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Overview

* Deep RL with Forward Prediction

* Deep RL with Memory

* Deep RL with Hierarchy



Action-conditional video prediction
with Deep Architectures

* Motivation:

— Deep convolutional encoder-decoder architecture
modulated by control actions

— End-to-end multi-step prediction
— Application to reinforcement learning (e.g., Atari games)

e Results:
— long-term video prediction (30-500 steps) for atari games

— Informed exploration: Faster learning and improved
performance

* Related work on video prediction

— [Ranzato et al., 2014], [Srivastava et al., 2015], [Mathieu et
al, 2015], [Finn el al., 2016]



Action-conditional video prediction
with Deep Architectures

e Convolutional Neural Networks (CNN)
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Action-conditional video prediction
with Deep Architectures

® CNN combined with Long short-term memory (LSTM)
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Freeway: 100 steps Predictions (LSTM)

More at: https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction 7


https://www.youtube.com/watch?v=4e-PqfpS8_4
https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

Seaquest: Multi-Step Predictions



https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

Space Invaders: Multi-Step Predictions



https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

Ms Packman: Multi-Step Predictions

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction



https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

Informed Exploration

* Idea: choose an exploratory action that leads to a less-frequently-
visited frame

 Method : estimate visit-frequency by comparing predictive frames
with previous frames

Store the most recent d frames in a trajectory memory.

The predictive model is used to get the next frame (x(®) for
every action.

Estimate visit-frequency using Gaussian kernels.

d

np(x@) =) "k(x®,x);  k(x,y) = exp(— Z min(max((z; — y;)% — §,0),1)/0)

=1 J

Choose an action that leads to the frame with the smallest visit-
frequency: argmin_ np (X(a))
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Informed exploration with future predictions

* ldea: choose an exploratory action that leads to a
less-frequently-visited frame (Oh et al., NIPS 2015)

Model Seaquest  S. Invaders Freeway QBert Ms Pacman

DQN - Random exploration 13119 (538) 698 (20) 30.9 (0.2) 3876 (106) 2281 (53)
DON - Informed exploration 13265 (577) 681 (23) 32.2(0.2) 8238 (498) 2522 (57)

Average Game Score over 100 plays with DQN

e 40 =] a0 1a0 120 140 1e0 2 4 Bl a0 1w 12 140 L=

(a) Random (b) Informed
Comparison on exploration methods
Video demo: https://www.youtube.com/watch?v=DLIW0o16r5LA 12



https://www.youtube.com/watch?v=DLIWo16r5LA

Using Predictions to Improve Exploration in DQN




(18) Action Representations: Correlations for Seaquest
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Emergence of disentangling
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Improving forward prediction with
motion/content decomposition

Motion Encoder Motion Encoder
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mm ----- m mm _____ m .. Multi-scale Q=De°°nv
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Decoder Decoder
\
Content Encoder[l Content Encoder[J Multi-scale
Content Residual
(a) Base MCnet (b) MCnet with Multi-scale Motion-Content Residuals

Decomposing Motion and Content for Natural Video Sequence Prediction.

Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, Honglak Lee. ICLR 2017. 6



Experimental results

KTH dataset Weizmann dataset

Gruund truth Mﬂnet EunvLSTM
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Experimental results

UCF-101 dataset
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Experimental results
UCF-101 dataset

Ground-—truth ConvLSTM Mathieu et al
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Experimental results
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Figure 4: Quantitative comparison between our model, convolutional LSTM Shi et al. (2015), and
Mathieu et al. (2015). Given 4 input frames, the models predict 8 frames recursively, one by one.



