[Deep] Transfer in Reinforcement Learning April 3, 2017

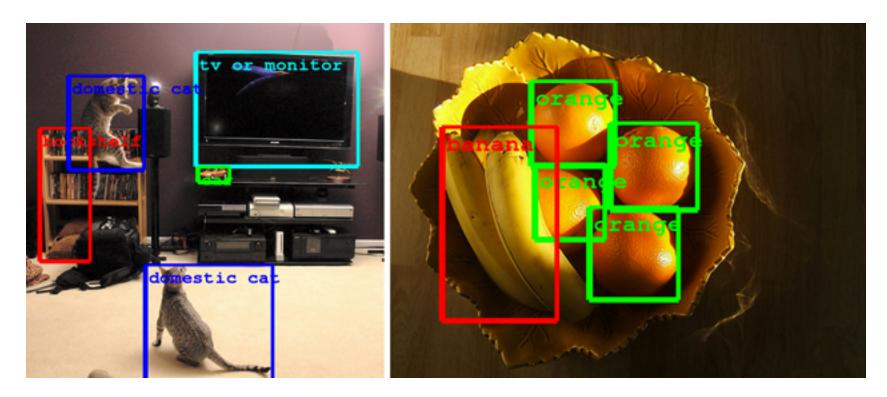
Chelsea Finn

Course Reminders: March 22nd: Project group & title due April 17th: Milestone report due & milestone presentations April 26th: Beginning of project presentations

Starting Wednesday: guest lectures

Deep Learning Success Stories

speech recognition



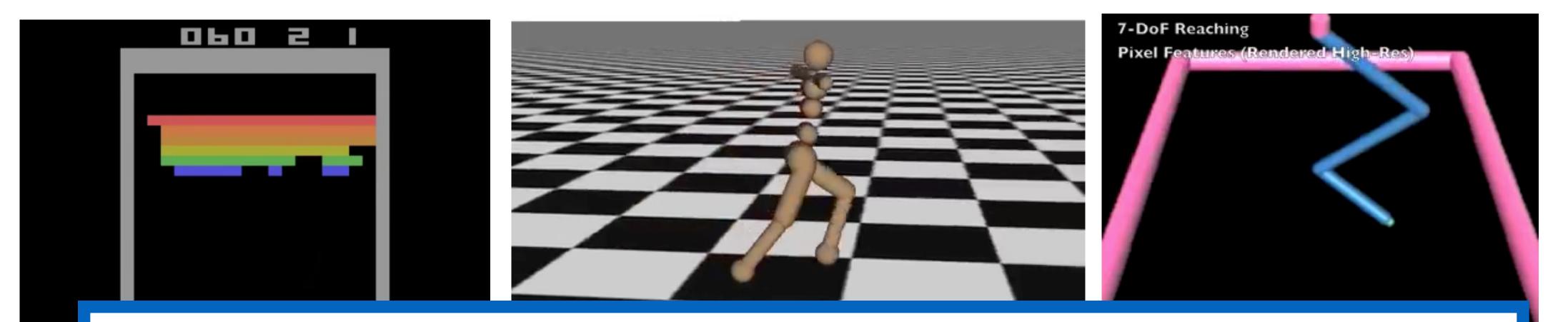
object detection

This course: deep learning for behavior

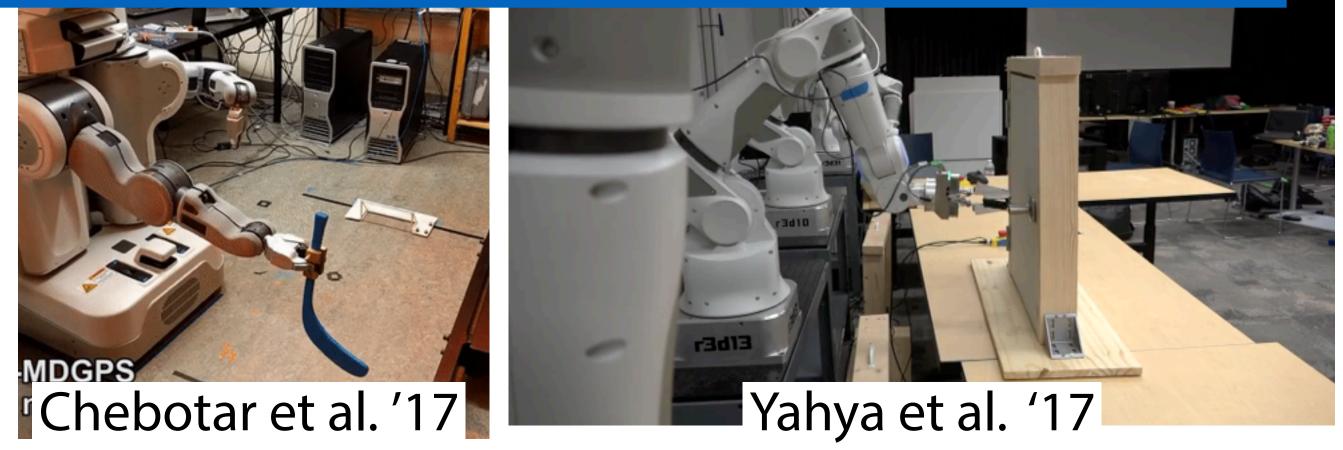
Hell尔好 machine translation

+ can handle raw sensory observations + scales to diversity of the real-world

Deep Reinforcement Learning



train/test on 1 task in 1 environment, starting from scratch



Why Transfer?

Don't start from scratch every time. Use cheap experience in simulation for learning real-world skills.

- Enable agent to effectively act in an environment it hasn't seen before.

What is Transfer?

this lecture:

transfer learning: using experience from one set of tasks for faster learning and/or better performance on a new task

A broad notion of "task":

- varying objectives (reward)
- varying robots (can affect state, action, and dynamics)
- varying environments (can affect observation space, dynamics, reward)

Often make assumptions about what will change across tasks.

- many definitions

- **Note:** can treat whole world as a single MDP (and not worry about transfer) *but* usually more efficient to model how the world changes

What is Transfer?

transfer learning: using experience from one set of tasks for faster learning and/or better performance on a <u>new task</u>

Some terminology...

0-shot generalization: don't use any data from target domain

faster learning: use less data than training from scratch

- <u>source domain(s)</u> -> <u>target domain</u>
- few-shot generalization: use small amount of data from target domain

Evaluating Transfer

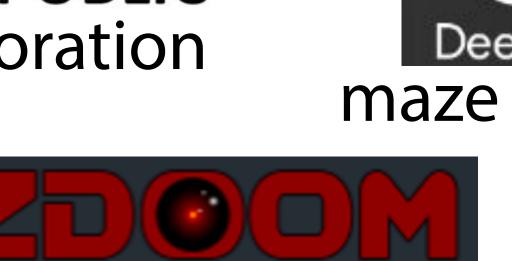
(Though, because these are well-known, people have used the environments to evaluate methods for transfer.)

- How should we evaluate how well learning transfers?
 - For real robots: largely ad-hoc
- Popular simulated benchmarks with no generalization evaluation

Brockman et al. '16

Evaluating Transfer

PROJECT MALMO PUBLIC navigation, collaboration



DOOM video game

not yet released: Starcraft II (DeepMind)

- How should we evaluate how well learning transfers?
- Some recently proposed environments with diversity:

wide range of video games

CommAl-env communication-based tasks

generally, no consensus on how to evaluate

Approach 0: Try it, and hope for the best

Failure Modes

Sometimes, a policy trained in one domain will generalize in others but no reason for it to succeed with enough variation



Approach 0.5: Fine-tuning

Initialize with a policy trained on source task(s) and fine-tune on target task works well with ImageNet pre-training, doesn't seem to work well for RL*

Some potential reasons as for why:

- We don't have ImageNet for behavior
- RL networks tend to be much smaller than vision networks
- RL algorithms are unstable at beginning, when there is no data

*Note: a couple approaches discussed today will involve fine-tuning

Outline: Achieving Transfer in RL

- Handling changes in reward

 task represented in the observation
- 2. Handling changes in environment
 - a. diversity for sim-to-real transfer
- 3. Reusing representations
 - a. progressive networks
 - b. PathNet
 - c. modular networks
- 4. Meta-learning
 - a. Learning to learn quickly
 - b. Few-shot adaptation

Approach 1: Pass in Task Representation Goal represented in observation, train policy across goals

- **Pros**:
- simple
- 0-shot generalization to new goals

Cons:

- need to densely sample goals for good generalization/transfer
- task may be hard to represent

approach also applicable to differing objects/dynamics

Case Study: Multi-task Learning on Atari

POLICY DISTILLATION

Andrei A. Rusu, Sergio Gómez Colmenarejo, Çağlar Gülçehre, Guillaume Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu & Raia Hadsel Google DeepMind

ACTOR-MIMIC LEARNING

Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov Department of Computer Science University of Toronto

Goal: learn a single policy that can play all Atari games

DEEP MULTITASK AND TRANSFER REINFORCEMENT

Note: no need to explicitly pass in task representation

Background: Ensembles & Distillation

Easy way to extract knowledge from training data: train many different models in parallel, then take the average prediction

- how almost all ML competitions are won
 - but: expensive at test time...
- Idea: "distill" knowledge from ensemble of networks into a single smaller network train on soft targets:
 - average probabilities over models to get z_i , further soften with temperature T

"ensemble"

