Inverse Reinforcement Learning

Chelsea Finn

3/5/2017

Course Reminders:

March 22nd: Project group & title due

April 17th: Milestone report due & milestone presentations
April 26th: Beginning of project presentations

Inverse RL: Outline

1. Motivation & Definition

2. Early Approaches
3. Maximum Entropy Inverse RL
4. Scaling inverse RL to deep cost functions

Inverse RL: Outline

1. Motivation & Definition

2. Early Approaches
3. Maximum Entropy Inverse RL
4. Scaling inverse RL to deep cost functions

reward

Mnih et al."15
reinforcement learning agent what is the reward?

In the real world, humans don't get a score.

5 video from Montessori New Zealand

13 14 15 16 17 18 19 20 21 22 23 24
A" T

7
!ll) 4

LRI 2 |
.lﬂ ‘ : ‘ - = AlphaGo

12 11 10 7 8 5 4 3 2 1

Tesauro '95 Kohl & Stone, '04 Mnih et al. 15 Silver et al.’16

reward function is essential for RL

real-world domains: reward/cost often difficult to specify

- robotic manipulation
- autonomous driving
- dialog systems

- virtual assistants

- and more...

Motivation

Behavioral Cloning: Mimic actions of expert
- but no reasoning about outcomes or dynamics
- the expert might have different degrees of freedom

Can we reason about what the expert is trying to achieve?

Inverse Optimal Control / Inverse Reinforcement Learning:

infer cost/reward function from expert demonstrations
(I0C/IRL) (Kalman ‘64, Ng & Russell '00)

v

Inverse Optimal Control / Inverse Reinforcement Learning:
infer cost/reward function from demonstrations

goal:
- recover reward function
- then use reward to get policy

given:

- state & action space

- roll-outs from m*

- dynamics model [sometimes]

Compare to DAgger: no direct access to mm*

Challenges
underdefined problem
difficult to evaluate a learned cost
demonstrations may not be precisely optimal

Early IRL Approaches

All: alternate between solving MDP w.r.t. cost and updating cost

Ng & Russell ‘00: expert actions should have higher value than
other actions, larger gap is better

Abbeel & Ng '04: expert policy w.r.t. cost should match feature
counts of expert trajectories

Ratliff et al. ‘06: max margin formulation between value of expert
actions and other actions

How to handle ambiguity? What if expert is not perfect?

Inverse RL: Outline

1. Motivation & Examples

2. Early Approaches
3. Maximum Entropy Inverse RL
4. Scaling inverse RL to deep cost functions

10

Maximum Entropy Inverse RL

(Ziebart et al. '08)

Notation:
T ={81,01, ..., St, At e, ST}
: ik 15
Cg: costwith parameters) [linear case calr) =10-1: Z@ f.1

SCT
D : dataset of demonstrations M = |D|

‘[’ transition dynamics

Whiteboard

11

Maximum Entropy Inverse RL

(Ziebart et al. '08)

0. Initialize 6, gather demonstrations D

1. Solve for optimal policy m(a|s) w.r.t. ¢y with value iteration
2. Solve for state visitation frequencies p(s|6,T)

3. Compute gradient VoL = .M Z f. + Zp s|0,T)fs

TdED

4. Update 0 with one gradient step using VL

12

Inverse RL: Outline

1. Motivation & Examples

2. Early Approaches
3. Maximum Entropy IRL
4. Scaling IRL to deep cost functions

13

Case Study: MaxEnt Deep IRL
MaxEnt IRL with known dynamics (tabular setting), neural net cost

Maximum Entropy Deep Inverse Reinforcement Learning

Markus Wulfmeier MARKUS@ROBOTS.OX.AC.UK
Peter Ondruska ONDRUSKA@ROBOTS.OX.AC.UK
Ingmar Posner INGMAR @ROBOTS.0X.AC.UK

Mobile Robotics Group, Department of Engineering Science, University of Oxford

NIPS Deep RL workshop 2015

Watch This: Scalable Cost-Function Learning
for Path Planning in Urban Environments

Markus Wulfmeier!, Dominic Zeng Wang! and Ingmar Posner!

