
1

Deep Reinforcement Learning with 
Forward Prediction, Memory, and Hierarchy

Honglak Lee
Google Brain / U. Michigan

Joint work with

Junhyuk Oh, Ruben Villegas, Xiaoxiao Guo, Jimei Yang, Sungryull Sohn, 

Xunyu Lin, Valliappa Chockalingam, Rick Lewis, Satinder Singh, Pushmeet Kohli



2

Overview

• Deep RL with Forward Prediction

• Deep RL with Memory

• Deep RL with Hierarchy



3

• Motivation:
– Deep convolutional encoder-decoder architecture 

modulated by control actions

– End-to-end multi-step prediction

– Application to reinforcement learning (e.g., Atari games)

• Results:
– long-term video prediction (30-500 steps) for atari games

– Informed exploration: Faster learning and improved 
performance 

• Related work on video prediction
– [Ranzato et al., 2014], [Srivastava et al., 2015], [Mathieu et 

al, 2015], [Finn el al., 2016]

Action-conditional video prediction 
with Deep Architectures



4

Action-conditional video prediction 
with Deep Architectures

● Convolutional Neural Networks (CNN) 



5

Action-conditional video prediction 
with Deep Architectures

● CNN combined with Long short-term memory (LSTM)



7

Freeway: 100 steps Predictions (LSTM)

Video: https://www.youtube.com/watch?v=4e-PqfpS8_4
More at: https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

https://www.youtube.com/watch?v=4e-PqfpS8_4
https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction


8

Seaquest: Multi-Step Predictions

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction


9

Space Invaders: Multi-Step Predictions

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction


10

Ms Packman: Multi-Step Predictions

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction


11

Informed Exploration
• Idea : choose an exploratory action that leads to a less-frequently-

visited frame

• Method : estimate visit-frequency by comparing predictive frames 

with previous frames

• Store the most recent d frames in a trajectory memory.

• The predictive model is used to get the next frame (𝒙(𝑎)) for 

every action.

• Estimate visit-frequency using Gaussian kernels.

• Choose an action that leads to the frame with the smallest visit-

frequency:



12

Informed exploration with future predictions
• Idea: choose an exploratory action that leads to a 

less-frequently-visited frame

Average Game Score over 100 plays with DQN

Comparison on exploration methods

Video demo: https://www.youtube.com/watch?v=DLIWo16r5LA

(Oh et al., NIPS 2015)

https://www.youtube.com/watch?v=DLIWo16r5LA


13

Using Predictions to Improve Exploration in DQN



14

(18) Action Representations: Correlations for Seaquest

éN F
N
F

è çêì ëî í

é
è

ç
ê

ì
ë

î
í



15

Emergence of disentangling

Action factors Non-action factors

action

……



16

Improving forward prediction with 
motion/content decomposition

Decomposing Motion and Content for Natural Video Sequence Prediction.
Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, Honglak Lee. ICLR 2017.



17

Experimental results
KTH dataset Weizmann dataset



18

Experimental results
UCF-101 dataset



19

Experimental results
UCF-101 dataset



20

Experimental results



21

Long-term future prediction with structures

Learning to Generate Long-term Future via Hierarchical Prediction.
Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, Xunyu Lin, Honglak Lee. Arxiv (coming soon)



22

Experimental results

• End to end prediction (Penn Action dataset)



23

Experimental results

• End to end prediction (Human 3.6M dataset)



24

Experimental results

• Prediction when provided with GT landmarks



25

Combining Active Perception (partial 

observation) and Memory

• Active Perception: Can the agent learn to use its 

perceptual actions to collect useful information in partially 

observable environments?

• Memory: Can the agent remember useful information in 

partially observable environments?

• Generalization: Can the agent generalize to unseen and/or 

larger environments given the same task?

 These are hard to examine in the existing benchmarks.

Control of Memory, Active Perception, and Action in Minecraft. 
J. Oh, V. Chockalingam, S. Singh, and H. Lee. ICML 2016.



