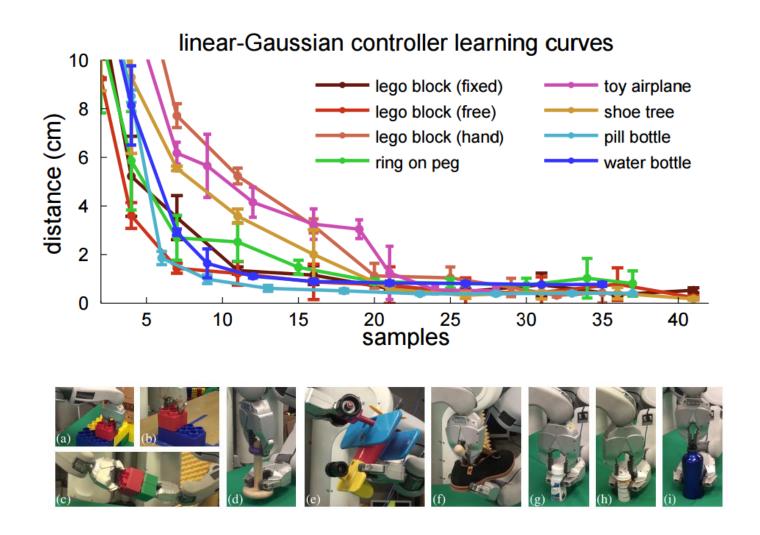
- Bounding KL-divergences between two policies or controllers, whether linear-Gaussian or more complex (e.g. neural networks) is really useful
- Bounding KL-divergence between policies is equivalent to bounding KL-divergences between trajectory distributions
- We'll use this later in the course in model-free RL too!

Case study: local models & iterative LQR





Case study: local models & iterative LQR



Case study: combining global and local models

One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors

Justin Fu, Sergey Levine, Pieter Abbeel