Long-term future prediction with structures

Pose
Estimation

Image
Generation

Learning to Generate Long-term Future via Hierarchical Prediction.
Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, Xunyu Lin, Honglak Lee. Arxiv (coming soon)
21



Experimental results

* End to end prediction (Penn Action dataset)

0150 bazeball swing 0]50_bhazsebhall pitch
ConvL3TM Optical flow ! ConvL3TM Optical flow
t=1 t=1 t=1 t=1

1950 tenni=_ farsehand 0819 galf swing
ConvL3TM Optical flow ar: ConvLETM Opticel flow
t=1 t=1 1 t=1 _ t=1
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Experimental results

 End to end prediction (Human 3.6M dataset)

H11_Wealking §11_Posing.58011271

LA e
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t=1 t=1 t=1
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Experimental results

* Prediction when provided with GT landmarks

WalkTogether Walking

4

GI oundtruth OBI‘S G ri)

undtruth Ollrs
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Combining Active Perception (partial
observation) and Memory

« Active Perception: Can the agent learn to use its

perceptual actions to collect useful information in partially
observable environments?

« Memory: Can the agent remember useful information in
partially observable environments?

« Generalization: Can the agent generalize to unseen and/or
larger environments given the same task?

- These are hard to examine in the existing benchmarks.

Control of Memory, Active Perception, and Action in Minecraft.
J. Oh, V. Chockalingam, S. Singh, and H. Lee. ICML 2016.

25



Minecraft domain

« Minecraft provides a rich environment for RL [ICML 2016]
— Flexible 3D environment (e.g., moving, collecting, building)
— We can define many tasks and control the level of tasks

— Deep partial observability due to the first-person-view
observations

a Indicator

FIMELCRAE Y

Goal
First-person-view Top-down-view

observation (not available to agent)

Control of Memory, Active Perception, and Action in Minecraft.
J. Oh, V. Chockalingam, S. Singh, and H. Lee. ICML 2016.

Related work: Cognitive Mapping and Planning for Visual Navigation. Saurabh Gupta, James
Davidson, Sergey Levine, Rahul Sukthankar, Jitendra Malik, CVPR 2017 26



Overview of architectures
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New memory based architectures

Related work:

Weston, J., Chopra, S., & Bordes, A. Memory networks. ICLR 2015.
27



I-Maze: Task Description

* The indicator has an equal
chance to be green or yellow.

— Green indicator: Blue gives +1
— Yellow indicator: Red gives +1

 Fixed sizes of maps ({5,7,9}) are
given during training.

« Q) Can the agent generalize to
unseen sizes of maps”?

Size

28



Why context-dependent memory retrieval?

The importance of a past event depends on the
current context.

ex) the color of the indicator ( ) IS iImportant only
when the agent finds a goal block (blue/red) and
decides whether to visit it or not.

Ve
I E

l Important

» Time
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Why context-dependent memory retrieval?

 The importance of a past event depends on the
current context.

« eX) the color of the indicator ( ) IS iImportant

only when the agent finds a goal block (blue/red)
and decides whether to visit It or not.

Not important

» Time

Indicator
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I-Maze: Result

S1ZE | TRAIN DQN DRQN MQN RMQN FRMQN
4 92.1(1.5) 94.8(1.5) 87.2(2.3) 89.2(2.4) 96.9(1.0)
5 v 99.3(0.5) 98.2(1.1) 96.2(1.0) 98.6(0.5) 99.3(0.7)
6 99.4(0.4) 98.2(1.0) 96.0(1.0) 99.0(0.4) 99.7(0.3)
7 v 99.6(0.3) 98.8(0.8) 98.0(0.6) 98.8(0.5) 100.0(0.0)
8 99.3(0.4) 98.3(0.8) 98.3(0.5) 98.0(0.8) 100.0(0.0)
9 v 99.0(0.5) 98.4(0.6) 98.0(0.7) 94.6(1.8) 100.0(0.0)
10 96.5(0.7) 97.4(1.1) 98.2(0.7) 87.5(2.6) 99.6(0.3)
15 50.7(0.9) 83.3(3.2) 96.7(1.3) 89.8(2.4) 97.4(1.1)
20 48.3(1.0) 63.6(3.7) 97.2(0.9) 96.3(1.2) 98.8(0.5)
25 48.1(1.0) 57.6(3.7) 98.2(0.7) 90.3(2.5) 98.4(0.6)
30 48.6(1.0) 60.5(3.6) 97.9(0.9) 87.1(2.4) 98.1(0.6)
35 49.5(1.2) 59.0(3.4) 95.0(1.1) 84.0(3.2) 94.8(1.2)
40 46.6(1.2) 59.2(3.6) 77.2(4.2) 71.3(5.0) 89.0(2.6)

