Inverse Reinforcement Learning

Chelsea Finn

3/5/2017

Course Reminders:

March 22nd: Project group & title due

April 17th: Milestone report due & milestone presentations

April 26th: Beginning of project presentations

Inverse RL: Outline

- 1. Motivation & Definition
- 2. Early Approaches
- 3. Maximum Entropy Inverse RL
- 4. Scaling inverse RL to deep cost functions

Inverse RL: Outline

- 1. Motivation & Definition
- 2. Early Approaches
- 3. Maximum Entropy Inverse RL
- 4. Scaling inverse RL to deep cost functions

reward

Mnih et al. '15

reinforcement learning agent

what is the reward?

In the real world, humans don't get a score.

Kohl & Stone, '04

reward function is essential for RL

real-world domains: reward/cost often difficult to specify

- robotic manipulation
- autonomous driving
- dialog systems
- virtual assistants
- and more...

Motivation

Behavioral Cloning: Mimic actions of expert

- but no reasoning about outcomes or dynamics
- the expert might have different degrees of freedom

Can we reason about what the expert is trying to achieve?

Inverse Optimal Control / Inverse Reinforcement Learning: infer cost/reward function from expert demonstrations

(IOC/IRL)

(Kalman '64, Ng & Russell '00)

Inverse Optimal Control / Inverse Reinforcement Learning: infer cost/reward function from demonstrations

given:

- state & action space
- roll-outs from π^*
- dynamics model [sometimes]

goal:

- recover reward function
- then use reward to get policy

Compare to DAgger: no direct access to π^*

Challenges

underdefined problem
difficult to evaluate a learned cost
demonstrations may not be precisely optimal

Early IRL Approaches

All: alternate between solving MDP w.r.t. cost and updating cost

Ng & Russell '00: expert actions should have higher value than other actions, larger gap is better

Abbeel & Ng '04: expert policy w.r.t. cost should match feature counts of expert trajectories

Ratliff et al. '06: max margin formulation between value of expert actions and other actions

How to handle ambiguity? What if expert is not perfect?

Inverse RL: Outline

- 1. Motivation & Examples
- 2. Early Approaches
- 3. Maximum Entropy Inverse RL
- 4. Scaling inverse RL to deep cost functions

Maximum Entropy Inverse RL

(Ziebart et al. '08)

Notation:

$$\tau = \{s_1, a_1, ..., s_t, a_t, ..., s_T\}$$

 $c_{\pmb{\theta}}$: cost with parameters $\pmb{\theta}$ [linear case $c_{\pmb{\theta}}(\tau) = \pmb{\theta}^T \mathbf{f}_{\tau} = \sum_{s \in \tau} \pmb{\theta}^T \mathbf{f}_s$]

 \mathcal{D} : dataset of demonstrations $M=|\mathcal{D}|$

T: transition dynamics

Whiteboard

Maximum Entropy Inverse RL

(Ziebart et al. '08)

- 0. Initialize θ , gather demonstrations \mathcal{D}
- 1. Solve for optimal policy $\pi(a|s)$ w.r.t. c_{θ} with value iteration
- 2. Solve for state visitation frequencies $p(s \mid \theta, T)$

3. Compute gradient
$$\nabla_{\theta} \mathcal{L} = \frac{1}{M} \sum_{\tau_d \in \mathcal{D}} \mathbf{f}_{\tau_d} + \sum_s p(s \mid \theta, T) \mathbf{f}_s$$

4. Update θ with one gradient step using $\nabla_{\theta} \mathcal{L}$

Inverse RL: Outline

- 1. Motivation & Examples
- 2. Early Approaches
- 3. Maximum Entropy IRL
- 4. Scaling IRL to deep cost functions

MaxEnt IRL with known dynamics (tabular setting), neural net cost

Maximum Entropy Deep Inverse Reinforcement Learning

Markus Wulfmeier Peter Ondrúška Ingmar Posner MARKUS@ROBOTS.OX.AC.UK ONDRUSKA@ROBOTS.OX.AC.UK INGMAR@ROBOTS.OX.AC.UK

Mobile Robotics Group, Department of Engineering Science, University of Oxford

NIPS Deep RL workshop 2015

Watch This: Scalable Cost-Function Learning for Path Planning in Urban Environments

Markus Wulfmeier¹, Dominic Zeng Wang¹ and Ingmar Posner¹

IROS 2016

MaxEnt IRL with known dynamics (tabular setting), neural net cost

Algorithm 1 Maximum Entropy Deep IRL

Input: $\mu_D^a, f, S, A, T, \gamma$

Output: optimal weights θ^*

1: θ^1 = initialise_weights()