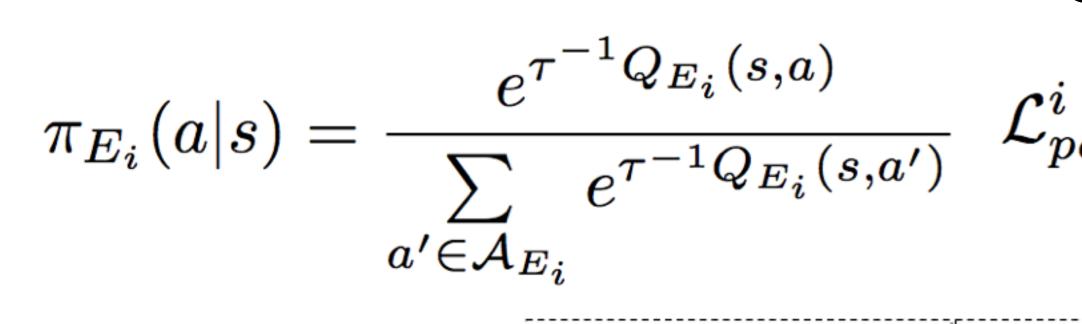
$$\exp(z_i/T)$$

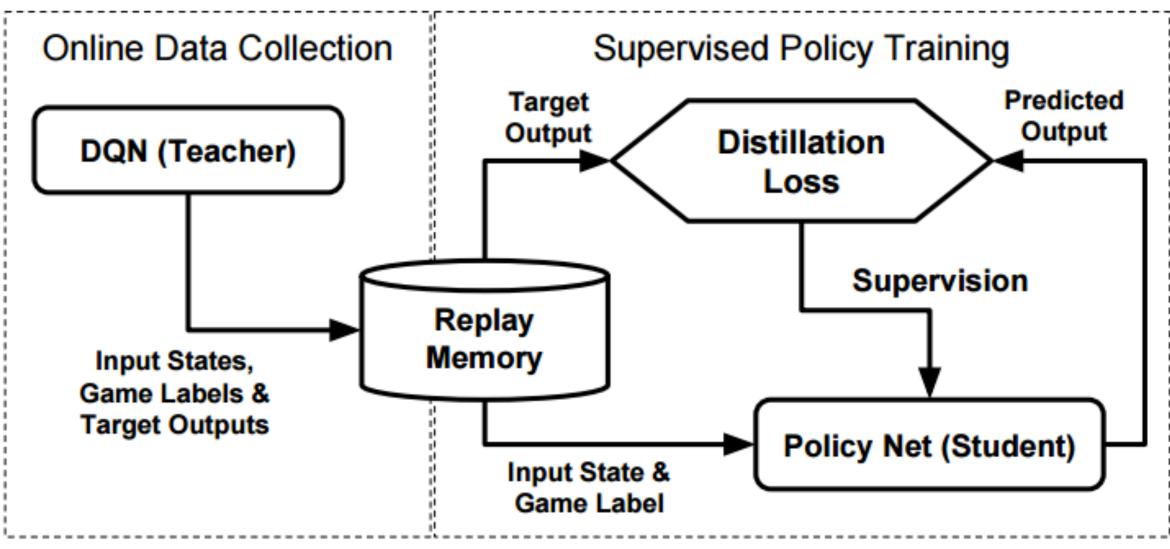
$$\sum_{j} \exp(z_j/T)$$

slide adapted from Geoff Hinton

Case Study: Multi-task Learning on Atari

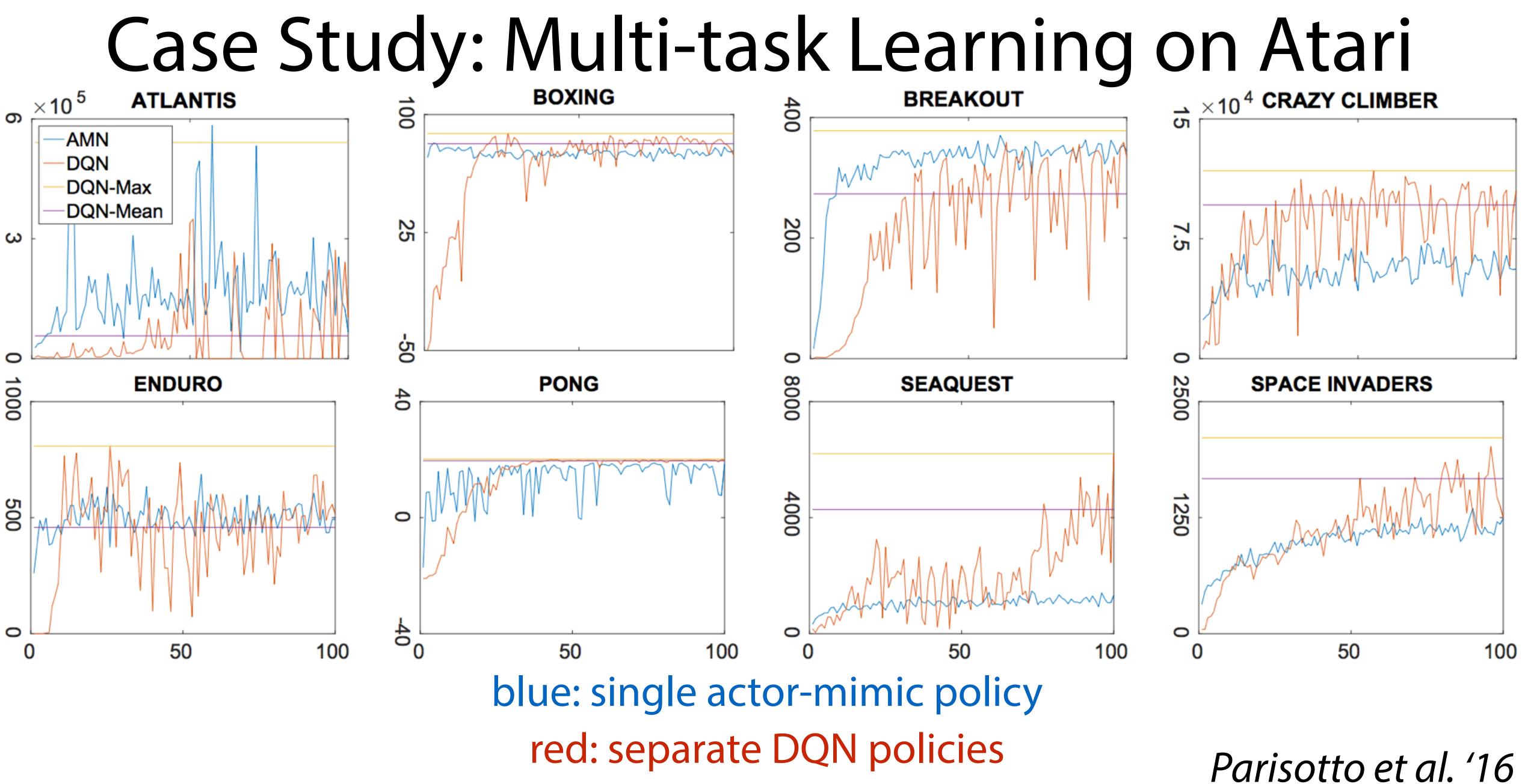
1. train N DQN agents on N tasks, simultaneously 2. train single student network to mimic Boltzmann distribution of DQN agent [distillation*]





$$\mathcal{L}_{policy}^{i}(\theta) = \sum_{a \in \mathcal{A}_{E_{i}}} \pi_{E_{i}}(a|s) \log \pi_{AMN}(a|s;\theta)$$

*Hinton et al. '14



Case Study: Multi-task Learning

Pros:

- Learn single policy for multiple tasks

Cons:

- still need to train on each game for same amount of time performance drops slightly from multi-task training (no transfer)

caveat: Atari games are likely not good for transfer

Memory for better Generalization in POMDPs

Junhyuk Oh Valliappa Chockalingam Satinder Singh Honglak Lee Computer Science & Engineering, University of Michigan

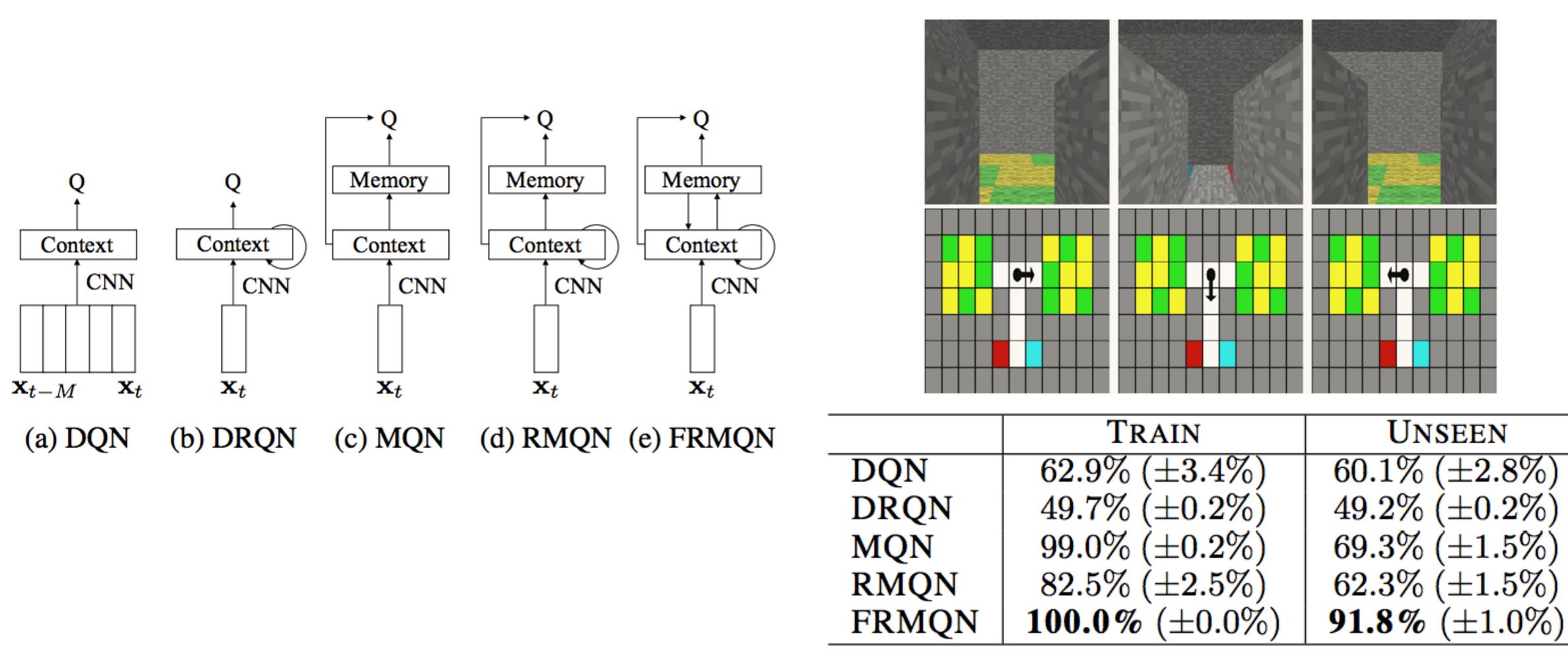
feedforward networks may be forced to memorize training environments the wrong memory mechanism may also lead to memorization

Control of Memory, Active Perception, and Action in Minecraft

JUNHYUK@UMICH.EDU VALLI@UMICH.EDU BAVEJA@UMICH.EDU HONGLAK@UMICH.EDU

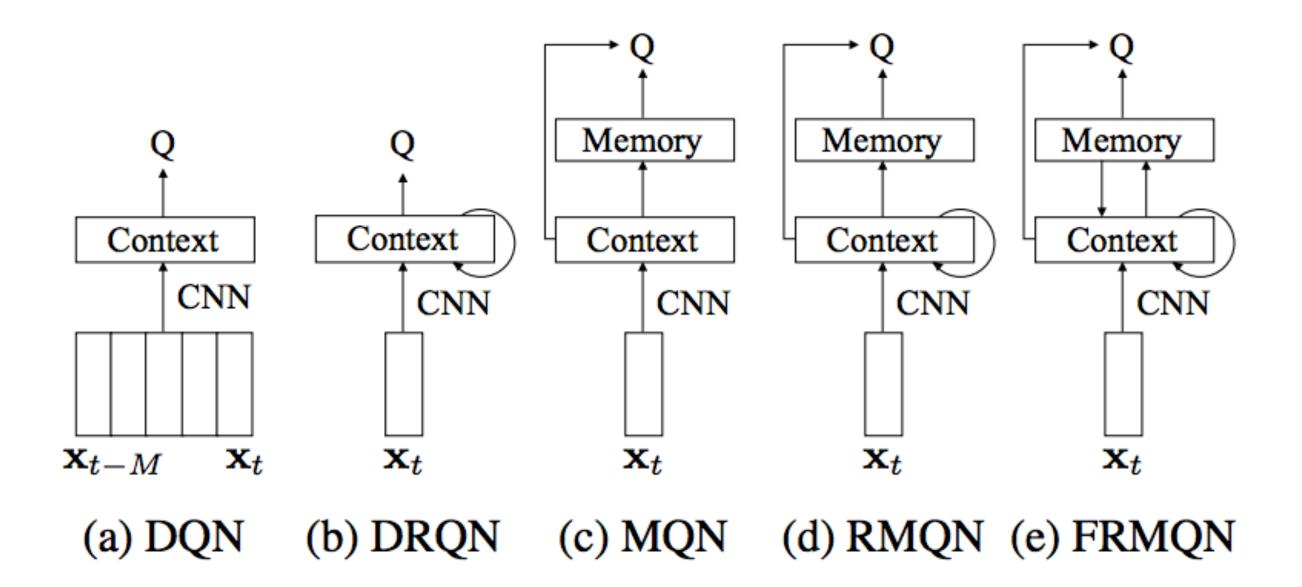
Memory for better Generalization in POMDPs

Can improve generalization with appropriate memory mechanism



Memory for better Generalization in POMDPs

Can improve generalization with appropriate memory mechanism



Pros:

 easy to combine with other approaches

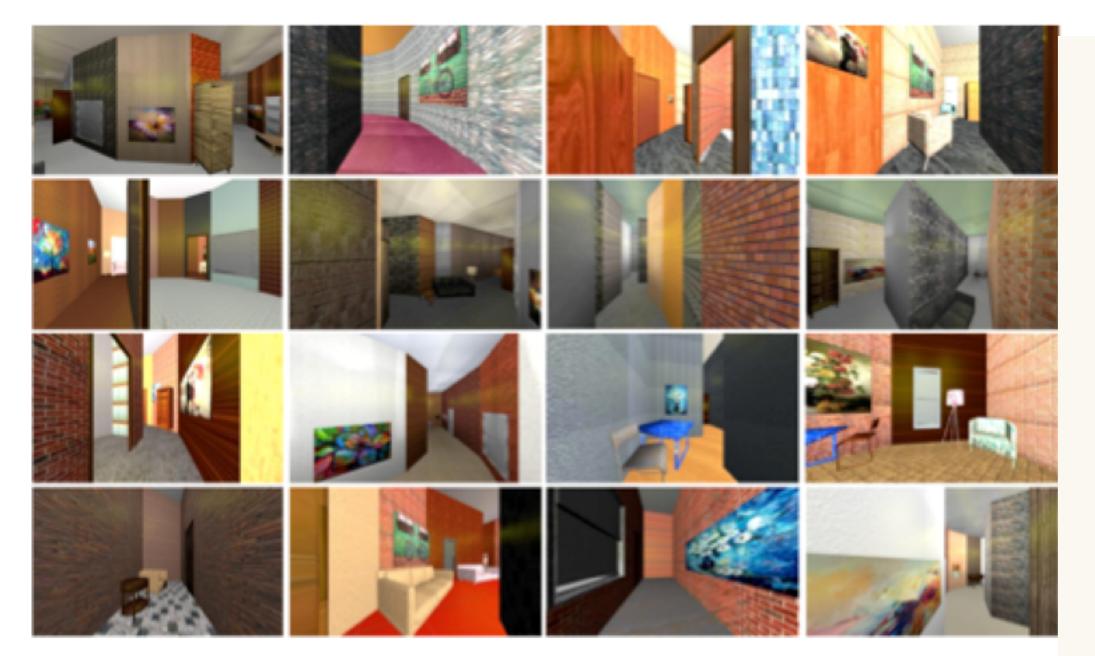
 doesn't completely solve the problem

Outline: Achieving Transfer in RL

- 1. Handling changes in reward a. task represented in the observation
- 2. <u>Handling changes in environment</u>
 - a. diversity for sim-to-real transfer
- 3. Reusing representations
 - a. progressive networks
 - b. PathNet
 - c. modular networks
- 4. Meta-learning
 - a. Learning to learn quickly
 - b. Few-shot adaptation