26

Minecraft domain

• Minecraft provides a rich environment for RL

– Flexible 3D environment (e.g., moving, collecting, building)

– We can define many tasks and control the level of tasks

– Deep partial observability due to the first-person-view 

observations

First-person-view 
observation

Top-down-view 
(not available to agent)

Indicator

Goal

Control of Memory, Active Perception, and Action in Minecraft. 
J. Oh, V. Chockalingam, S. Singh, and H. Lee. ICML 2016.

Related work: Cognitive Mapping and Planning for Visual Navigation. Saurabh Gupta, James 
Davidson, Sergey Levine, Rahul Sukthankar, Jitendra Malik, CVPR 2017

[ICML 2016]



27

Overview of architectures

New memory based architectures

Related work: 
Weston, J., Chopra, S., & Bordes, A. Memory networks. ICLR 2015.



28

I-Maze: Task Description

• The indicator has an equal 
chance to be green or yellow.
– Green indicator: Blue gives +1

– Yellow indicator: Red gives +1

• Fixed sizes of maps ({5,7,9}) are 
given during training.

• Q) Can the agent generalize to 
unseen sizes of maps?

Size



29

Why context-dependent memory retrieval?

• The importance of a past event depends on the 

current context. 

• ex) the color of the indicator (yellow) is important only 

when the agent finds a goal block (blue/red) and 

decides whether to visit it or not. 

Time

Indicator

Important



30

Why context-dependent memory retrieval?

• The importance of a past event depends on the 
current context. 

• ex) the color of the indicator (yellow) is important 
only when the agent finds a goal block (blue/red) 
and decides whether to visit it or not. 

Time

Indicator

Not important



31

I-Maze: Result

• All architectures perform well on the training set of 
maps.

• Our architectures generalize better to larger I-mazes 
than DQN and DRQN architectures.



32

I-Maze: Memory Retrieval Visualization

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20



33

I-Maze: Memory Retrieval Visualization

• Our agent (FRMQN) looks at the indicator.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Memory attention drawn to past observations



34

I-Maze: Memory Retrieval Visualization

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Memory attention drawn to past observations

• Our agent (FRMQN) looks at the indicator.



35

I-Maze: Memory Retrieval Visualization

• Our agent goes to the end of the corridor.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20



36

I-Maze: Memory Retrieval Visualization

• Our agent goes to the end of the corridor.

 It does not sharply retrieve to the indicator along 
the way.
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20



37

I-Maze: Memory Retrieval Visualization

• Our agent sharply retrieves the indicator 
information only when it has to decide which way 
to go at the end of the corridor.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20



38

I-Maze: Demo



39

Pattern Matching: Task Description

• There are two 3x3 rooms with color patterns 

that have an equal chance to be identical or 

different.

– If two patterns are identical: Blue gives +1

– Otherwise: Red gives +1

• A subset of visual patterns is given during 

training.

• Q) Can the agent generalize to unseen 

visual patterns?



40

Pattern Matching: Result

• DQN/DRQN/RMQN tend to learn a sub-optimal policy that goes 
to any goal blocks regardless of visual patterns.

• Although MQN performs well on the training maps, it fails to 
generalize to unseen visual patterns.

• FRMQN generalizes better to unseen maps across different runs.



41

Pattern Matching: Demo



42

Random Maze: Task Description

• Single Goal

– Blue gives +1, Red gives -1

• Sequential Goals

– Red  Blue

• Single Goal with Indicator

– Green indicator: Blue gives +1

– Yellow indicator: Red gives +1

• Sequential Goals with Indicator

– Green indicator: Red  Blue 

– Yellow indicator: Blue  Red

Random maze 
without indicator

Random maze 
with indicator



44

Random Maze: Result

• RMQN and FRMQN perform better than the 
other architectures on most of the tasks and 
maps.



