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Overview

• Deep RL with Forward Prediction

• Deep RL with Memory

• Deep RL with Hierarchy



3

• Motivation:
– Deep convolutional encoder-decoder architecture 

modulated by control actions

– End-to-end multi-step prediction

– Application to reinforcement learning (e.g., Atari games)

• Results:
– long-term video prediction (30-500 steps) for atari games

– Informed exploration: Faster learning and improved 
performance 

• Related work on video prediction
– [Ranzato et al., 2014], [Srivastava et al., 2015], [Mathieu et 

al, 2015], [Finn el al., 2016]

Action-conditional video prediction 
with Deep Architectures
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Action-conditional video prediction 
with Deep Architectures

● Convolutional Neural Networks (CNN) 
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Action-conditional video prediction 
with Deep Architectures

● CNN combined with Long short-term memory (LSTM)
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Freeway: 100 steps Predictions (LSTM)

Video: https://www.youtube.com/watch?v=4e-PqfpS8_4
More at: https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

https://www.youtube.com/watch?v=4e-PqfpS8_4
https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction
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Seaquest: Multi-Step Predictions

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction
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Space Invaders: Multi-Step Predictions

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction
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Ms Packman: Multi-Step Predictions

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction
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Informed Exploration
• Idea : choose an exploratory action that leads to a less-frequently-

visited frame

• Method : estimate visit-frequency by comparing predictive frames 

with previous frames

• Store the most recent d frames in a trajectory memory.

• The predictive model is used to get the next frame (𝒙(𝑎)) for 

every action.

• Estimate visit-frequency using Gaussian kernels.

• Choose an action that leads to the frame with the smallest visit-

frequency:
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Informed exploration with future predictions
• Idea: choose an exploratory action that leads to a 

less-frequently-visited frame

Average Game Score over 100 plays with DQN

Comparison on exploration methods

Video demo: https://www.youtube.com/watch?v=DLIWo16r5LA

(Oh et al., NIPS 2015)

https://www.youtube.com/watch?v=DLIWo16r5LA
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Using Predictions to Improve Exploration in DQN
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(18) Action Representations: Correlations for Seaquest
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Emergence of disentangling

Action factors Non-action factors

action

……
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Improving forward prediction with 
motion/content decomposition

Decomposing Motion and Content for Natural Video Sequence Prediction.
Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, Honglak Lee. ICLR 2017.



17

Experimental results
KTH dataset Weizmann dataset
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Experimental results
UCF-101 dataset
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Experimental results
UCF-101 dataset
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Experimental results
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Long-term future prediction with structures

Learning to Generate Long-term Future via Hierarchical Prediction.
Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, Xunyu Lin, Honglak Lee. Arxiv (coming soon)
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Experimental results

• End to end prediction (Penn Action dataset)
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Experimental results

• End to end prediction (Human 3.6M dataset)
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Experimental results

• Prediction when provided with GT landmarks
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Combining Active Perception (partial 

observation) and Memory

• Active Perception: Can the agent learn to use its 

perceptual actions to collect useful information in partially 

observable environments?

• Memory: Can the agent remember useful information in 

partially observable environments?

• Generalization: Can the agent generalize to unseen and/or 

larger environments given the same task?

 These are hard to examine in the existing benchmarks.

Control of Memory, Active Perception, and Action in Minecraft. 
J. Oh, V. Chockalingam, S. Singh, and H. Lee. ICML 2016.
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Minecraft domain

• Minecraft provides a rich environment for RL

– Flexible 3D environment (e.g., moving, collecting, building)

– We can define many tasks and control the level of tasks

– Deep partial observability due to the first-person-view 

observations

First-person-view 
observation

Top-down-view 
(not available to agent)

Indicator

Goal

Control of Memory, Active Perception, and Action in Minecraft. 
J. Oh, V. Chockalingam, S. Singh, and H. Lee. ICML 2016.

Related work: Cognitive Mapping and Planning for Visual Navigation. Saurabh Gupta, James 
Davidson, Sergey Levine, Rahul Sukthankar, Jitendra Malik, CVPR 2017

[ICML 2016]
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Overview of architectures

New memory based architectures

Related work: 
Weston, J., Chopra, S., & Bordes, A. Memory networks. ICLR 2015.
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I-Maze: Task Description

• The indicator has an equal 
chance to be green or yellow.
– Green indicator: Blue gives +1

– Yellow indicator: Red gives +1

• Fixed sizes of maps ({5,7,9}) are 
given during training.

• Q) Can the agent generalize to 
unseen sizes of maps?

Size
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Why context-dependent memory retrieval?

• The importance of a past event depends on the 

current context. 

• ex) the color of the indicator (yellow) is important only 

when the agent finds a goal block (blue/red) and 

decides whether to visit it or not. 

Time

Indicator

Important
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Why context-dependent memory retrieval?

• The importance of a past event depends on the 
current context. 

• ex) the color of the indicator (yellow) is important 
only when the agent finds a goal block (blue/red) 
and decides whether to visit it or not. 