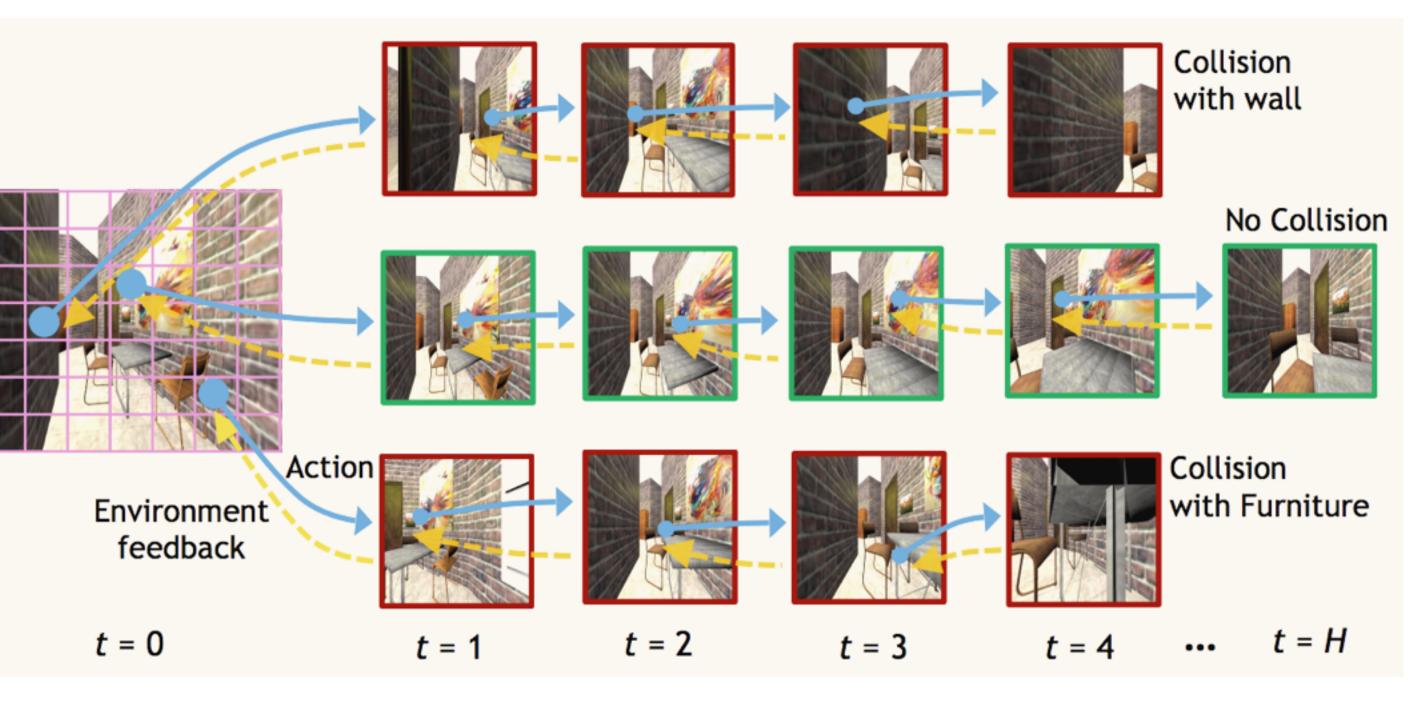
Transfer across Environments: Diversity

Fereshteh Sadeghi¹ and Sergey Levine²



vary textures & hallway geometries

- **Case-Study**: Simulation-to-real world transfer
- (CAD)²RL: Real Single-Image Flight without a Single Real Image



Case-Study: Simulation-to-real world transfer

After training entirely in simulation:

(CAD)²RL :Real Indoor Flight

Various real world scenarios

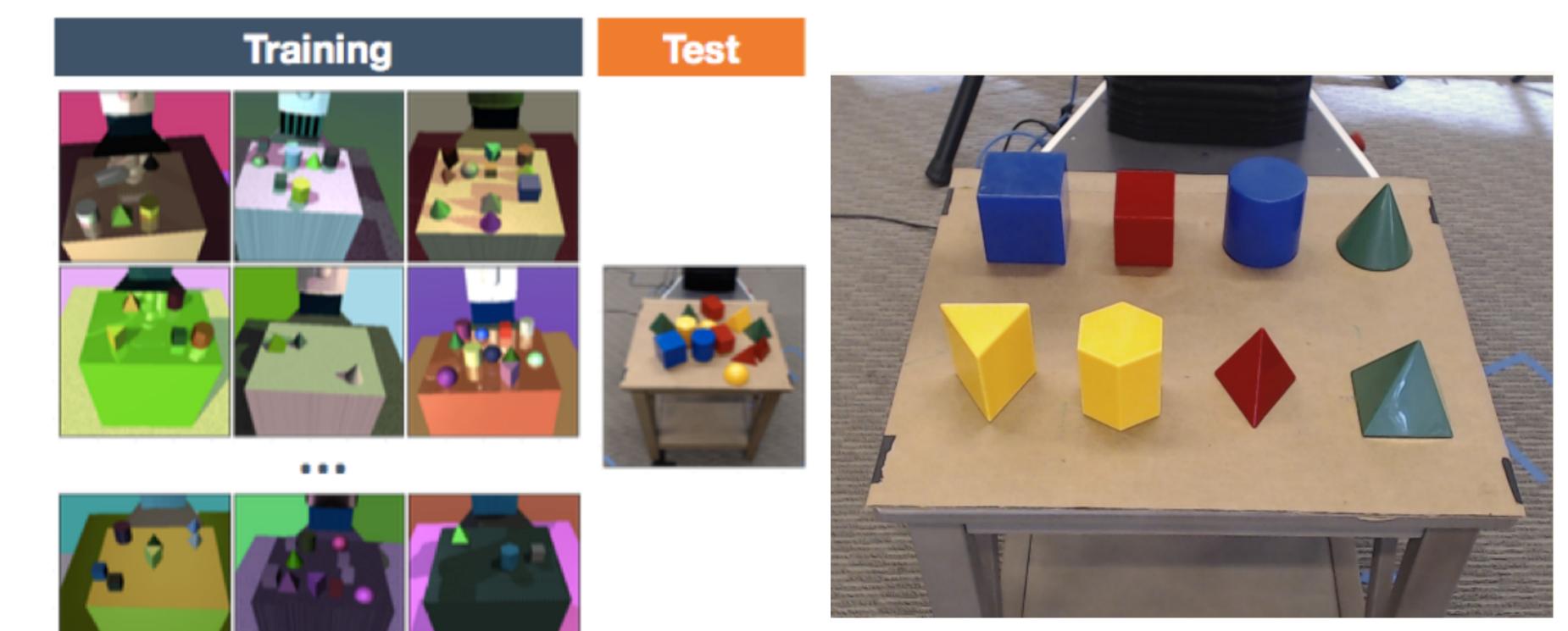
- Navigate through Hallways
- Avoid General Obstacles

Case-Study: Simulation-to-real world transfer

Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World

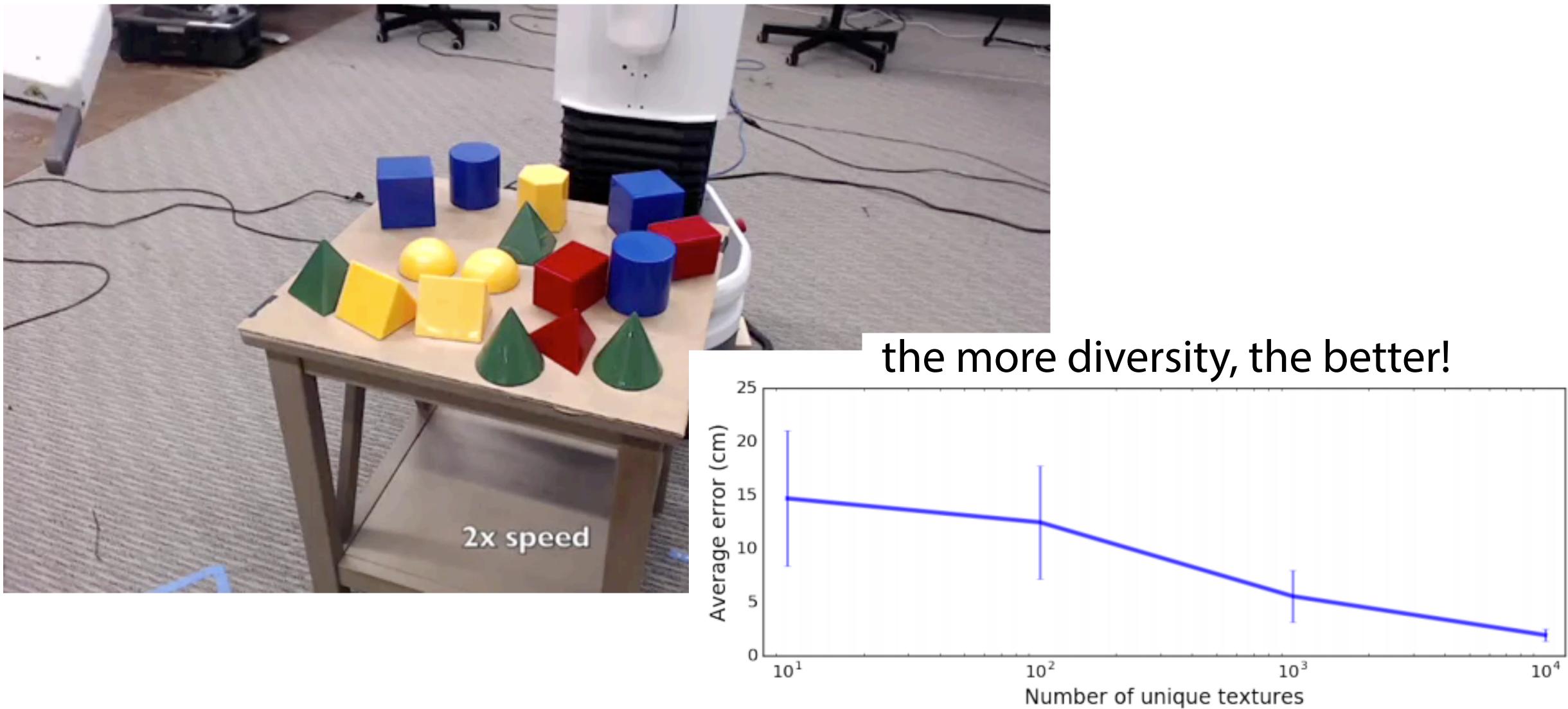
Josh Tobin¹, Rachel Fong², Alex Ray², Jonas Schneider², Wojciech Zaremba², Pieter Abbeel³

object localization

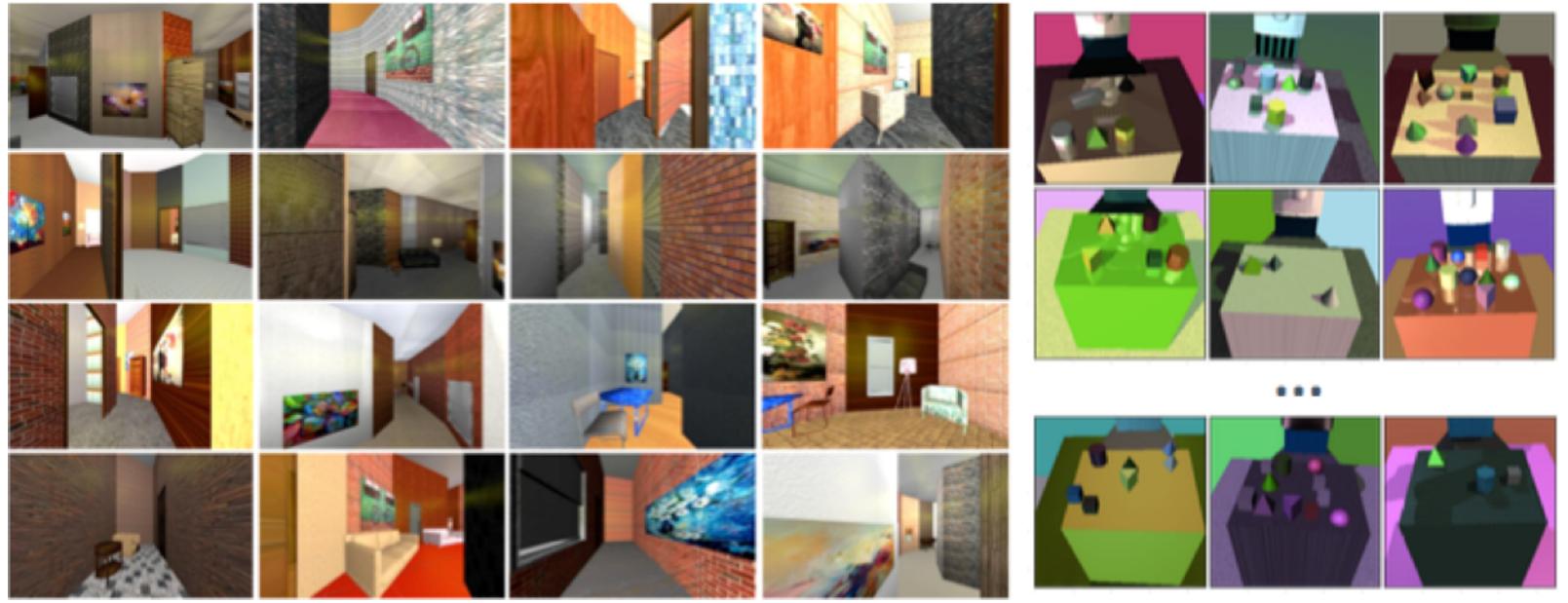


vary object colors, lighting, camera angle

Case-Study: Simulation-to-real world transfer object localization



Transfer across Environments: Diversity



Pros:

- works surprisingly well, 0-shot generalization to real world **Cons:**

- Content creation requires large engineering effort
- Only demonstrated for shift in observation space (not yet for dynamics/reward)

- No use of target domain data (not even unsupervised data)

Outline: Achieving Transfer in RL

- Handling changes in reward
 a. task represented in the observation
- 2. Handling changes in environmenta. diversity for sim-to-real transfer

3. <u>Reusing representations</u>

- a. progressive networks
- b. PathNet
- c. modular networks
- 4. Meta-learning
 - a. Learning to learn quickly
 - b. Few-shot adaptation

Break

Outline: Achieving Transfer in RL

- Handling changes in reward
 a. task represented in the observation
- 2. Handling changes in environmenta. diversity for sim-to-real transfer