Success Rate

100
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80 |
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60 |

90 |

40

——DQN

—-»-DRQN
MQN
——RMQN
—»—FRMQN
10 20 30 40
Size

e All architectures perform well on the training set of

maps.

* QOur architectures generalize better to larger I-mazes
than DQN and DRQN architectures.
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I-Maze: Memory Retrieval Visualization

Time 1

32



I-Maze: Memory Retrieval Visualization

* Our agent (FRMQN) looks at the indicator.

Time 1 2

_I-> Memory attention drawn to past observations
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I-Maze: Memory Retrieval Visualization

* Our agent (FRMQN) looks at the indicator.

Time _ 1 2 3

WN

= Memory attention drawn to past observations
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I-Maze: Memory Retrieval Visualization

* Our agent goes to the end of the corridor.

aoaounphwWwnN
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I-Maze: Memory Retrieval Visualization

* Our agent goes to the end of the corridor.

— It does not sharply retrieve to the indicator along
the way.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CooNOOTUA~AWN
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I-Maze: Memory Retrieval Visualization

* Our agent sharply retrieves the indicator
information only when it has to decide which way
to go at the end of the corridor.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 _

RPRE R
ro ooV NOURWN
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I-Maze: Demo

38



Pattern Matching: Task Description

There are two 3x3 rooms with color patterns
that have an equal chance to be identical or
different.

— If two patterns are identical: Blue gives +1
— Otherwise: Red gives +1

A subset of visual patterns is given during
training.

Q) Can the agent generalize to unseen
visual patterns?

39



Pattern Matching: Result

TRAIN UNSEEN
DQN 62.9% (+3.4%) 60.1% (£2.8%)
DRQN 49.7% (£0.2%) 49.2% (£0.2%)
MQN 99.0% (+0.2%) 69.3% (+1.5%)
RMQN 82.5% (£2.5%) 62.3% (£1.5%)
FRMQN | 100.0% (+0.0%) | 91.8% (+1.0%)

DQN/DRQN/RMQN tend to learn a sub-optimal policy that goes
to any goal blocks regardless of visual patterns.

Although MQN performs well on the training maps, it fails to
generalize to unseen visual patterns.

FRMQN generalizes better to unseen maps across different runs.

40



Pattern Matching: Demo

41



Random Maze: Task Description

Single Goal
— Blue gives +1, Red gives -1

_ EENEEN
Sequential Goals m
— Red = Blue H
]
]
. . . -
Single Goal with Indicator .“=.E. u
. . . |

— Green indicator: Blue gives +1 EEE
- indicator: Red gives +1 Random maze Random maze
without indicator with indicator

Sequential Goals with Indicator
— Green indicator: Red = Blue
— indicator: Blue = Red

42



Random Maze: Result

TASK TYPE SIZE| DQN DRQN MQN RMQN FRMQN
SINGLE |TRAIN 4-8 1 0.31 0.45 0.01 0.49 0.46
UNSEEN |4-8| 0.22 0.23 0.02 0.30 0.26
UNSEEN-L|9-14| -0.28 —0.40 —0.63 -0.28 -0.28
SEQ TRAIN 5-71—0.60 —0.08 —0.48 0.21 0.22
UNSEEN | 5-7 |[—0.66 —0.54 —0.59 -0.13 -0.18
UNSEEN-L|8-10|—0.82 —0.89 —0.77 -0.43 -0.42
SINGLE+I|TRAIN 5-71—0.04 0.23 0.11 0.34 0.24
UNSEEN | 5-7 |—0.41 —0.46 —0.46 -0.27 -0.23
UNSEEN-L|8-10({—0.74 —0.98 —0.66 -0.39 -0.43
SEQ+I] TRAIN 4-6 |[—0.13 0.25 —0.07 0.37 0.48
UNSEEN | 4-6 [—0.58 —0.65 —0.71 -0.32 -0.28
UNSEEN-L| 7-9 |—0.95 —1.14 —1.04 -0.60 -0.54