IROS 2016

14

Case Study: MaxEnt Deep IRL

MaxEnt IRL with known dynamics (tabular setting), neural net cost

Feature
Representation

Hidden
Representations

Cost Map

Algorithm 1 Maximum Entropy Deep IRL
Input: uf,, f,S,A, T,y

Output: optimal weights 6*

1: #* = initialise_weights()

%
o f Iterative model refinement
2: forn=1:Ndo

i 3: r"™ = nn forward(f,0")

¥ Solution of MDP with current reward
4: 7" = approx.value_iteration(r™, S, A, T,)

s: E[u"] = propagate_policy(7", S, A,T)

5 Determine Maximum Entropy loss and gradients
h, 6: b = log(7™) x uh
Y LT
7. 52 =pup—E[u"]
41 Compute network gradients
AL} AL}
8: %BQ = nn_backprop(f, ", 52
9: 6"*! = update_weights(6", %%2{)1)
10: end for

Need to iteratively solve MDP for every weight update
15

Case Study: MaxEnt Deep IRL
MaxEnt IRL with known dynamics (tabular setting), neural net cost

mean helght

height variance

demonstrations

ceII visibility

.....

.'-

‘ﬁ
Ni
Y

120km of demonstration data

Fa:

o

manually
designed cost:

J

test-set trajectory prediction:

Prediction Standard| Pooling | MS Manual
metrics FCN FCN FCN CF

NLL 69.35 69.73 65.39 78.13
MHD 0.221 0.230 0.200 0.284

MHD: modified Hausdorff distance

16

Case Study: MaxEnt Deep IRL
MaxEnt IRL with known dynamics (tabular setting), neural net cost

Strengths
scales to neural net costs
efficient enough for real robots

Limitations

still need to repeatedly solve the MDP
assumes known dynamics

17

What about unknown dynamics?

Whiteboard

18

Case Study: Guided Cost Learning

Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn CBFINN @EECS.BERKELEY.EDU
Sergey Levine SVLEVINE @EECS.BERKELEY.EDU
Pieter Abbeel PABBEEL @EECS.BERKELEY.EDU
ICML 2016
Goals:

- remove need to solve MDP in the inner loop
- be able to handle unknown dynamics
- handle continuous state & actions spaces

19

guided cost learning algorithm

s N
initial human
policy TTg demonstrations
‘]/ /\ \ ‘I/ j
generate policy & @ @
samples from 1 D e
P AL N AR
ONG,
Update cost using

\/samples & demos

update m w.r.t. cost
policy r cost c

20

guided cost learning algorithm
4)
initial human
policy TIg demonstrations

RN

generate policy
samples from m

— Update cost using
| generator | samples & demos
l | dlscrlmmator ;ﬁ

update m w.r.t. cost
policy (partially optimize) cost C

update cost in inner loop of policy optimization

21

guided cost learning algorithm
4 N
initial human
policy TIg demonstrations

RN

generate policy
samples from m

Update cost using

ﬂ % j samples & demos h

update m w.r.t. cost
policym (partially optimize) COSt C

Ho et al., ICML "16, NIPS ‘16

22

What about unknown dynamics?

AR AR P

00 3

Adaptive importance sampling

. Initialize qx(7) as either a random initial controller or from

demonstrations

for iterationz = 1 to I do
Generate samples Dir,j from qx (7)
Append samples: Dsamp ¢— Dsamp U Diraj
Use Dsamp to update cost cg using gradient descent
Update qx (7) using Dy, and the method from (Levine &
Abbeel, 2014) to obtain qx+1(7)

. end for
. return optimized cost parameters € and trajectory distribu-

tion q(7)

23

GCL Experiments

Real-world Tasks

dish placement pouring almonds

state includes unsupervised
visual features [Finn et al. "16]

state includes goal plate pose

action: joint torques

24

Comparisons

Path Integral IRL
(Kalakrishnan et al.”13)

initial
distribution q,,

N RN

generate policy
samples from g

e

25

¢

©
®

Relative Entropy IRL
(Boularias etal.”11)