3. <u>Reusing representations</u>

- a. progressive networks
- b. PathNet
- c. modular networks
- 4. Meta-learning
 - a. Learning to learn quickly
 - b. Few-shot adaptation

Reusing Representations: Progressive Networks

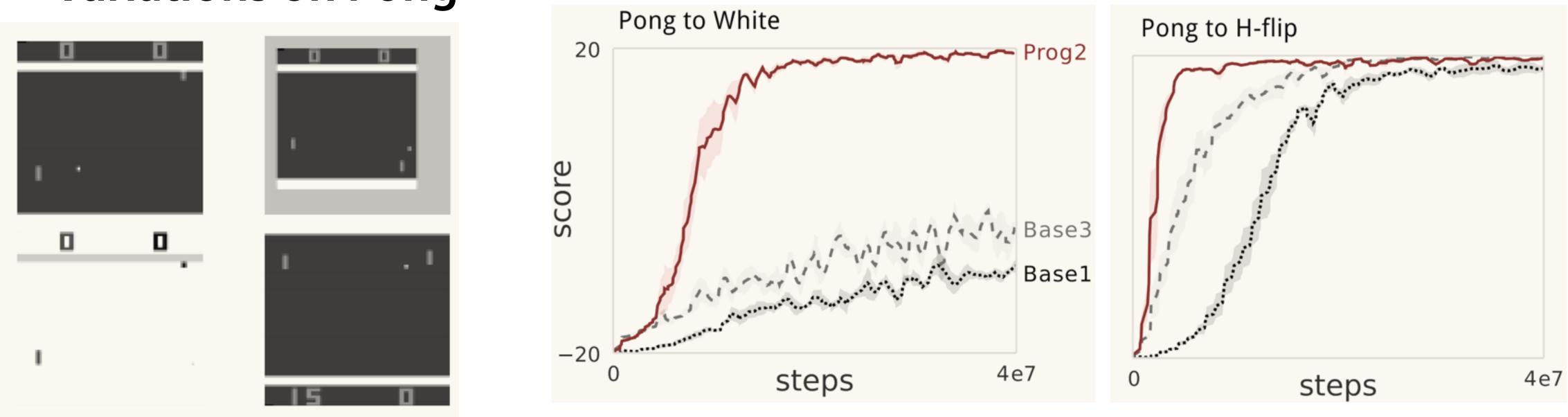
- 1. Train on new domain
- 2. Freeze weights on that domain
- 4. Repeat

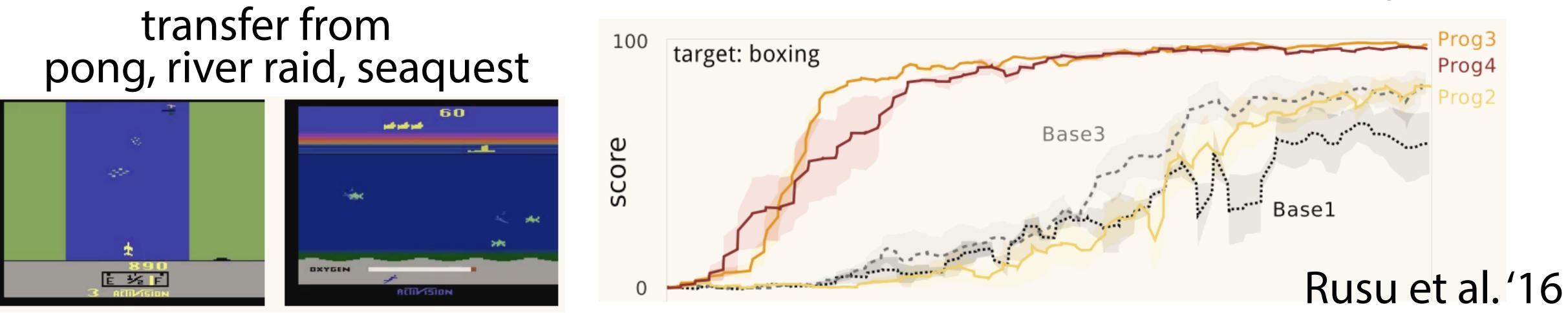


3. Reuse frozen representation on that domain when training on new domain

Rusu et al. '16

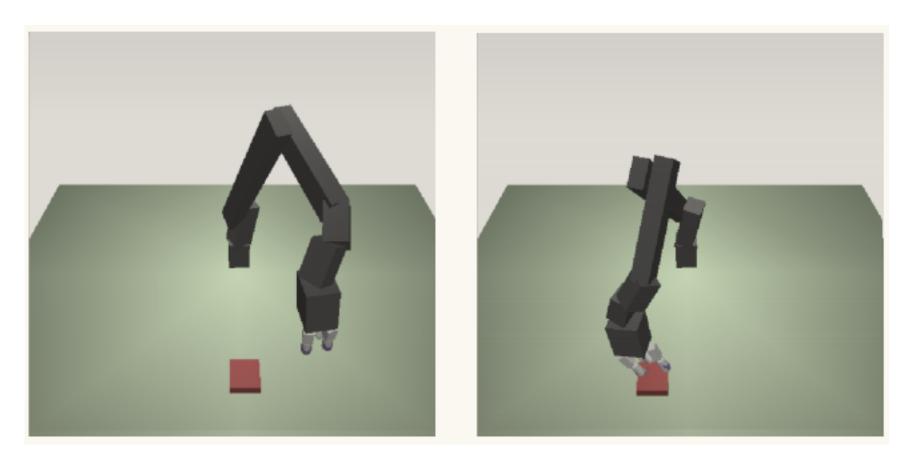
Reusing Representations: Progressive Networks Variations on Pong



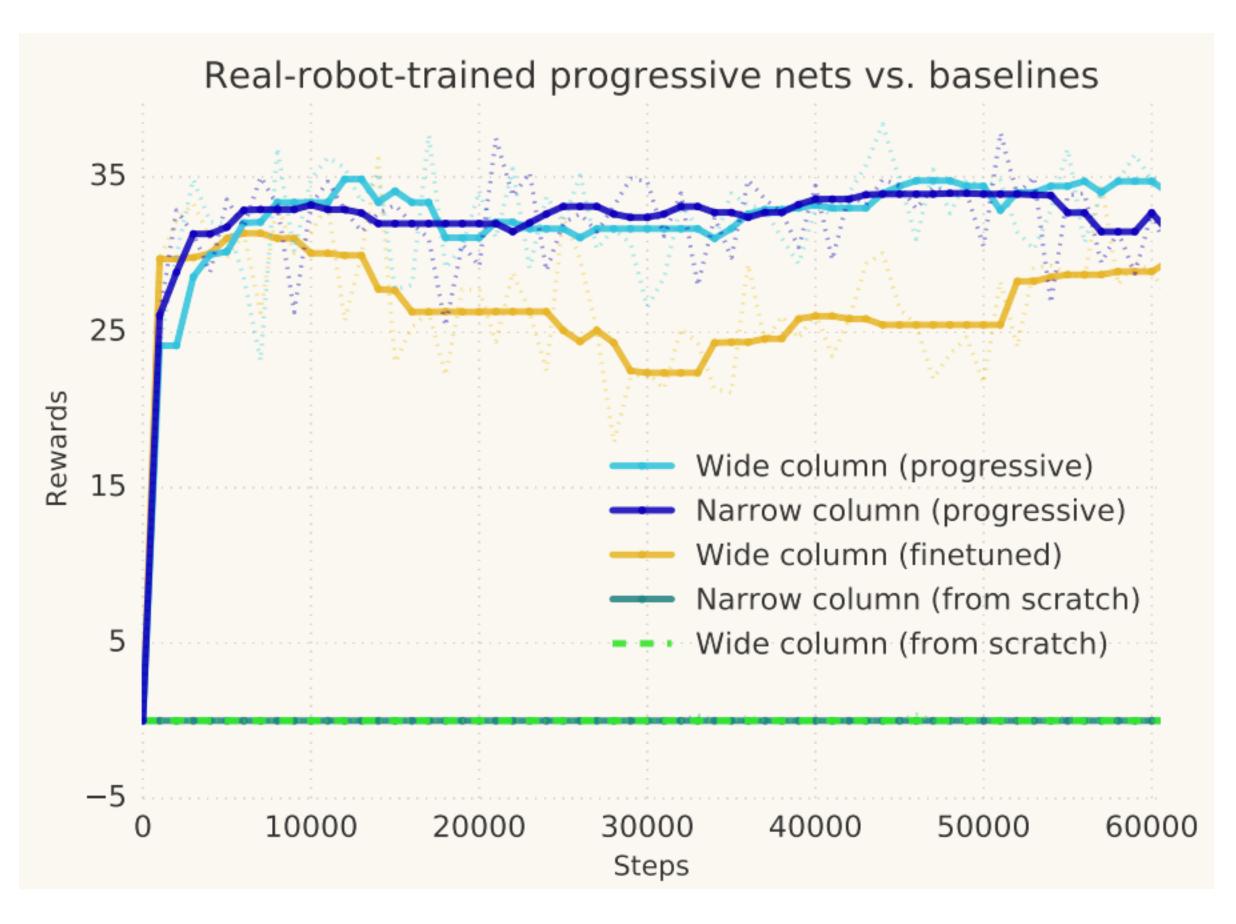


compared to scratch & fine-tuning

Reusing Representations: Progressive Networks Simulation (A3C) to Real World (A2C) target reaching task







Rusu et al. '16

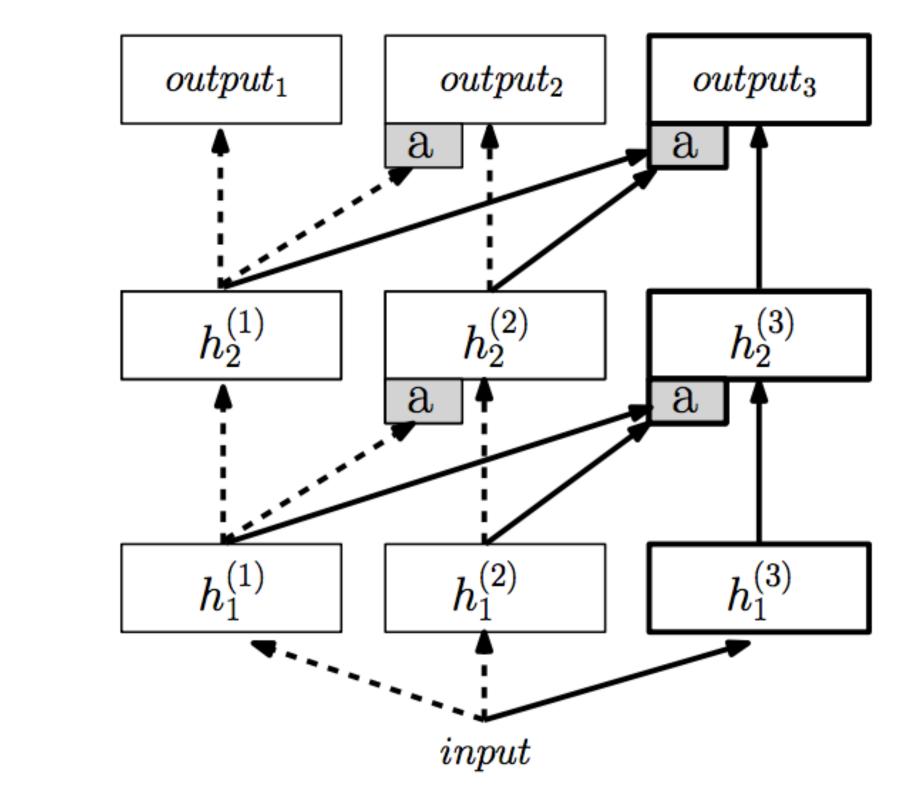
Reusing Representations: Progressive Networks

Pros:

- effective
- simple

Cons:

- dissatisfying: network grows larger and larger with each new domain (fixed topology)
- experience in new domains doesn't help old domains (unless you train on them again)
- learning still fairly slow



ain esn't

Reusing Representations: PathNet

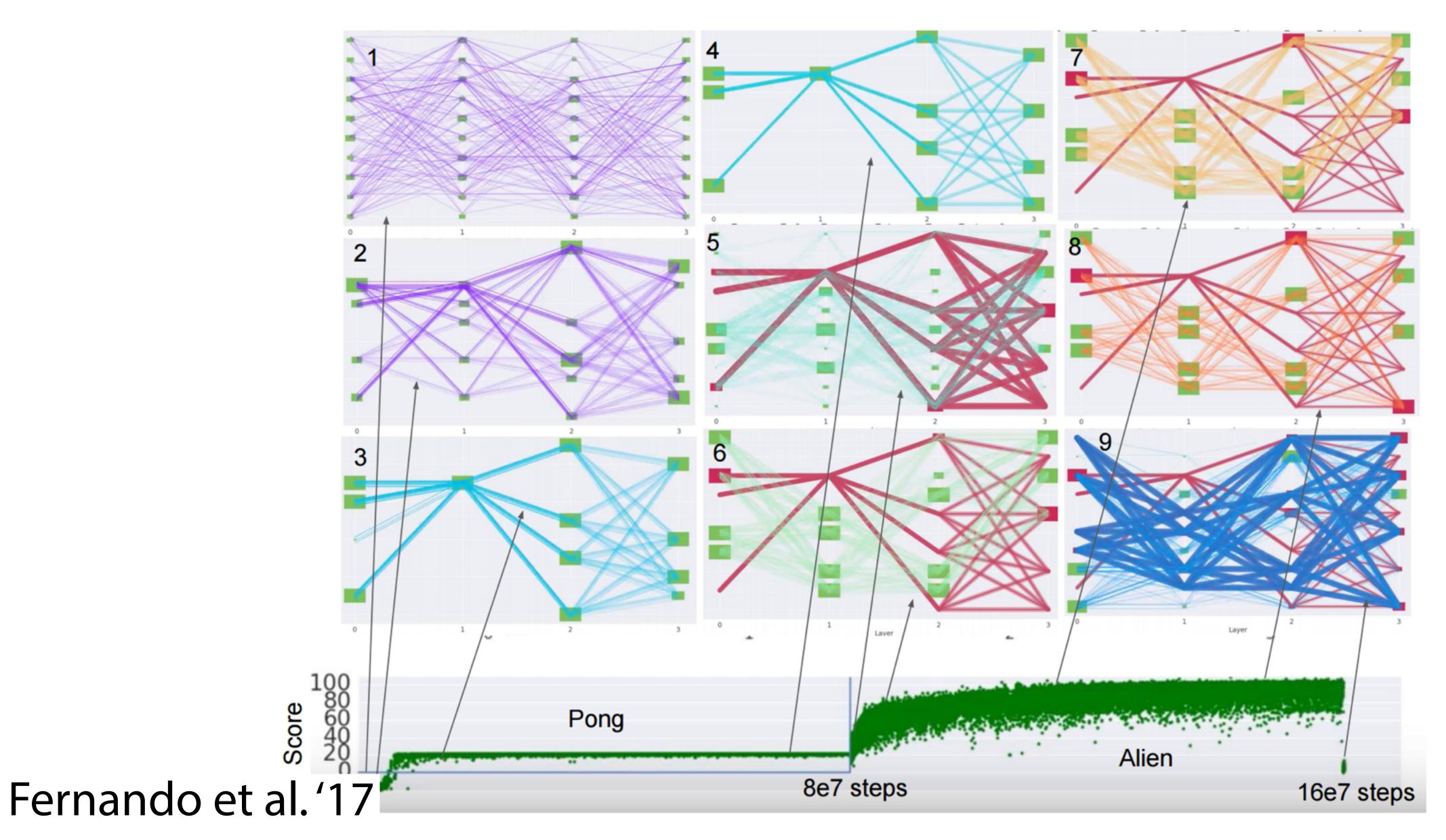
- 1. Pick new task
- 2. Evolve path through network and learn weights along path 3. Freeze weights along evolved path
- 4. Repeat, only changing unfrozen weights

Contrast to progressive nets: "evolve" relationships between columns

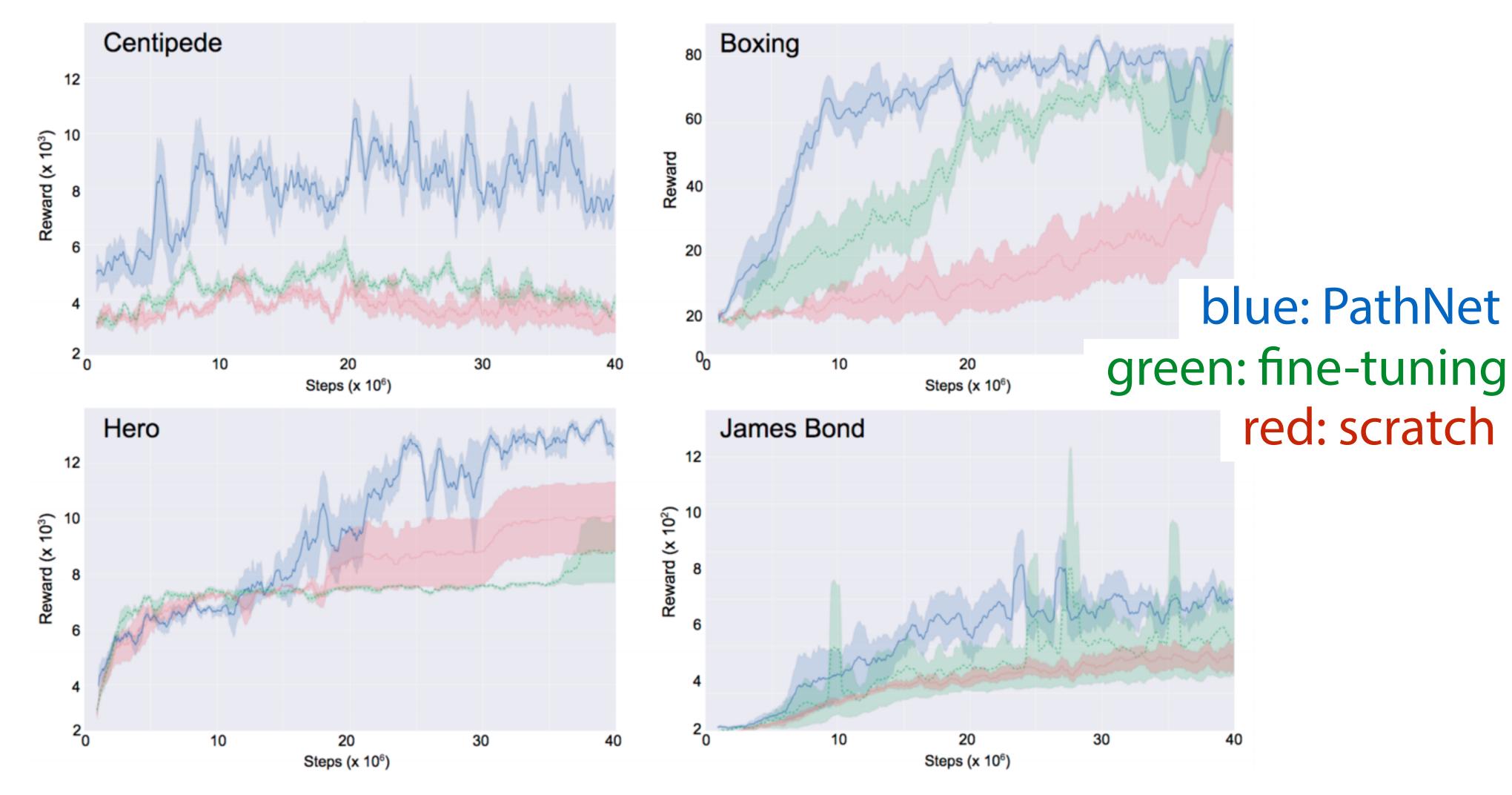
genetic algorithm select paths (which parameters to train) gradient-based RL (A3C) to learn parameter values

Fernando et al. '17

PathNet



Reusing Representations: PathNet Transfer from River Raid to other games:



Reusing Representations: PathNet

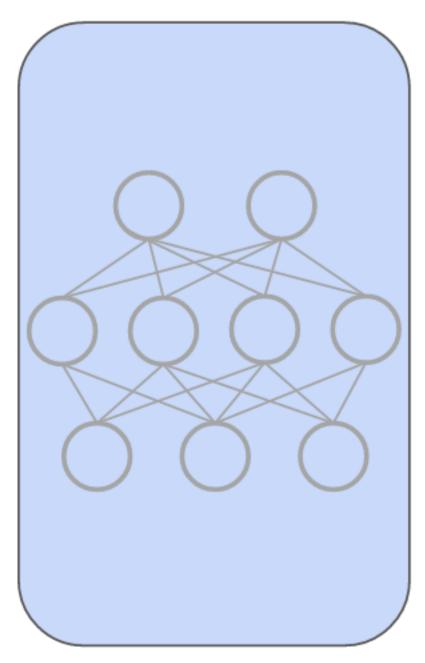
Pros:

- network size is fixed (and straight-forward to grow if needed) -- effective combination of evolutionary & gradient-based learning
- Cons:
- learning a new task is still fairly slow - experience in new domains doesn't help old domains (unless
- you train on them again)

Main Idea: transfer across robots/tasks by training modules for each

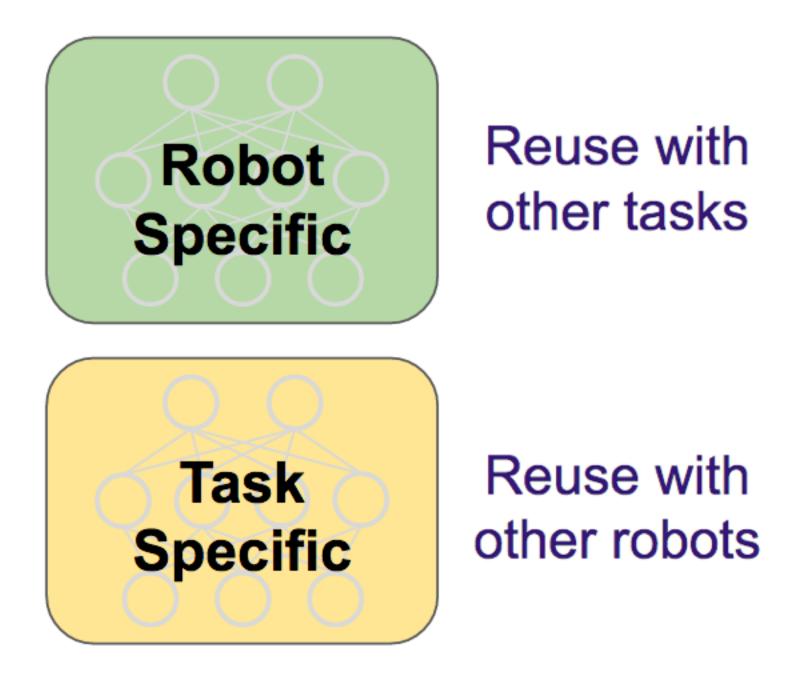
Traditional: One policy per robot-task combination