Time

Indicator

Not important
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I-Maze: Result

• All architectures perform well on the training set of 
maps.

• Our architectures generalize better to larger I-mazes 
than DQN and DRQN architectures.
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I-Maze: Memory Retrieval Visualization

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
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I-Maze: Memory Retrieval Visualization

• Our agent (FRMQN) looks at the indicator.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Memory attention drawn to past observations
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I-Maze: Memory Retrieval Visualization

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Memory attention drawn to past observations

• Our agent (FRMQN) looks at the indicator.
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I-Maze: Memory Retrieval Visualization

• Our agent goes to the end of the corridor.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
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I-Maze: Memory Retrieval Visualization

• Our agent goes to the end of the corridor.

 It does not sharply retrieve to the indicator along 
the way.
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
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I-Maze: Memory Retrieval Visualization

• Our agent sharply retrieves the indicator 
information only when it has to decide which way 
to go at the end of the corridor.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
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I-Maze: Demo
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Pattern Matching: Task Description

• There are two 3x3 rooms with color patterns 

that have an equal chance to be identical or 

different.

– If two patterns are identical: Blue gives +1

– Otherwise: Red gives +1

• A subset of visual patterns is given during 

training.

• Q) Can the agent generalize to unseen 

visual patterns?
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Pattern Matching: Result

• DQN/DRQN/RMQN tend to learn a sub-optimal policy that goes 
to any goal blocks regardless of visual patterns.

• Although MQN performs well on the training maps, it fails to 
generalize to unseen visual patterns.

• FRMQN generalizes better to unseen maps across different runs.
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Pattern Matching: Demo
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Random Maze: Task Description

• Single Goal

– Blue gives +1, Red gives -1

• Sequential Goals

– Red  Blue

• Single Goal with Indicator

– Green indicator: Blue gives +1

– Yellow indicator: Red gives +1

• Sequential Goals with Indicator

– Green indicator: Red  Blue 

– Yellow indicator: Blue  Red

Random maze 
without indicator

Random maze 
with indicator
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Random Maze: Result

• RMQN and FRMQN perform better than the 
other architectures on most of the tasks and 
maps.
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Random Maze: Result

• RMQN and FRMQN perform better than the other 
architectures on most of the tasks and maps.

• The performance gap is larger on unseen sets of maps.

Training maps Unseen maps Unseen/Larger maps
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Random Maze: Demo
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Hierarchical Deep RL for task generalization

• Following unseen sequence composition of instructions

• Executing unseen tasks (action/object combination)

• Needs to deal with interruptions (random events), long 
delayed reward
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Training set of tasks Unseen tasks

Types of generalizations:
1) Unseen instructions

Go to A

Go to B

Pick up B

Pick up C

Go to C

Pick up A

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).
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Types of generalizations: 
2) Unseen/Longer sequences of instructions

Go to A
Go to B
Go to A

Pick up C
Go to B
Pick up B

Go to B
Go to A
Go to B

Unseen tasksTraining set of tasks

Go to B
Go to A
Go to B
Pick up B
Go to A
Pick up C
…

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).



50

Longer sequences of unseen instructions

Go to A
Go to B
Go to A

Pick up C
Go to B
Pick up B

Go to C
Pick up A
Go to D
Pick up D
Go to E
Pick up E
…

Unseen tasksTraining set of tasks

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).
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Challenges

• Solving unseen instruction itself is a hard problem.

• Deciding when to move on to the next instruction.

– The agent is not given which instruction to execute.

– Should keep track of which instruction to solve.

– Should detect when the current instruction is finished.

• Dealing with random events.

• Dealing with unbounded number of instructions.

• Delayed reward

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).
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Related works

• Hierarchical RL 

– Sutton, Precup, and Singh (1999); Dietterich
(2000); Parr and Russell (1997); Bacon and Precup
(2015); Kulkarni et al. (2016); etc.

• Task generalization

– Schaul et al. (2015)

• Instruction execution

– Tellex et al. (2011; 2014); MacMahon et al. (2006); 
Chen and Mooney (2011); Mei et al. (2015)
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Architecture Overview

• Subtask controller: 1) execute primitive actions 

given a subtask and 2) predict whether the 

current subtask is finished or not.

Meta 

Controller

Subtask 

Controller

ObservationInstructions

Arg 1

Arg n

Subtask

Action

Termination?

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).



54

Architecture Overview

• Subtask controller: 1) execute primitive actions 

given a subtask and 2) predict whether the 

current subtask is finished or not.

• Meta controller: set subtasks given a list of 

instructions

Meta 

Controller

Subtask 

Controller

ObservationInstructions

Arg 1

Arg n

Subtask

Action

Termination?

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).
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Subtask Space

• A subtask is decomposed into several 

arguments.

• This serves as a communication protocol 

between two controllers.

Meta 

Controller

Subtask 

Controller

ObservationInstructions

Arg n

Subtask

Action

Termination?