e RMQN and FRMQN perform better than the
other architectures on most of the tasks and
maps.



Random Maze: Result
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* RMQN and FRMQN perform better than the other
architectures on most of the tasks and maps.

 The performance gap is larger on unseen sets of maps.



Random Maze: Demo




Hierarchical Deep RL for task generalization

* Following unseen sequence composition of instructions
* Executing unseen tasks (action/object combination)

* Needs to deal with interruptions (random events), long
delayed reward

Training

1. Visit pig

2. Pick up 3 sheep

3. Transform greenbot
4. Pick up horse

Testing
/

1. Pick up pig
2. Visit sheep
] = ()] | 3. Transform cat

] ] 4. Transform 3 sheep
E-d Ed 5. Pick up greenbot
6. Pick up 2 pig
7. Transform 2 sheep
8. Transform 2 cat

First-person-view
(Observation)

.

El
£l
£l
£l

Top-down-view
(Not available)
E]
El
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Types of generalizations:
1) Unseen instructions

Pick up B

Pick up C

Training set of tasks Unseen tasks

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon). 48



Types of generalizations:
2) Unseen/Longer sequences of instructions

GotoB

|

Goto A
GotoB SPEOBB
ick u
Pick up C > GotoA Gotoi

Pick up C

Pick up B

Training set of tasks Unseen tasks

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon). 49



Longer sequences of unseen instructions

|

Pick up C
GotoB
Pick up B

Training set of tasks Unseen tasks

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon). 50



Challenges

Deciding when to move on to the next instruction.
— The agent is not given which instruction to execute.
— Should keep track of which instruction to solve.

— Should detect when the current instruction is finished.

« Dealing with random events.
« Dealing with unbounded number of instructions.
* Delayed reward

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).

Solving unseen instruction itself is a hard problem.

51



Related works

 Hierarchical RL

— Sutton, Precup, and Singh (1999); Dietterich
(2000); Parr and Russell (1997); Bacon and Precup
(2015); Kulkarni et al. (2016); etc.

* Task generalization
— Schaul et al. (2015)

* |nstruction execution

— Tellex et al. (2011; 2014); MacMahon et al. (2006);
Chen and Mooney (2011); Mei et al. (2015)
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Architecture Overview

« Subtask controller: 1) execute primitive actions

given a subtask and 2)

predict whether the

current subtask is finished or not.

Action
A
i Termination? |«
Subtask
\ 4
Arg 1
Meta g Subtask
Controller Controller
Arg n
A A
Instructions Observation

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon). 53



Architecture Overview

« Subtask controller: 1) execute primitive actions
given a subtask and 2) predict whether the
current subtask is finished or not.

« Meta controller: set subtasks given a list of

Instructions

Action
A

| Termination? |

A 4

Meta lﬂl_l
ntroller
Controlle |Ar_gn|

Sub

Controller

task

A

______

Instructions Observation

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with

Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).
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Subtask Space

« A subtask is decomposed into several

arguments.

* This serves as a communication protocol
between two controllers.

| Termination? |
1

Action
A

il Subtask
Meta Iﬂl_,
Il
Controller ITQHI

Subtask
Controller

A

______

Instructions

Observation

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with

Multi-Task Deep Reinforcement Learning. Arxiv (coming soon).
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Architecture Overview

« Subtask controller: 1) execute primitive actions

given a subtask and 2)

predict whether the

current subtask is finished or not.