action



Modular Policy Network

action

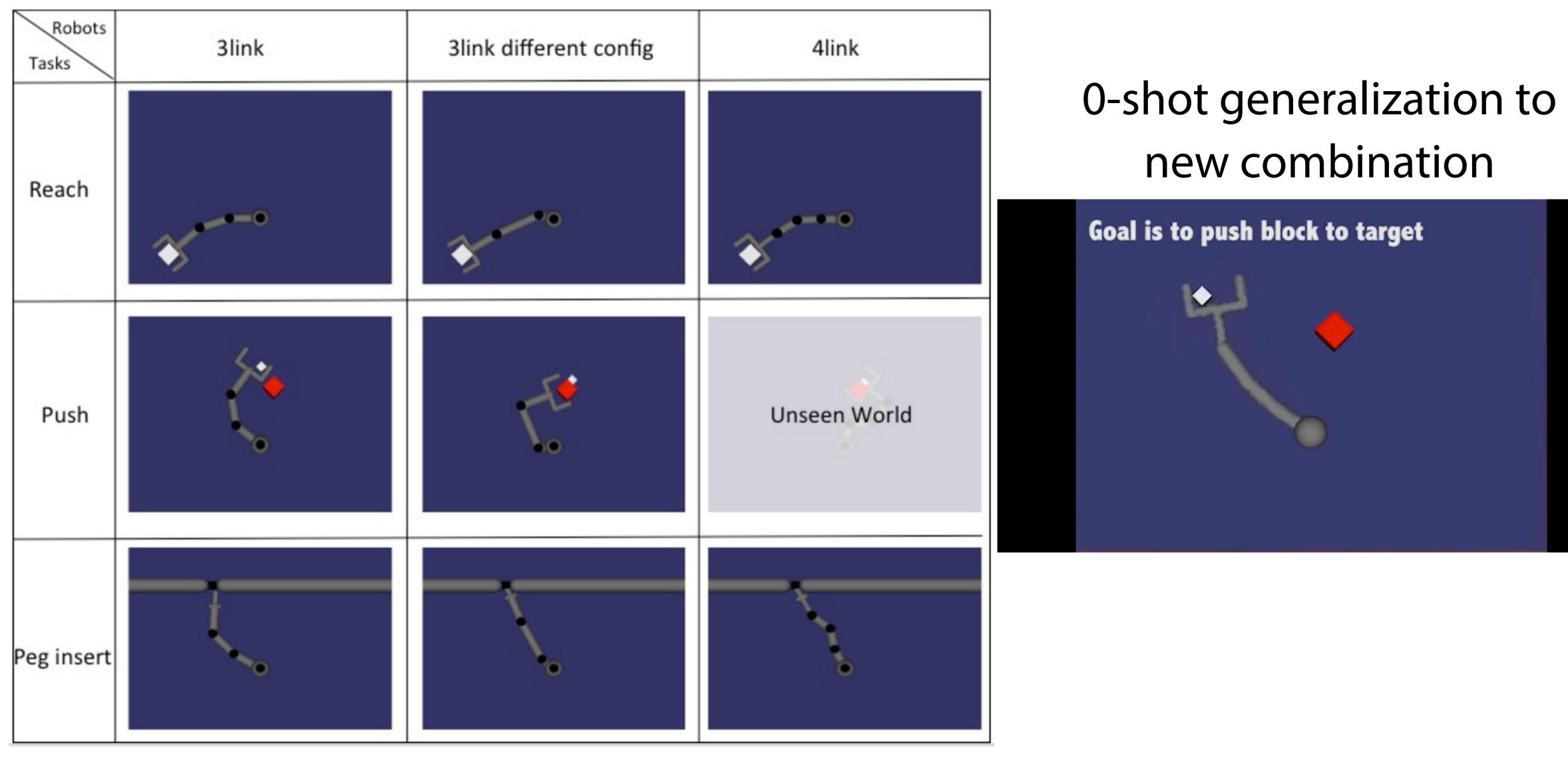


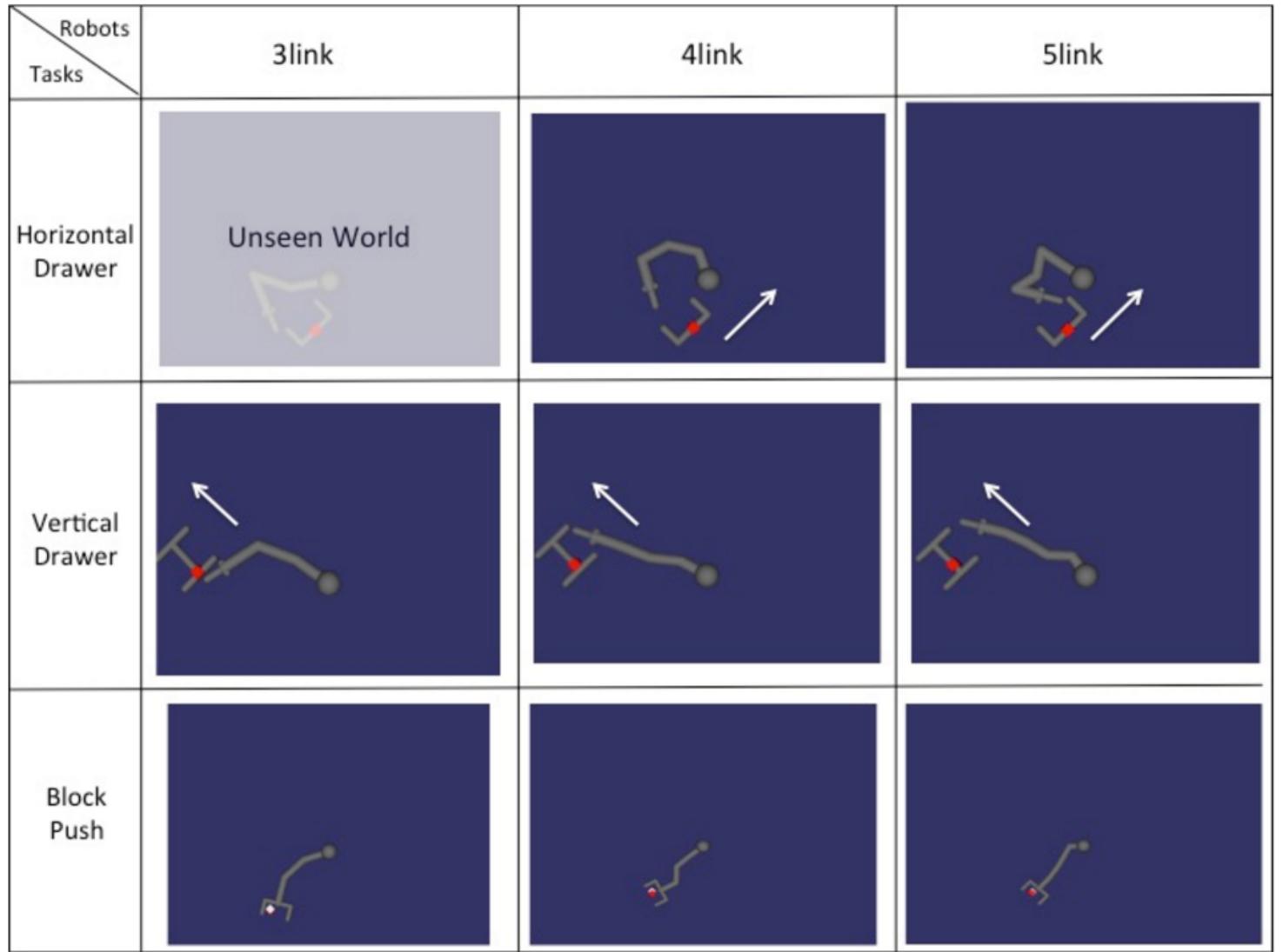
state

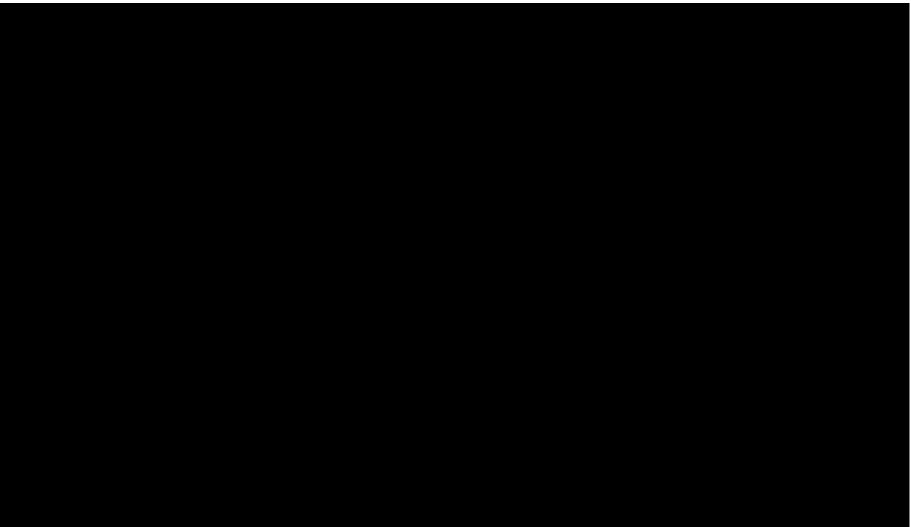
Reusing Representations: Modular Networks Main Idea: transfer across robots/tasks by training modules for each



To prevent modules from overfitting to each other: dropout, bottleneck







with 10 iterations of training

Pros:

- interpretable representation
- can achieve 0-shot generalization in some cases, and if not, can fine-tune Cons:
- need to limit information-passing & regularize for modular effect

Can we learn to adapt quickly?

Outline: Achieving Transfer in RL

- Handling changes in reward
 a. task represented in the observation
- 2. Handling changes in environment
 - a. diversity for sim-to-real transfer
- 3. Reusing representations
 - a. progressive networks
 - b. PathNet
 - c. modular networks
- 4. Meta-learning
 - a. Learning to learn quickly
 - b. Few-shot adaptation

Meta-Learning

Learn structure across tasks, such that learning on a new task is faster

Learn an update rule / generating weights Schmidhuber '87, '92 Bengio et al. '90, '92 Ravi & Larochelle '17 Ha et al. '17 Li & Malik '17 Andrychowicz et al. '17

[and more in the last month]

Bayesian Modeling

Tenenbaum '99,'00 Fei-Fei et al. '05, '07 Lake et al. '11 Edwards & Storkey '17

Memory-Augmentation Santoro et al., '16 Vinyals et al. '16

Meta-Learning: Learning Fast RL

RL²: FAST REINFORCEMENT LEARNING VIA SLOW REINFORCEMENT LEARNING

Yan Duan^{†‡}, John Schulman^{†‡}, Xi Chen^{†‡}, Peter L. Bartlett[†], Ilya Sutskever[‡], Pieter Abbeel^{†‡}
[†] UC Berkeley, Department of Electrical Engineering and Computer Science
[‡] OpenAI

LEARNING TO REINFORCEMENT LEARN

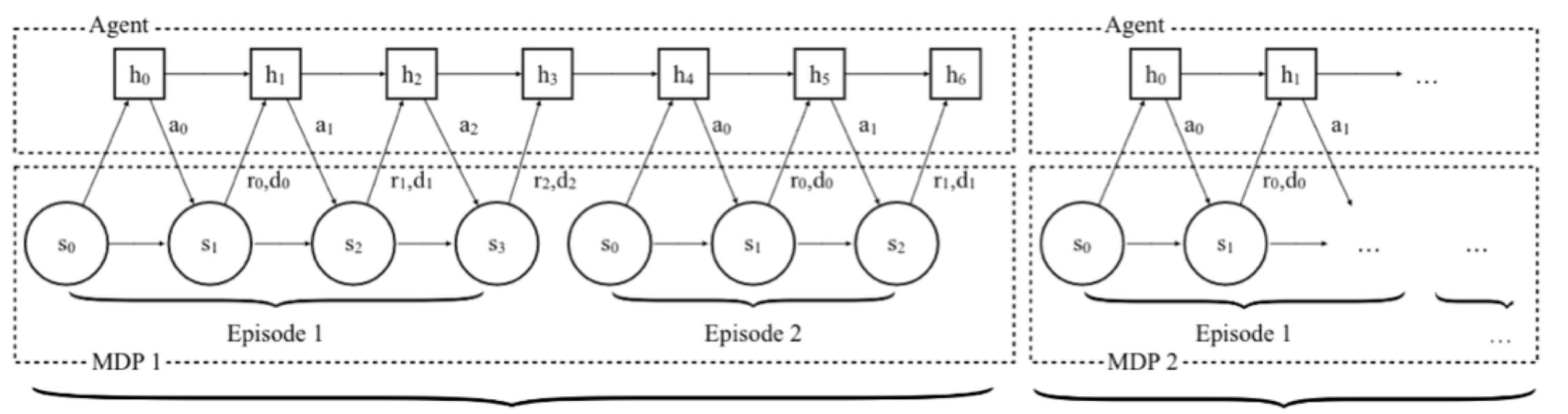
JX Wang¹, Z Kurth-Nelson¹, D Tirumala¹, H Soyer¹, JZ Leibo¹, R Munos¹, C Blundell¹, D Kumaran^{1,3}, M Botvinick^{1,2} ¹DeepMind, London, UK ²Gatsby Computational Neuroscience Unit, UCL, London, UK ³Institute of Cognitive Neuroscience, UCL, London, UK

Key idea: Train an RNN to learn in new MDPs

Meta-Learning: Learning Fast RL

Representation of the fast RL algorithm:

- RNN = generic computation architecture
- different weights in the RNN means different RL algorithm
- different activations in the RNN means different current policy



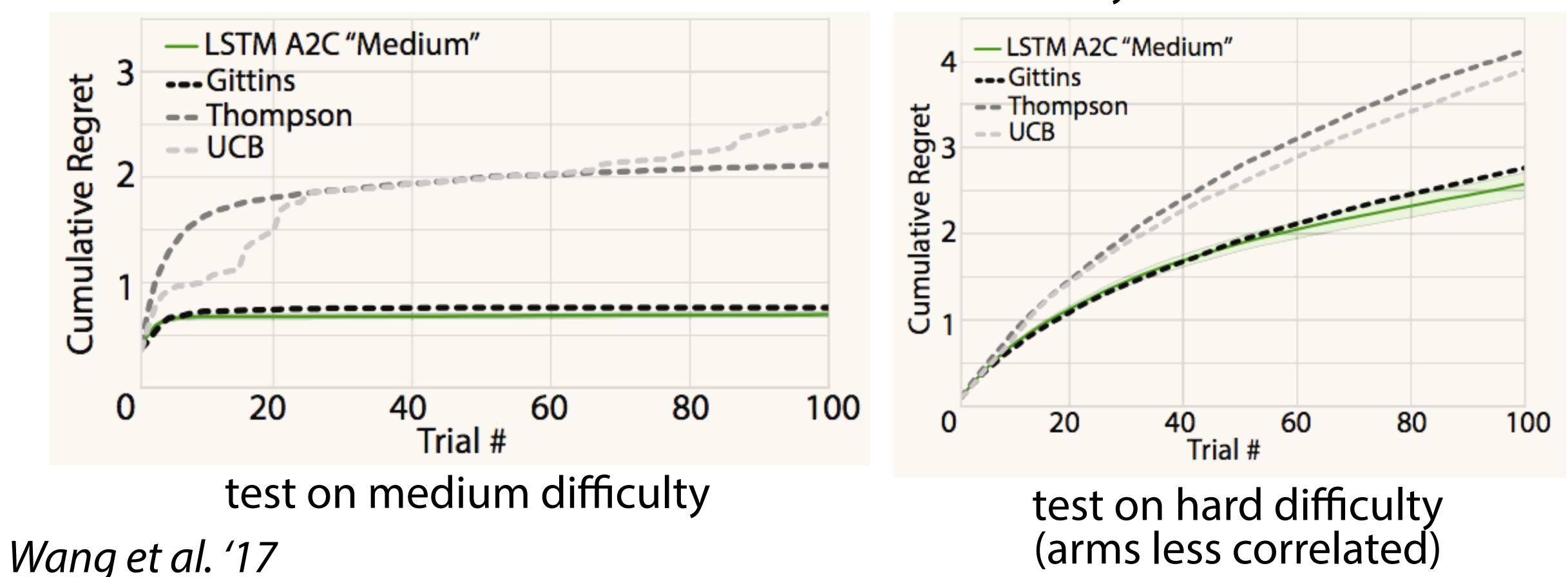
Trial 2

slide adapted from Pieter Abbeel

. . .