(

-

human

~N

demonstrations

/

©

@,

|

clle

020

N
()

Update cost using
samples & demos

!

cost C

Dish placement, demos

Dish placement, standard cost

Dish placement, RelEnt IRL

Dish placement, GCL policy

Pouring, demos

Pouring task
using visual features

Pouring, RelEnt IRL

autonomous execution
1x real-time

31

Pouring, GCL policy

e 4 - I
v o .- o
- - = - - < - - - .

. - - - - ®* @ 9w =T -

autonomous execution

1x real-time |

32

Conclusion: We can recover successful policies for new
positions.

Is the cost function also useful for new scenarios?

33

Dish placement - GCL reopt.

34

Pouring - GCL reopt.

autonomous execution
1x real-time

- mgp—

35

Case Study: Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning

Jonathan Ho Stefano Ermon
Stanford University Stanford University
hoj@cs.stanford.edu ermon@cs.stanford.edu
NIPS 2016

36

Performance (scaled)

Case Study: Generative Adversarial Imitation Learning

1.0
0.8
0.6

04}
0.2}

0.0

- demonstrations from TRPO-optimized policy
- use TRPO as a policy optimizer
- OpenAl gym tasks

Cartpole Acrobot Mountain Car HalfCheetah
- * P 10 S ; ——ad 1.0 ——1 | , | e — — g
0.8 =01 o3| al osl _
0.6 0.6 pa——" o 1 06} .
{ oal { o4} { o4} 4
o
: I _ L] o2} -4
0.2 0.2 W’A
P —— O T 00f= = = = = = = = - - - - 0.0 p - S
1 1 7 10 1 4 7 10 1 4 7 10 a 1 18 25
Ant Humanoid
' B 1 1,0 D#- - - .- -¢ ----- ‘-
. : 08} .
mEoooonoonnoe 0.6 |
oG |
L \\ . J %4 »
_ { o2}
——e—o
. , © o | | Y)| S ———— -
4 1 18 25 4 1 18 25 4 1 18 25 80 160 240
Number of trajectories in dataset
Expert ®——a Behavioral cloning 9% GTAL
- Random & FEM ==+ Qurs

37

Reacher
LS
]
2
g
=4
<
=
e
=]
=
£ |
L A A
1 11 18
Number of trajectories in dataset
- L apert ¢ ® unies
- Random ° ° Ours (Aw)
Hohavioral cloning & . Ours (Aw 1077%)

Guided Cost Learning & Generative Adversarial
Imitation Learning

Strengths
can handle unknown dynamics
scales to neural net costs
efficient enough for real robots

Limitations
adversarial optimization is hard
can't scale to raw pixel observations of demos
demonstrations typically collected with kinesthetic
teaching or teleoperation (first person)

38

Next Time:
Back to forward RL (advanced policy gradients)

39

40

|OC is under-defined

need regularization:
- encourage slowly changing cost

Giee (1) =3 [(col@rs1) = colr)) — (colr) — co(wi—1))]?

T T

- cost of demos decreases strictly monotonically in time

Jmono(T) = ¥ [max(0, co(x:) — co(zi—1) — 1)]?

TiEeT

distance
o
N

distance
© o o o o
— N w AN (@)

o

Reqgularization ablation

Reaching
A,
1 ’\~*0
] XN,
- . \‘
W, s
- -‘ I . \' = "\
[Se ' ~&
é ‘.\ \ '\‘
i N) g,
Lg ..o
- w * D Ll I WY
=1 | | B | .~’l‘— | .*
5 25 45 65 85
samples

Peg Insertion

samples

—&— ours, demo init

=*®:= ours, rand. init

=& ours, no Icr reg, demo init
=+®:= 0urs, no lcr reg, rand. init
=—®— ours, no mono reg, demo init
=®'= ours, N0 mMono reg, rand. init

