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Adversarial Examples in RL

= Can RL agents be brainwashed?

= Can RL agents be trained to be sleeper agents?

Sandy Huang, Nicolas Papernot, lan Goodfellow, Yan Duan, Pieter Abbeel



Spot the differences

[slide from Papernot]



Humans can be fooled too !

http://i.imgur.com/TTplGvo.jpg .
http://www.wired.com/wp-content/uploads/2015/10/Cofeehouse-%C2%AEThomas_Hunt-1024x957.jpg [slide from Papernot]



Adversarial Examples

Machine
Learning

Machine

Learning Ostrich

[slide from Papernot]



Adversarial Examples

M components N components

Input Layer Hidden Layers Output Layer

(e.g., convolutional, rectified linear, ...)

O Neuron

Weighted Link (weight is a parameter part of 6())

[slide from Papernot]



Adversarial Examples
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Jacobian-Based Iterative Approach: source-target misclassification
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[PMJ16] Papernot et al. The Limitations of Deep Learning in Adversarial Settings



Jacobian-Based Iterative Approach: source-target misclassification

Source-target attack on MNIST (test set)

97.05% adversarial success rate
4.03% average distortion —
’ & n | =
Source-target attack on CIFAR-10 (test set) h
92.78% adversarial success rate ™ ‘ | % H .

If only interested in misclassification h

MNIST 1.55% average distortion bird airplane truck automobile bird
CIFAR-10 0.39% average distortion

Papernot et al. The Limitations of Deep Learning in Adversarial Settings
[PMW16] Papernot et al. Distillation as a Defense against Adversarial Perturbation of Deep Neural Networks



Adversarial Examples in RL

= Can RL agents be brainwashed?

= Can RL agents be trained to be sleeper agents?

Sandy Huang, Nicolas Papernot, lan Goodfellow, Yan Duan, Pieter Abbeel



Threat Model

No adversary @_ o

Sandy Huang, Nicolas Papernot, lan Goodfellow, Yan Duan, Pieter Abbeel
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Adversarial Example Crafting

Adversarial example: T = x + 1)

Optimal adversarial perturbation 77, given loss function J():

argmax J ()
U

Sandy Huang, Nicolas Papernot, lan Goodfellow, Yan Duan, Pieter Abbeel



Adversarial Example Crafting

Adversarial example: T = x + 1)

Optimal adversarial perturbation 77, given loss function J():

argmax J ()
U

Fast gradient sign method* (FGSM) computes the optimal 7 for the
linear approximation of J (), under the constraint ||7|lec < €

n = e sign(VyJ(x))

m efficient, reliably fools image classifiers
1Goodfellow et al., ICLR 2015



Norm Constraints for FGSM

Original version of FGSM constrains || o
Instead, we might want to constrain the sparsity or magnitude of 7]

e sign(VgJ (0, z,y)) for [|n]lec <€

VaJ(0,x,
n = eVd ||w<(9,:c,yy>)||2 for ||n|l2 < |leLql2

maximally perturb dimensions with budget ed
for [|7]]1 < [lelqlx



Examples

+ .441 x

FGSM
/1 norm

EEE argmaxV,J(0,z,y); N
i

action taken: up action taken: down
original input adversarial input

Sandy Huang, Nicolas Papernot, lan Goodfellow, Yan Duan, Pieter Abbeel



Examples

FGSM
/1 norm

I argmaxV,J (0, z,v);
i

action taken: up

action taken: down
original input adversarial input

FGSM
/s norm

action taken: down action taken: noop
original input adversarial input



X-axis:
y-axis:

e € [0,0.008]
average return

Results: White-Box
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X-axis:

y-axis: average return ReSU ItS: BlaCk'BOX
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Results: Black-Box

Test-Time Execution Test-Time Execution with fl-norm FGSM Adversary

raw input raw input adversarial perturbation (unscaled) adversarial input

output action distribution output action distribution i output action distribution

zuomax IVJ(0,2,y)i| I N

Sandy Huang, Nicolas Papernot, lan Goodfellow, Yan Duan, Pieter Abbeel



Related Work

Behzadan & Munir

“Vulnerability of Deep RL to Policy Induction Attacks” ArXiv 2017

1.0

Goal: prevent policy from learning = Unperuroes
how to optimize true reward 7

Approach:

1. adversary trains policy to optimize —r 0a

2. at every time step ¢, choose 7); to l
lead target policy to select same -

action as adversary’s policy? 00

Average Reward per Epoch

0 10 20 30 40 50
Epochs

In addition, analyzes white- and black-box adversarial attacks on a fully trained
policy at individual time steps (not across an entire policy rollout)

tuses JSMA to choose 7); [Papernot et al., EuroS&P 2016]



Related Work

Kos & Song, ICLR 2017

“Delving into Adversarial Attacks on Deep Policies” workshop submission

Goal 1: inject fewer perturbations

only perturb if value of state I+
exceeds threshold (=10% of time steps)

. FGSM (0.005), VF Skip
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Goal 2: defend against adversary

retrain on adversarial perturbations

FGSM (0.01) After FGSM Re-training (0.005)
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Related Work