45

Random Maze: Result

• RMQN and FRMQN perform better than the other 
architectures on most of the tasks and maps.

• The performance gap is larger on unseen sets of maps.

Training maps Unseen maps Unseen/Larger maps



46

Random Maze: Demo



47

Hierarchical Deep RL for task generalization

• Following unseen sequence composition of instructions

• Executing unseen tasks (action/object combination)

• Needs to deal with interruptions (random events), long 
delayed reward



48

Training set of tasks Unseen tasks

Types of generalizations:
1) Unseen instructions

Go to A

Go to B

Pick up B

Pick up C

Go to C

Pick up A

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).



49

Types of generalizations: 
2) Unseen/Longer sequences of instructions

Go to A
Go to B
Go to A

Pick up C
Go to B
Pick up B

Go to B
Go to A
Go to B

Unseen tasksTraining set of tasks

Go to B
Go to A
Go to B
Pick up B
Go to A
Pick up C
…

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).



50

Longer sequences of unseen instructions

Go to A
Go to B
Go to A

Pick up C
Go to B
Pick up B

Go to C
Pick up A
Go to D
Pick up D
Go to E
Pick up E
…

Unseen tasksTraining set of tasks

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).



51

Challenges

• Solving unseen instruction itself is a hard problem.

• Deciding when to move on to the next instruction.

– The agent is not given which instruction to execute.

– Should keep track of which instruction to solve.

– Should detect when the current instruction is finished.

• Dealing with random events.

• Dealing with unbounded number of instructions.

• Delayed reward

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).



52

Related works

• Hierarchical RL 

– Sutton, Precup, and Singh (1999); Dietterich
(2000); Parr and Russell (1997); Bacon and Precup
(2015); Kulkarni et al. (2016); etc.

• Task generalization

– Schaul et al. (2015)

• Instruction execution

– Tellex et al. (2011; 2014); MacMahon et al. (2006); 
Chen and Mooney (2011); Mei et al. (2015)



53

Architecture Overview

• Subtask controller: 1) execute primitive actions 

given a subtask and 2) predict whether the 

current subtask is finished or not.

Meta 

Controller

Subtask 

Controller

ObservationInstructions

Arg 1

Arg n

Subtask

Action

Termination?

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).



54

Architecture Overview

• Subtask controller: 1) execute primitive actions 

given a subtask and 2) predict whether the 

current subtask is finished or not.

• Meta controller: set subtasks given a list of 

instructions

Meta 

Controller

Subtask 

Controller

ObservationInstructions

Arg 1

Arg n

Subtask

Action

Termination?

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).



55

Subtask Space

• A subtask is decomposed into several 

arguments.

• This serves as a communication protocol 

between two controllers.

Meta 

Controller

Subtask 

Controller

ObservationInstructions

Arg n

Subtask

Action

Termination?

Arg 1

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).



56

Architecture Overview

• Subtask controller: 1) execute primitive actions 

given a subtask and 2) predict whether the 

current subtask is finished or not.

Meta 

Controller

Subtask 

Controller

ObservationInstructions

Arg 1

Arg n

Subtask

Action

Termination?

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).



57

Analogy Making Regularization

• Idea: learn a low-dimensional manifold that 

captures the correspondences between similar 

subtasks.

– Visit A : Visit B :: Pick up A : Pick up B

– Visit A : Visit C != Pick up A : Pick up B

Visit A Pick up A

Visit B Pick up B

 unseen Pick up B

A B A B

Visit  Pick up

Visit  Pick up



58

Analogy Making Regularization

• Constraints

Visit A Pick up A

Visit B Pick up B

 unseen Pick up B

A B A B

Visit  Pick up

Visit  Pick up



59

Analogy Making Regularization

• Objective functions (Contrastive loss)

Visit A Pick up A

Visit B Pick up B

 unseen Pick up B

A B A B

Visit  Pick up

Visit  Pick up



60

Subtask Controller: Objective function

• Objective function 

– RL objective + Analogy making + Termination 

prediction objective

Observation

Subtask

arguments

Action

Termination?