Action
A
i Termination? |«
Subtask
\ 4
Arg 1
Meta g Subtask
Controller Controller
Arg n
A A
Instructions Observation

Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli. Zero-Shot Task Generalization with
Multi-Task Deep Reinforcement Learning. Arxiv (coming soon). 56



Analogy Making Regularization

 |dea: learn a low-dimensional manifold that
captures the correspondences between similar
subtasks.

— Visit A: Visit B :: Pick up A : Pick up B
— Visit A: Visit C !'= Pick up A: Pick up B

Visit A

A->B

v

Visit B

Visit = Pick up

Visit = Pick up

Pick up A

A->B

J

Pick up B

- unseen

p(g;)

g B

Pick up B
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Analogy Making Regularization

 Constraints

o (84) —p(8r) — v (8c) + v (gp)ll =0 ifgs:8p 808D
| (84) — v (85) — (8c) + ¢ (8p)|l = Tais ifg,:85 78 8p
| (8a) — ¢ (&)l = Taisy ifgy # 8p
— Visit = Pick up :
Visit A Pick up A Cﬂ(gt)
A> B A> B
. Visit = Pick up Y ggl) g1(§2)
Visit B Pick up B
- unseen Pick up B
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Analogy Making Regularization

* Objective functions (Contrastive loss)

Lsim = E(gA,gB,gG,gD)NQSim [H‘P (84) — »(gB) — (8c) + ¥ (8p) ||2:|
Lais = Bg, g5.80.80)~Gais [maX (0,7ais — o (84) — ¢ (88) — (8c) + ¢ (8D) ”)2}

Laiss = Big gm)~uss |ma% (0, 7aig7 — [ (84) — @ (25) )]

Visit A

A->B

Visit B

Visit = Pick up

Visit = Pick up

Pick up A

A->B

Pick up B

- unseen

p(g;)

g B

Pick up B
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Subtask Controller: Objective function

* Objective function

— RL objective + Analogy making + Termination
prediction objective

a

CNN —'I Action |« RL Objective
A

Termination? | Binary classification

Observation

Subtask | | Subtask By
arguments embedding

[Pick up, A] 1

Analogy-}na king




Experimental Setting

Observation: 3d first person environment with randomly generated
objects

Actions: primitive actions

— Move NSWE

— Pick up NSWE

— Transform NSWE

— No operation
Subtasks: “action” + “target object type”

— Visit X: should be on top of object type X

— Pick up X: perform “pick up” to object type X

— Transform X: perform “transform” to object type X

e Variations:
o Interact with X: interaction with objection can vary depending on target X

o Repeated actions: e.g., Pick up 3 X’s

Only a subset of pairs of “action” + “object” is presented during training. 1



Subtask Controller: Result

* Analogy making is crucial for generalization

Scenario Analogy Train Unseen
Object-dependent f; gg Egg;;ﬁg 0’530( g%)??‘;ﬁ))
Inter/Extrapolation f; :g; Eg;;ﬁ; :i; Egjg%

Table 1: Performance on parameterized tasks. Each entry shows
‘Average reward (Success rate)’. We assume an episode is suc-
cessful only if the agent successtully finishes the task and its ter-
mination predictions are correct throughout the whole episode.
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Demo Video on Parameterized Tasks




Meta Controller Architecture

Given
— Observation
— Instructions

— Subtask termination

Do

— Set subtask
arguments

Instructions

A

Observation

CNN
1 Context |

Instruction

memory

[ 2

Retrieved
instruction

Ct

Subtask
arguments

Subtask
termination?

_.I

Subtask | Subtask
Updater arguments
'y

. Yes
Update
No B < 8t 1
Input
Output
Recurrent
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Meta Controller Architecture

Retrieve one instruction
from the list of instructions

Choose subtask
arguments

The retrieved instruction
and selected arguments
are used as input for the
next time-step (recurrence)

Parameter prediction and
analogy-making are
applied.