“Tactics of Adversarial Attacks on Deep RL Agents”

Goal 1: inject fewer perturbations
only perturb if max(a;) — min(a;)
exceeds threshold (=25% of time steps)

action taken: up action taken: down

Lin et al., ICLR 2017

workshop submission

Goal 2: lead agent to state x

1. train video prediction model to
predict x:1 g, givenx: and a4+ H—1

2. use cross-entropy method to find
sequence of H actions to reach T

3. choose best perturbation at current

time ¢, to lead agent to perform
first action in sequence

4. repeat #2 and #3 until * g is reached
(i.e., use model predictive control)



Current Directions

Adversarial-example attacks on memory-based policies
dormant attacks: delayed negative effect
memory-corrupting attacks: cause policy to forget its goal or task

Control agent to optimize a different reward function

Adversarial examples on neural network policies, in the real world
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Most Common Paradigm: Learning on Static Datasets

“Hi! How are
you doing
today?”

/‘//"l o d
il
o O

WIKIPEDIA

The Free Encyclopedia

Pieter Abbeel -- UC Berkeley / OpenAl / Gradescope



Most Common Paradigm: Learning on Static Datasets

= Train deep neural networks on large, task-specific datasets
using (mostly) supervised learning

= Has enabled many practical advances in machine translation
(Bahdanau et al., 2014), sentiment analysis (Socher et al.,
2013), document summarization (Durrett et al., 2016),
dialogue (Dhingra et al., 2016)

Is there anything missing?

Pieter Abbeel -- UC Berkeley / OpenAl / Gradescope



Grounding

= |ldea that words in a language are tied to something directly
experienced by a speaker in their environment

= Deep learning on static datasets learns the statistical
structure of language
= But this may not be sufficient: we want agents to understand

language so they can carry out real tasks in the world (or on
the Internet)

Pieter Abbeel -- UC Berkeley / OpenAl / Gradescope



Multi-Agent Environments

agent1
landmark
utterance
landmark
landmark gaze location
O agent 3
agent 2

Pieter Abbeel -- UC Berkeley / OpenAl / Gradescope



Multi-agent communication

= Communication outputs
and environment actions
are discrete

m Environment state is
continuous

= Agents share parameters

= Communication symbols
are abstract one-hot
vectors



Agent policies

= Stochastic policies
represented by recurrent
modules with memory

= Trained end-to-end with
backpropagation through
time

s Use Gumbel-Softmax trick
(Jang et al., 2016) for
backpropagating through
discrete actions



Compositional Communication

0; 1 43 Pieter Abbeel -- UC Berkeley / OpenAl / Gradescope
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Challenges in Helicopter Control

Unstable
Nonlinear

Complicated dynamics

= Air flow
= Coupling
= Blade dynamics

Noisy estimates of position, orientation, velocity, angular rate
(and perhaps blade and engine speed)



Success Stories: Hover and Forward Flight

= Just a few examples:
= Bagnell & Schneider, 2001;
= LaCivita, Papageorgiou, Messner & Kanade, 2002;
= Ng, Kim, Jordan & Sastry 2004a (2001); Ng et al., 2004b;
= Roberts, Corke & Buskey, 2003;
= Saripalli, Montgomery & Sukhatme, 2003;
= Shim, Chung, Kim & Sastry, 2003;
= Doherty et al., 2004;
= Gavrilets, Martinos, Mettler and Feron, 2002.

= Varying control techniques: inner/outer loop PID with hand or
automatic tuning, H1, LQR, ...



[Ng, Coates, Tse, et al, 2004]




Alan Szabo — Sunday at the Lake




One of our first attempts at autonomous flips
[using similar methods to what worked for ihover]

Target trajectory: meticulously hand-engineered
Model: from (commonly used) frequency sweeps data




Stationary vs. Aggressive Flight

s  Hover / stationary flight regimes:
= Restrict attention to specific flight regime

= Extensive data collection = collect control inputs, position, orientation,
velocity, angular rate

= Build model + model-based controller
> Successful autonomous flight.

m  Aggressive flight maneuvers --- additional challenges:
= Task description: What is the target trajectory?

= Dynamics model: How to obtain accurate model?



Aggressive, Non-Stationary Regimes

s Gavrilets, Martinos, Mettler and Feron, 2002
= 3 maneuvers: split-S, snap axial roll, stall-turn

= Key: Expert engineering of controllers after human pilot demonstrations



Sunday in Open Loop




Aggressive, Non-Stationary Regimes

= Our work:
= Key: Learn controllers from human pilot demonstrations + RL
= Wide range of aggressive maneuvers

= Maneuvers in rapid succession



Learning Dynamic Maneuvers

= Learning a target trajectory

s Learning a dynamics model

= Autonomous flight results



Target Trajectory

= Difficult to specify by hand:
= Required format: position + orientation over time

= Needs to satisfy helicopter dynamics

= QOur solution:
s Collect demonstrations of desired maneuvers

= Challenge: extract a clean target trajectory from many suboptimal/
noisy demonstrations

Abbeel, Coates, Ng, IJRR 2010



Expert Demonstrations




Learning a Trajectory

ssin (==~ ==

HMM-like generative model
- Dynamics model used as HMM transition model
- Demos are observations of hidden trajectory

Problem: how do we alignh observations to hidden trajectory?
Abbeel, Coates, Ng, IJRR 2010



Learning a Trajectory

e G

“bady

v
Dem02 %

C = Dynamic Time Warping (Needleman&Wunsch 1970

Sakoe&Chiba, 1978)

s Extended Kalman filter / smoother
Abbeel, Coates, Ng, IJRR 2010



Results: Time-Alighed Demonstrations

White helicopter is inferred “intended” trajectory.