Arg 1

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).
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Architecture Overview

• Subtask controller: 1) execute primitive actions 

given a subtask and 2) predict whether the 

current subtask is finished or not.

Meta 

Controller

Subtask 

Controller

ObservationInstructions

Arg 1

Arg n

Subtask

Action

Termination?

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with 
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).
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Analogy Making Regularization

• Idea: learn a low-dimensional manifold that 

captures the correspondences between similar 

subtasks.

– Visit A : Visit B :: Pick up A : Pick up B

– Visit A : Visit C != Pick up A : Pick up B

Visit A Pick up A

Visit B Pick up B

 unseen Pick up B

A B A B

Visit  Pick up

Visit  Pick up
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Analogy Making Regularization

• Constraints

Visit A Pick up A

Visit B Pick up B

 unseen Pick up B

A B A B

Visit  Pick up

Visit  Pick up
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Analogy Making Regularization

• Objective functions (Contrastive loss)

Visit A Pick up A

Visit B Pick up B

 unseen Pick up B

A B A B

Visit  Pick up

Visit  Pick up
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Subtask Controller: Objective function

• Objective function 

– RL objective + Analogy making + Termination 

prediction objective

Observation

Subtask

arguments

Action

Termination?

Subtask

embedding

CNN

[Pick up, A]

RL Objective 

Binary classification

Analogy-making
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Experimental Setting

• Observation: 3d first person environment with randomly generated 
objects 

• Actions: primitive actions

– Move NSWE

– Pick up NSWE

– Transform NSWE

– No operation

• Subtasks: “action” + “target object type”

– Visit X: should be on top of object type X

– Pick up X: perform “pick up” to object type X

– Transform X: perform “transform” to object type X

Only a subset of pairs of “action” + “object” is presented during training.

• Variations:

o Interact with X: interaction with objection can vary depending on target X

o Repeated actions: e.g., Pick up 3 X’s
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Subtask Controller: Result

• Analogy making is crucial for generalization
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Demo Video on Parameterized Tasks
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Meta Controller Architecture

• Given 

– Observation

– Instructions

– Subtask termination

• Do

– Set subtask 

arguments

Observation Context

Subtask

arguments

Subtask

arguments

Retrieved 

instruction

Subtask

termination?

Instruction

memory

CNN Subtask

Updater

Update
Yes

No

Instructions

Input

Output

Recurrent
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Meta Controller Architecture

• Retrieve one instruction 
from the list of instructions

• Choose subtask 
arguments

• The retrieved instruction 
and selected arguments 
are used as input for the 
next time-step (recurrence)

• Parameter prediction and 
analogy-making are 
applied.

Observation Context

Subtask

arguments

Subtask

arguments

Retrieved 

instruction

Subtask

termination?

Instruction

memory

CNN Subtask

Updater

Update
Yes

No

Instructions

Input

Output

Recurrent
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Meta Controller: Instruction Memory

• Store all sentence embeddings into the instruction 

memory

• Maintain a pointer to a memory location

• Change the memory pointer through internal action: -1, 

0, +1

• Independent of 

– The number of instructions

– Compositions of instructions

Visit A

Pick up B

Pick up all C

Transform D

+1

0

-1

Retrieve
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Observation Context

Subtask

arguments

Subtask

arguments

Retrieved 

instruction

Subtask

termination?

Instruction

memory

CNN Subtask

Updater

Update
Yes

No

Instructions

Meta Controller: Differentiable Temporal Abstraction

• Temporal abstraction allows for infrequent updates 
for subtask controller



68

Updating the sub-tasks dynamically
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Experimental Setting
• Instructions: “action” + “target object type”

– Visit X: should be on top of object type X

– Pick up X: perform “pick up” to object type X

– Transform X: perform “transform” to object type X

– Pick up N X’s: pick up N objects with type X

– Transform N X’s: transform N objects with type X

• Only a subset of pairs of “action” + “object” is presented during training.
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Experimental Setting

• Reward

– Default reward: -0.1 (time penalty)

– Visiting water: -0.3

– Transforming an enemy: +0.9

– Finishing all instructions: +1.0

• No intermediate reward

• Random event: 

– a box randomly appears with probability of 0:03

– transforming a box gives +0:9 reward
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Evaluation of Meta Controller

• Training set: 4 seen instructions

• Test set: 20 seen or unseen instructions

Baselines:
• Flat: directly chooses primitive actions without using the parameterized skill. 

• Hierarchical-Long: meta controller can update the subtask only when the 
current subtask is finished. Similar to (Kulkarni et al., 2016; Tessler et al., 2016).

• Hierarchical-Short: meta controller updates the subtask at every time-step.
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Summary

• Deep Reinforcement Learning can benefit from 
building models, memory and hierarchy

• Forward prediction: can be useful for better 
exploration and possibly planning

• Memory: handle partial observability. Relevant to 
robotic agents.

• Hierarchical RL: Temporal abstraction and analogy 
making is beneficial for multi-task generalization and 
instruction execution