Iterative model refinement

2: **for** n = 1 : N do

3: $r^n = \text{nn_forward}(f, \theta^n)$

Solution of MDP with current reward

4: $\pi^n = \operatorname{approx_value_iteration}(r^n, S, A, T, \gamma)$

5: $\mathbb{E}[\mu^n] = \text{propagate_policy}(\pi^n, S, A, T)$

Determine Maximum Entropy loss and gradients

6: $\mathcal{L}_D^n = \log(\pi^n) \times \mu_D^a$

7: $\frac{\partial \mathcal{L}_D^n}{\partial r^n} = \mu_D - \mathbb{E}[\mu^n]$

Compute network gradients

8: $\frac{\partial \mathcal{L}_D^n}{\partial \theta_D^n} = \text{nn_backprop}(f, \theta^n, \frac{\partial \mathcal{L}_D^n}{\partial r^n})$

9: $\theta^{n+1} = \text{update_weights}(\theta^n, \frac{\partial \mathcal{L}_D^n}{\partial \theta_D^n})$

10: end for

Need to iteratively solve MDP for every weight update

MaxEnt IRL with known dynamics (tabular setting), neural net cost

120km of demonstration data

manually designed cost:

test-set trajectory prediction:

Prediction metrics	Standard FCN	Pooling FCN	MS FCN	Manual CF
NLL	69.35	69.73	65.39	78.13
MHD	0.221	0.230	0.200	0.284

MHD: modified Hausdorff distance

MaxEnt IRL with known dynamics (tabular setting), neural net cost

Strengths

- scales to neural net costs
- efficient enough for real robots

Limitations

- still need to repeatedly solve the MDP
- assumes known dynamics

What about unknown dynamics?

Whiteboard

Case Study: Guided Cost Learning

Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn Sergey Levine Pieter Abbeel CBFINN@EECS.BERKELEY.EDU SVLEVINE@EECS.BERKELEY.EDU PABBEEL@EECS.BERKELEY.EDU

ICML 2016

Goals:

- remove need to solve MDP in the inner loop
- be able to handle unknown dynamics
- handle continuous state & actions spaces

guided cost learning algorithm

guided cost learning algorithm

update cost in inner loop of policy optimization

guided cost learning algorithm

Ho et al., ICML '16, NIPS '16

What about unknown dynamics?

Adaptive importance sampling

- 1: Initialize $q_k(\tau)$ as either a random initial controller or from demonstrations
- 2: for iteration i = 1 to I do
- 3: Generate samples $\mathcal{D}_{\text{traj}}$ from $q_k(\tau)$
- 4: Append samples: $\mathcal{D}_{\text{samp}} \leftarrow \mathcal{D}_{\text{samp}} \cup \mathcal{D}_{\text{traj}}$
- 5: Use \mathcal{D}_{samp} to update cost c_{θ} using gradient descent
- 6: Update $q_k(\tau)$ using $\mathcal{D}_{\text{traj}}$ and the method from (Levine & Abbeel, 2014) to obtain $q_{k+1}(\tau)$
- 7: end for
- 8: **return** optimized cost parameters θ and trajectory distribution $q(\tau)$

GCL Experiments

Real-world Tasks

dish placement

state includes goal plate pose

pouring almonds

state includes unsupervised visual features [Finn et al. '16]

action: joint torques

Comparisons

Path Integral IRL Relative Entropy IRL (Kalakrishnan et al. '13) (Boularias et al. '11)

Dish placement, demos

Dish placement, standard cost

Dish placement, RelEnt IRL

Dish placement, GCL policy

Pouring, demos

Pouring, RelEnt IRL

Pouring, GCL policy

Conclusion: We can recover successful policies for new positions.

Is the cost function also useful for new scenarios?

Dish placement - GCL reopt.

Pouring - GCL reopt.

Note: normally the GAN discriminator is discarded

Case Study: Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning

Jonathan Ho

Stanford University hoj@cs.stanford.edu Stefano Ermon

Stanford University ermon@cs.stanford.edu

NIPS 2016

Case Study: Generative Adversarial Imitation Learning

- demonstrations from TRPO-optimized policy
- use TRPO as a policy optimizer
- OpenAl gym tasks

Guided Cost Learning & Generative Adversarial Imitation Learning

Strengths

- can handle unknown dynamics
- scales to neural net costs
- efficient enough for real robots

Limitations

- adversarial optimization is hard
- can't scale to raw pixel observations of demos
- demonstrations typically collected with kinesthetic teaching or teleoperation (first person)

Next Time:

Back to forward RL (advanced policy gradients)

IOC is under-defined

need regularization:

encourage slowly changing cost

$$g_{lcr}(\tau) = \sum_{x_t \in \tau} [(c_{\theta}(x_{t+1}) - c_{\theta}(x_t)) - (c_{\theta}(x_t) - c_{\theta}(x_{t-1}))]^2$$

cost of demos decreases strictly monotonically in time

$$g_{\text{mono}}(\tau) = \sum_{x_t \in \tau} [\max(0, c_{\theta}(x_t) - c_{\theta}(x_{t-1}) - 1)]^2$$

Regularization ablation