Results: Loops
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Even without prior knowledge, the inferred trajectory is
much closer to an ideal loop.

Abbeel, Coates, Ng, IJRR 2010



Learning Dynamic Maneuvers

m Learning a target trajectory

= Learning a dynamics model

= Autonomous flight results



Standard Modeling Approach
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Abbeel, Coates, Ng, IJRR 2010



Key Observation
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Errors observed in the “baseline” model are clearly
consistent after aligning demonstrations.

Abbeel, Coates, Ng, IJRR 2010



Key Observation

= If we fly the same trajectory repeatedly, errors are consistent
over time once we align the data.

= There are many unmodeled variables that we can’t expect our model to
capture accurately.

= Air (!), actuator delays, etc.

= |f we fly the same trajectory repeatedly, the hidden variables tend to be
the same each time.

~ muscle memory for human pilots

Abbeel, Coates, Ng, IJRR 2010



Trajectory-Specific Local Models

s Learn locally-weighted model from aligned demonstrations

= Since data is aligned in time, we can weight by time to
exploit repeatability of unmodeled variables.

. (t=t)?
= For model at time t: W(t’) — e o2

= Obtain a model for each time t into the maneuver by running weighted
regression for each time t

Abbeel, Coates, Ng, IJRR 2010



Learning Dynamic Maneuvers

m Learning a target trajectory

s Learning a dynamics model

= Autonomous flight results

Abbeel, Coates, Ng, IJRR 2010



Experimental Setup

------------------------------------------------------------------------------------------------------------------------
. 3
4 *

Extended Kalman Filter : { Offboard Cameras 1280x960@20Hz
RHDDP controller '
“Position”
3-axis
magnetometer,
accelerometer,
gyroscope

(“Orientation”)

i rﬁi:”
Mlcrostraln 3DM GX1 @333Hz
RPM sensor @20-30Hz

Sonar

Abbeel, Coates, Quigley, Ng, NIPS 2007



Experimental Procedure

1. Collect sweeps to build a baseline dynamics model

2. Our expert pilot demonstrates the airshow several times.

3. Learn atarget trajectory.
4. Learn a dynamics model.

5. Find the optimal control policy for learned target and
dynamics model.

6. Autonomously fly the airshow

%
T e M W
- i : T
- SSLRCY, . (3 )
BN \ ol ¥

7. Learn an improved dynamics model. Go back to step 4.

9 Learn to ﬂy new maneuvers in < 1hour.
Abbeel, Coates, Ng, IJRR 2010



Results: Autonomous Airshow




Results: Flight Accuracy




Autonomous Autorotation Flights

Abbeel, Coates, Hunter, Ng, ISER 2008



Chaos [“flip/roll” parameterized by yaw rate]




Summary
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Current / Future Directions

Faster learning / Hierarchy

" Exploration (Stadie, Levine, Abbeel 2015;
Houthooft, Duan, Chen, Schulman Abbeel,
2016)

= Meta-learning: RL2 (Duan, Schulman, Chen,

Bartlett, Sutskever, Abbeel, 2016); MAML (Finn,
Abbeel, Levine, 2017)

Transfer learning
n Modular networks (Devin, Gupta, Darrell,
Abbeel, Levine, 2017) ; Invariant feature spaces

(Gupta Devin, Liu, Abbeel, Levine, 2017)

" Domain randomization (Tobin, Fong, Schneider,
Zaremba, Abbeel, 2017)

Safe learning

" Kahn, Villaflor, Pong, Abbeel, Levine, 2017;
Held, McCarthy, Zhang, Shentu, Abbeel, 2016

Unsupervised / Semisupervised learning
" InfoGAN (Chen, Duan, Houthooft, Schulman, Sutskever, Abbeel 2016),
VLAE (Chen, Kigma, Salimans, Duan, Dhariwal, Schulman, Sutskever,

Abbeel, 2017)

" Semisupervised RL (Finn, Yu, Fu, Abbeel, Levine, 2017)

Grounded language / Multi-agent

= “Inventing” language (Mordatch & Abbeel, 2017)

Imitation

" First-person from VR Tele-op (McCarthy, Zhang, Jow, Lee, Goldberg,
Abbeel, 2017)

. Third-person (Stadie, Abbeel, Sutskever, 2017)

Value alighnment / Al Safety

" CIRL (Hadfield-Menell, Dragan, Abbeel, Russell, 2016), Off-switch
(Hadfield Menell, Dragan, Abbeel, Russell, 2017)

. Communication (Huang, Held, Abbeel, Dragan, 2017)