Subtask

embedding

CNN

[Pick up, A]

RL Objective 

Binary classification

Analogy-making



61

Experimental Setting

• Observation: 3d first person environment with randomly generated 
objects 

• Actions: primitive actions

– Move NSWE

– Pick up NSWE

– Transform NSWE

– No operation

• Subtasks: “action” + “target object type”

– Visit X: should be on top of object type X

– Pick up X: perform “pick up” to object type X

– Transform X: perform “transform” to object type X

Only a subset of pairs of “action” + “object” is presented during training.

• Variations:

o Interact with X: interaction with objection can vary depending on target X

o Repeated actions: e.g., Pick up 3 X’s



62

Subtask Controller: Result

• Analogy making is crucial for generalization



63

Demo Video on Parameterized Tasks



64

Meta Controller Architecture

• Given 

– Observation

– Instructions

– Subtask termination

• Do

– Set subtask 

arguments

Observation Context

Subtask

arguments

Subtask

arguments

Retrieved 

instruction

Subtask

termination?

Instruction

memory

CNN Subtask

Updater

Update
Yes

No

Instructions

Input

Output

Recurrent



65

Meta Controller Architecture

• Retrieve one instruction 
from the list of instructions

• Choose subtask 
arguments

• The retrieved instruction 
and selected arguments 
are used as input for the 
next time-step (recurrence)

• Parameter prediction and 
analogy-making are 
applied.

Observation Context

Subtask

arguments

Subtask

arguments

Retrieved 

instruction

Subtask

termination?

Instruction

memory

CNN Subtask

Updater

Update
Yes

No

Instructions

Input

Output

Recurrent



66

Meta Controller: Instruction Memory

• Store all sentence embeddings into the instruction 

memory

• Maintain a pointer to a memory location

• Change the memory pointer through internal action: -1, 

0, +1

• Independent of 

– The number of instructions

– Compositions of instructions

Visit A

Pick up B

Pick up all C

Transform D

+1

0

-1

Retrieve



67

Observation Context

Subtask

arguments

Subtask

arguments

Retrieved 

instruction

Subtask

termination?

Instruction

memory

CNN Subtask

Updater

Update
Yes

No

Instructions

Meta Controller: Differentiable Temporal Abstraction

• Temporal abstraction allows for infrequent updates 
for subtask controller



68

Updating the sub-tasks dynamically



69

Experimental Setting
• Instructions: “action” + “target object type”

– Visit X: should be on top of object type X

– Pick up X: perform “pick up” to object type X

– Transform X: perform “transform” to object type X

– Pick up N X’s: pick up N objects with type X

– Transform N X’s: transform N objects with type X

• Only a subset of pairs of “action” + “object” is presented during training.



70

Experimental Setting

• Reward

– Default reward: -0.1 (time penalty)

– Visiting water: -0.3

– Transforming an enemy: +0.9

– Finishing all instructions: +1.0

• No intermediate reward

• Random event: 

– a box randomly appears with probability of 0:03

– transforming a box gives +0:9 reward



71

Evaluation of Meta Controller

• Training set: 4 seen instructions

• Test set: 20 seen or unseen instructions

Baselines:
• Flat: directly chooses primitive actions without using the parameterized skill. 

• Hierarchical-Long: meta controller can update the subtask only when the 
current subtask is finished. Similar to (Kulkarni et al., 2016; Tessler et al., 2016).

• Hierarchical-Short: meta controller updates the subtask at every time-step.



73

Summary

• Deep Reinforcement Learning can benefit from 
building models, memory and hierarchy

• Forward prediction: can be useful for better 
exploration and possibly planning

• Memory: handle partial observability. Relevant to 
robotic agents.

• Hierarchical RL: Temporal abstraction and analogy 
making is beneficial for multi-task generalization and 
instruction execution