Instructions

Observation

Retrieved
instruction

Subtask
arguments

Subtask
termination?

Context

v

Instruction
memory

g

Subtask
Updater

Subtask
arguments

€S

Update

No g < 81

Input

Output

Recurrent
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Meta Controller: Instruction Memory

Store all sentence embeddings into the instruction
memory

Maintain a pointer to a memory location

Change the memory pointer through internal action: -1,
0, +1

Pi—1 DP: M

Independent of 14 —
. . 1 Visit A
— The number of instructions 0 . |[pickwp |
— Compositions of instructions -1 M e —
Transform D
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Meta Controller: Differentiable Temporal Abstraction

 Temporal abstraction allows for infrequent updates

for subtask controller

Instructions

Observation

Retrieved
instruction

Subtask
arguments

Subtask
termination?

| Instruction

memory

=

Subtask |

Updater

_.|

Subtask
arguments

Yes I

No

g < 81 ‘
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Updating the sub-tasks dynamically

Update Update
8 Subtask Subtask

C_O l#-‘\ /#-‘\ 0 f"-‘\
p,r,h i "“‘ -

xh, \ﬁ(

Copy Copy Copy
X (5 CB

Figure 5: Unrolled illustration of the meta controller with a
learned time-scale. The internal states (p,r, h) and the subtask
(g) are updated only when ¢ = 1. If ¢ = 0, the meta controller
continues the previous subtask without updating its internal states.

™\ <.~ Update
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Experimental Setting

* Instructions: “action” + “target object type”
— Visit X: should be on top of object type X
— Pick up X: perform “pick up” to object type X
— Transform X: perform “transform” to object type X
— Pick up N X’s: pick up N objects with type X
— Transform N X’s: transform N objects with type X

* Only a subset of pairs of “action” + “object” is presented during training.

Training

(1. Visit pig

2. Pick up 3 sheep

3. Transform greenbot
L 4. Pick up horse

First-person-view
(Observation)

Testing
[1. Pick up pig )
---------- e 2. Visit Sheep

S| 3. Transform cat

A0
oo [ B 4. Transform 3 sheep
I 5. Pick up greenbot
CN 6. Pick up 2 pig
2 =
e 7. Transform 2 sheep
Re)
§ z 1 8. Transform 2 cat
F\C /
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Experimental Setting

Reward

— Default reward: -0.1 (time penalty)
— Visiting water: -0.3

— Transforming an enemy: +0.9

— Finishing all instructions: +1.0

* No intermediate reward

Random event:
— a box randomly appears with probability of 0:03

— transforming a box gives +0:9 reward
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Evaluation of Meta Controller

* Training set: 4 seen instructions

 Test set: 20 seen or unseen instructions

Train

Test (Seen)

Test (Unseen)

Length of instructions 4

20

20

Flat| <7.1 (1%)
Hierarchical-Long |-5.8 (31%)
Hierarchical-Short |-3.3 (83%)

Hierarchical-Dynamic |-3.1 (95%)

63.6 (0%)
-59.2 (0%)
-53.4 (23%)
-30.3 (75%)

62.0 (0%)
-59.2 (0%)
-53.6 (18%)
-38.0 (56%)

Baselines:
Flat: directly chooses primitive actions without using the parameterized skill.

Hierarchical-Long: meta controller can update the subtask only when the
current subtask is finished. Similar to (Kulkarni et al., 2016; Tessler et al., 2016).

Hierarchical-Short: meta controller updates the subtask at every time-step.
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Summary

Deep Reinforcement Learning can benefit from
building models, memory and hierarchy

Forward prediction: can be useful for better
exploration and possibly planning

Memory: handle partial observability. Relevant to
robotic agents.

Hierarchical RL: Temporal abstraction and analogy
making is beneficial for multi-task generalization and
instruction execution
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