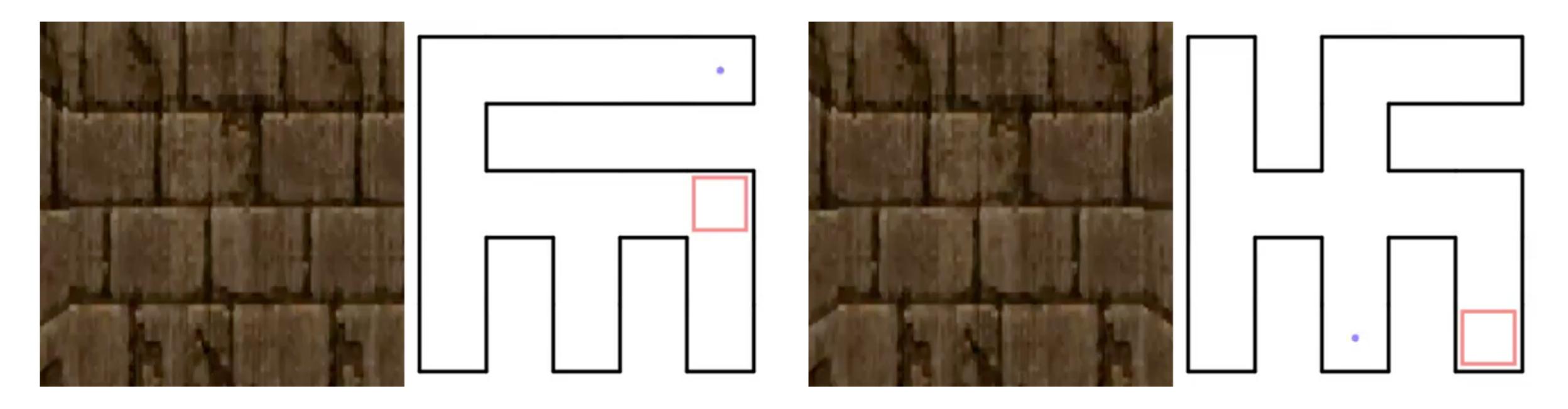
Meta-Learning: Learning Fast RL comparison to asymptotically optimal algorithms on correlated-arm bandit problems

trained on medium difficulty



Meta-Learning: Learning Fast RL

before meta-learning



Duan et al. '17

after meta-learning

Meta-Learning: Learning Fast RL

Pros:

- simple approach
- Cons:
- asking a lot of the LSTM
- might not handle tasks from outside the distribution well (doesn't reduce to running RL at test-time)

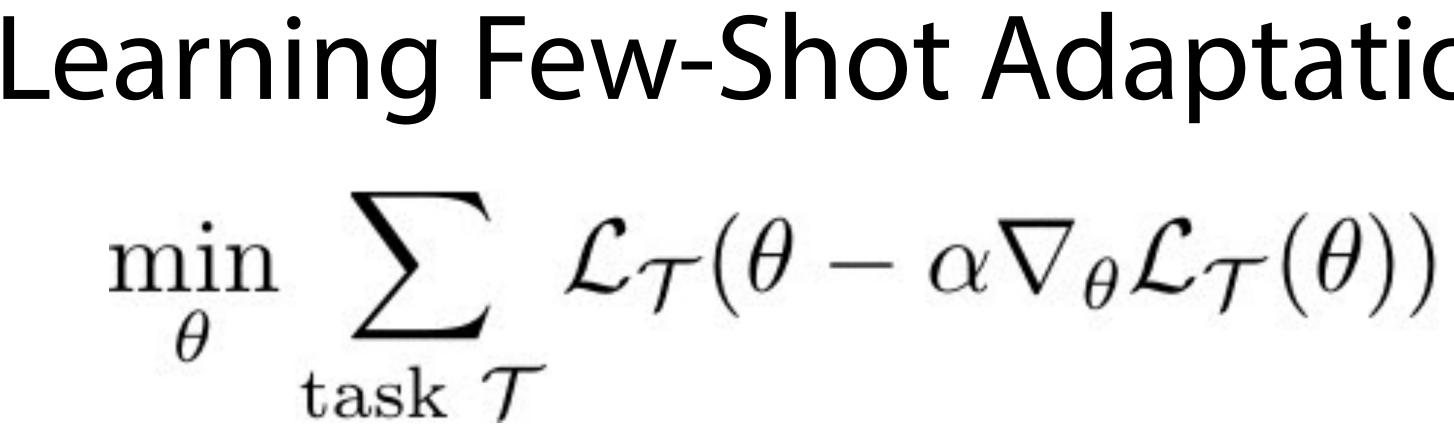
- can learn new tasks from the distribution seen during training

Learning Few-Shot Adaptation

Few-shot/Transfer learning: incorporate prior knowledge from other tasks for fast learning — pretrained parameters **Fine-tuning:** $\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}}(\theta)$ task [test-time] **Our method:** $\min_{\theta} \sum_{\text{task } \mathcal{T}} \mathcal{L}_{\mathcal{T}}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}}(\theta))$

Key idea: Train over many tasks, to learn parameter vector θ that transfers



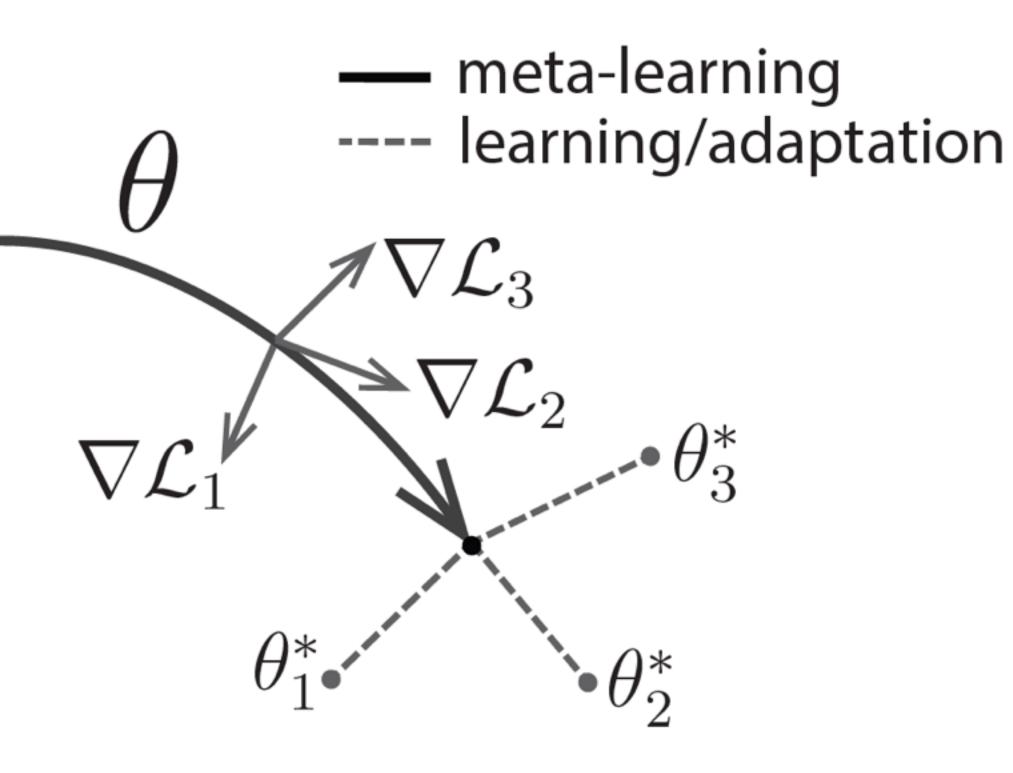


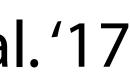
parameter vector being meta-learned

optimal parameter vector for task i

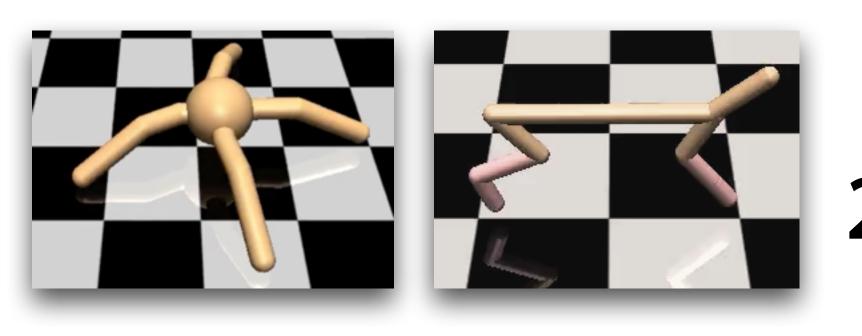
Model-Agnostic Meta-Learning

Learning Few-Shot Adaptation





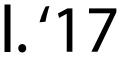
Fast Adaptation in Reinforcement Learning Locomotion problems:



Methods:

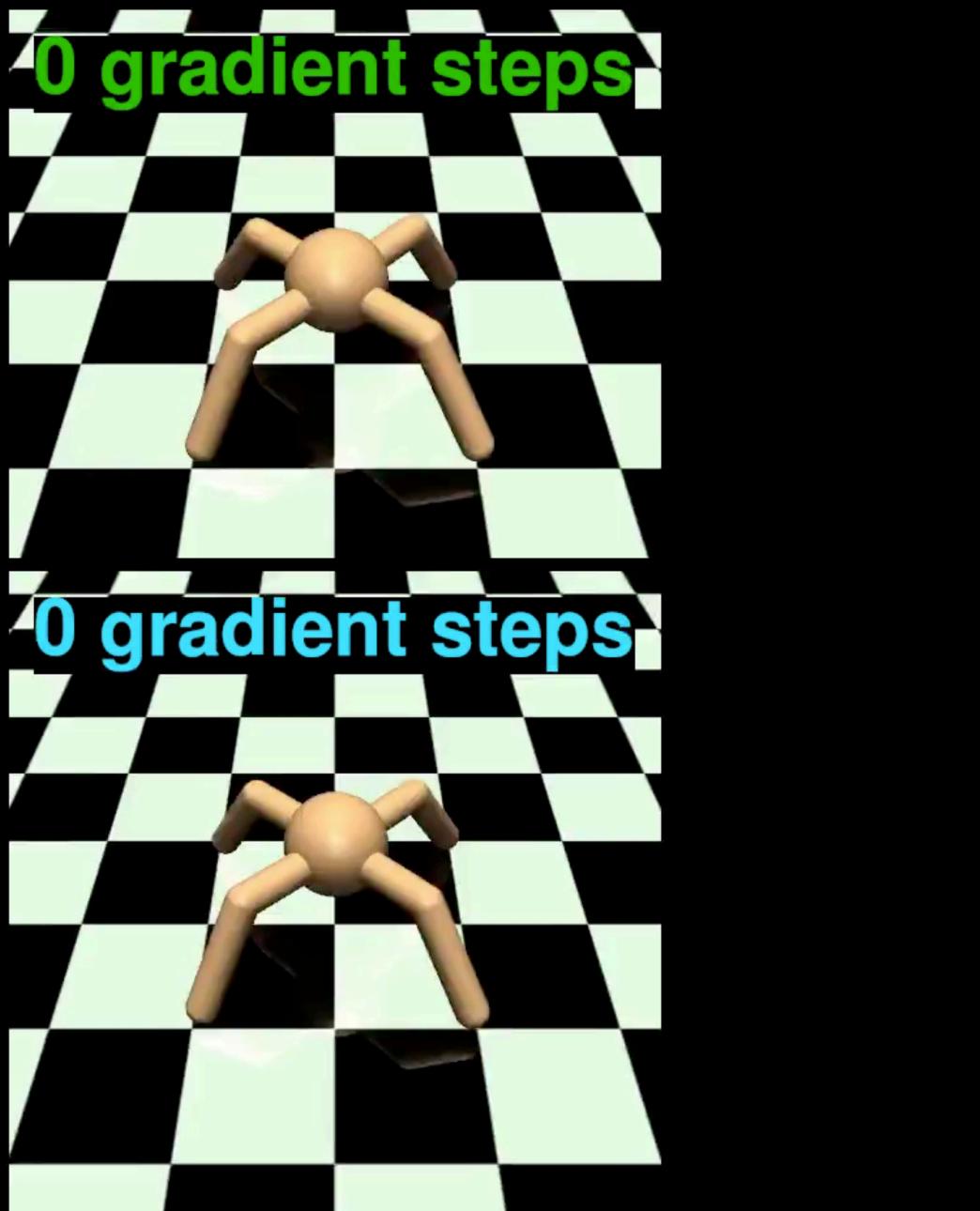
<u>meta-learner</u>: TRPO MAML (gets task as input)

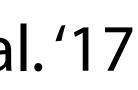
- 1. run at goal velocity (continuous range of tasks) 2. <u>run forward or backward</u> (2 tasks)
- learner: vanilla policy gradient (REINFORCE) Baselines: oracle pretrain on all tasks random init
 - all: 20 roll-outs for learner update



walk/run at goal velocity

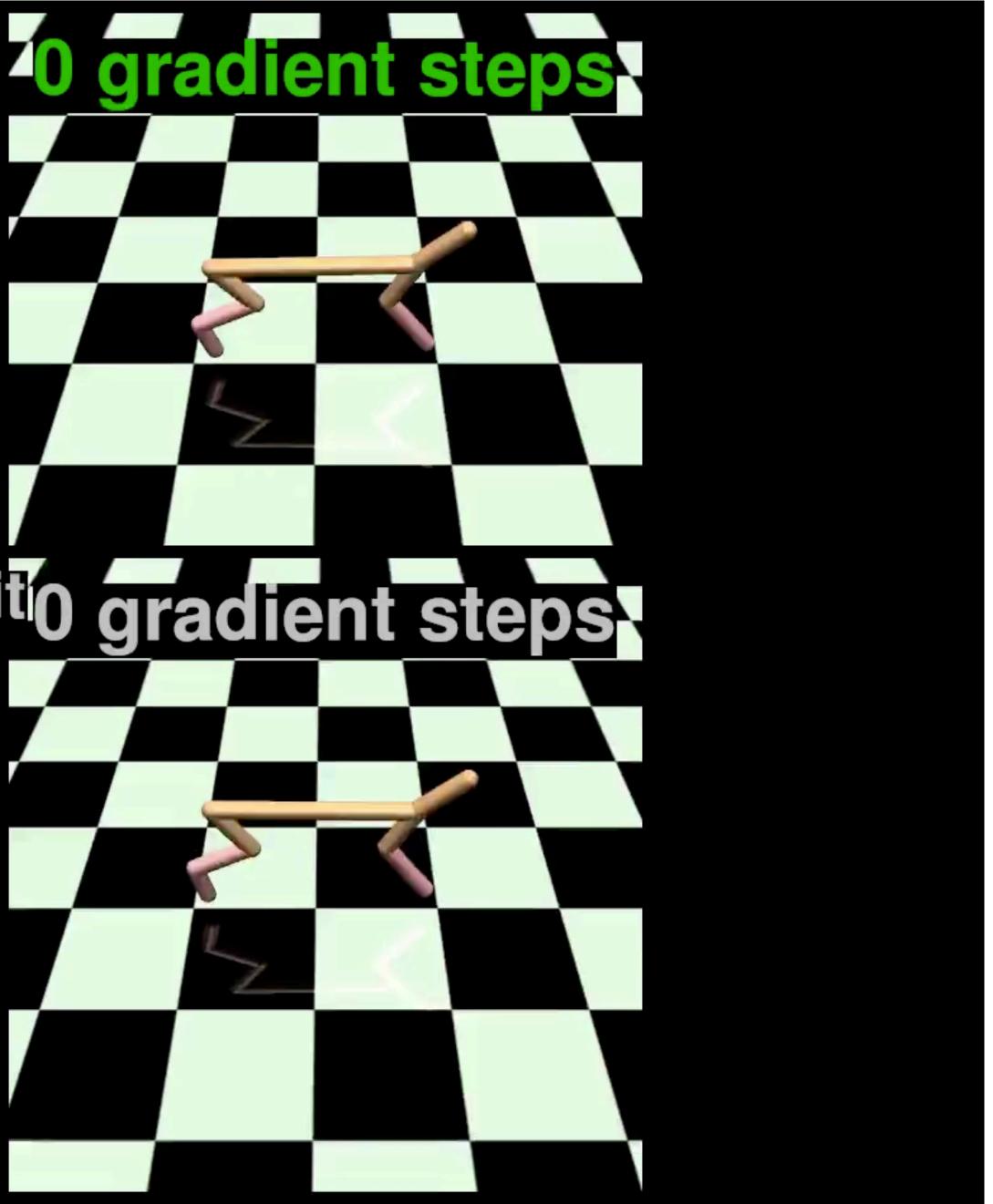
pretrained 0 gradient steps

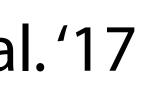




run backward or forward

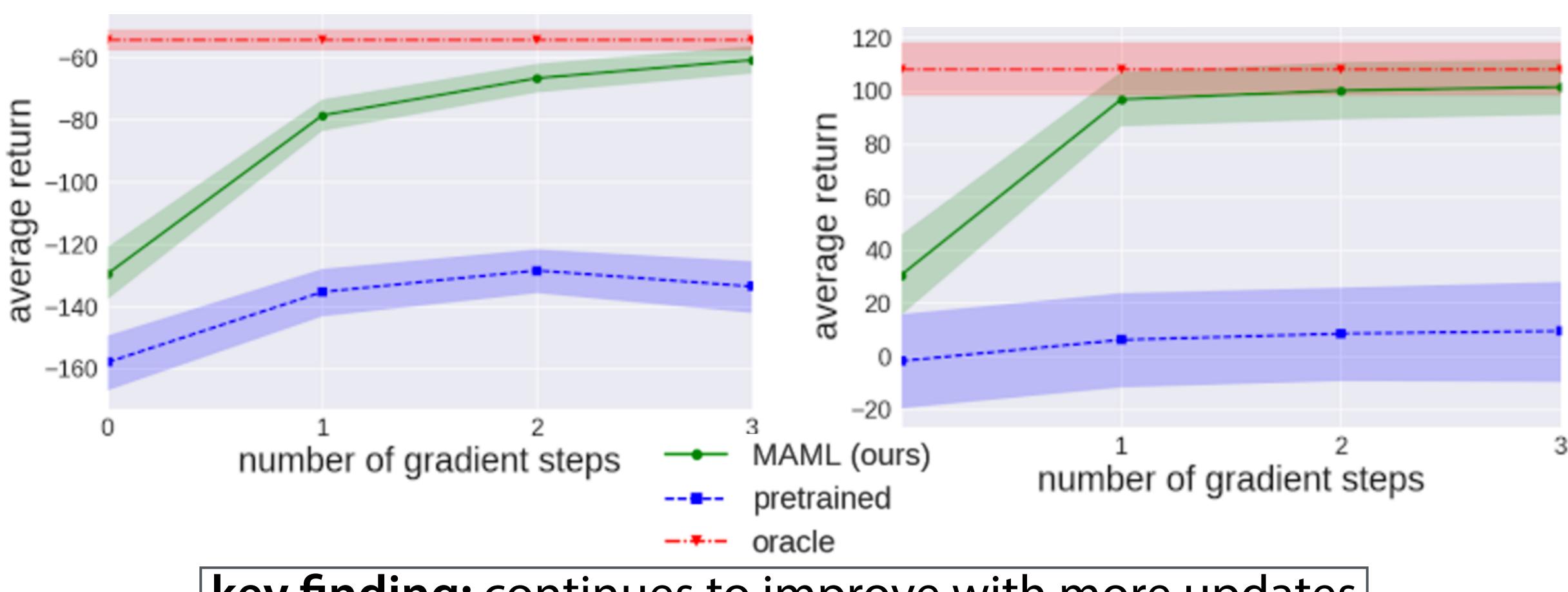
random initio gradient steps





Quantitative Results

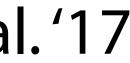
half-cheetah



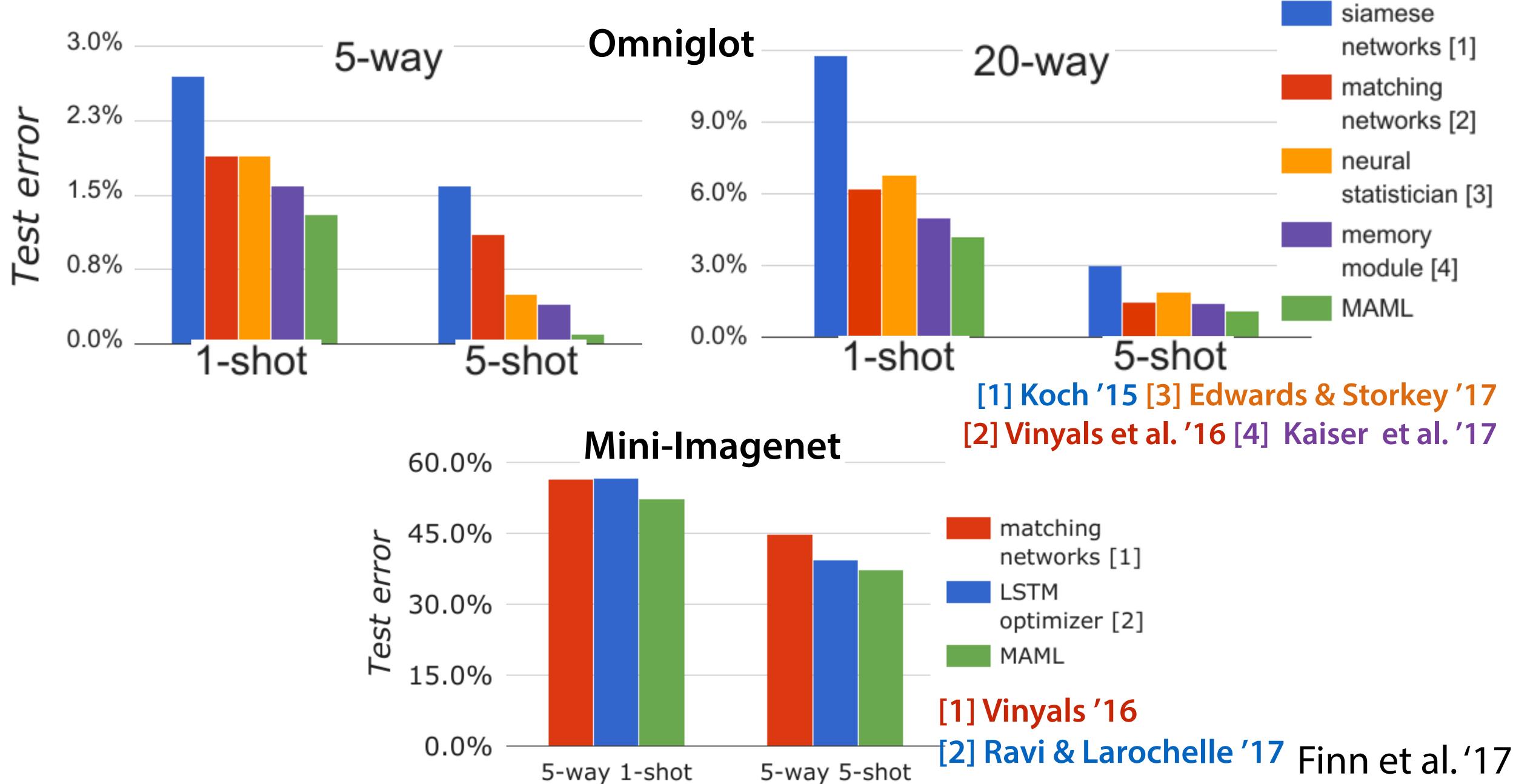
key finding: continues to improve with more updates

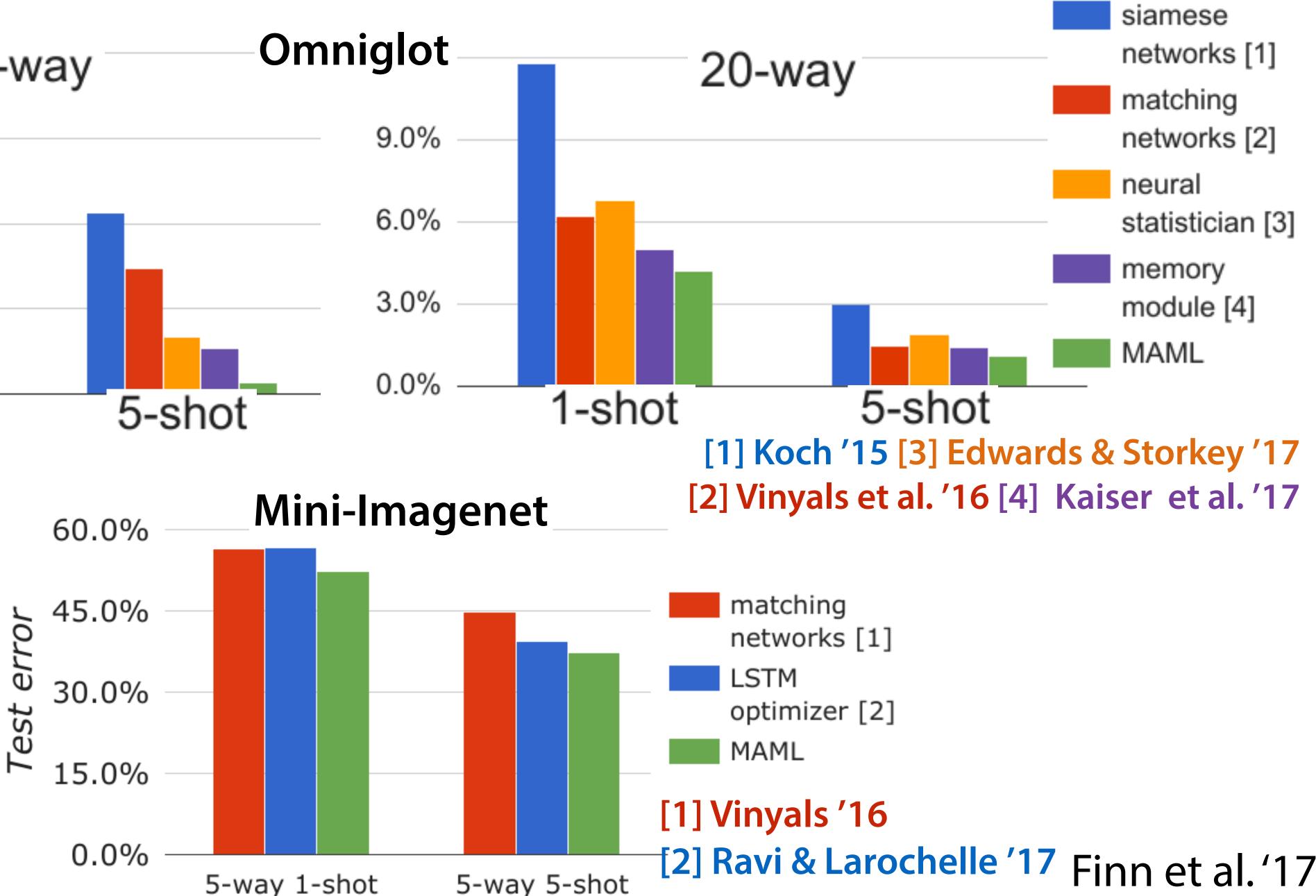
Finn et al. '17

ant



Few-Shot Image Classification





Meta-Learning: MAML

Pros:

- same learning rule at test time just run RL
- few-shot adaptation

Cons:

- need to enumerate tasks at meta-training time

Takeaways: Achieving Transfer in RL

Most popular RL benchmarks evaluate mastery, not generalization.

Approaches for transfer in RL

- 1. Task represented in the observation
- 2. Diversity for sim-to-real transfer
- 3. Reusing representations
- 4. Meta-learning

Not covered: catastrophic forgetting, options framework (Sutton, Precup, & Singh, '99)

Next time: Quoc Le & Barret Zoph (Google Brain)

