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Course Reminders:  
March 22nd: Project group & title due 
April 17th: Milestone report due & milestone presentations 
April 26th: Beginning of project presentations

2

Starting Wednesday: guest lectures



Deep Learning Success Stories

This course: deep learning for behavior

+ can handle raw sensory observations 
+ scales to diversity of the real-world

speech recognition object detection machine translation



Mnih et al., ’15, ‘16 Schulman et al. ‘16 Lillicrap et al., ‘16

Deep Reinforcement Learning

Yahya et al.  ‘17

train/test on 1 task in 1 environment, starting from scratch

Chebotar et al. ’17Levine*, Finn*, et al. ’15



Why Transfer?

Don’t start from scratch every time. 

Use cheap experience in simulation for learning real-world skills. 

Enable agent to effectively act in an environment it hasn’t seen before.



What is Transfer?
this lecture: 
transfer learning: using experience from one set of tasks for faster 
learning and/or better performance on a new task 

A broad notion of “task”: 
- varying objectives (reward) 
- varying robots (can affect state, action, and dynamics) 
- varying environments (can affect observation space, dynamics, reward) 

Often make assumptions about what will change across tasks.

many definitions

Note: can treat whole world as a single MDP (and not worry about transfer) 
*but* usually more efficient to model how the world changes



What is Transfer?

transfer learning: using experience from one set of tasks for faster 
learning and/or better performance on a new task 

Some terminology… 

source domain(s) -> target domain 

0-shot generalization: don’t use any data from target domain 

few-shot generalization: use small amount of data from target domain 

faster learning: use less data than training from scratch



How should we evaluate how well learning transfers?

Popular simulated benchmarks with no generalization evaluation

Brockman et al. ‘16Bellemare et al. ‘13

(Though, because these are well-known, people have  
used the environments to evaluate methods for transfer.)

For real robots: largely ad-hoc

Evaluating Transfer



Evaluating Transfer

Some recently proposed environments with diversity:

not yet released: Starcraft II (DeepMind)

communication-based tasks

wide range of video games
maze navigation

navigation, collaboration

DOOM video game

How should we evaluate how well learning transfers?

generally, no consensus on how to evaluate



Approach 0: Try it, and hope for the best
Sometimes, a policy trained in one domain will generalize in others 

but no reason for it to succeed with enough variation



Approach 0.5: Fine-tuning

Initialize with a policy trained on source task(s) and fine-tune on target task
works well with ImageNet pre-training, doesn’t seem to work well for RL*

Some potential reasons as for why: 
- We don’t have ImageNet for behavior 
- RL networks tend to be much smaller than vision networks 
- RL algorithms are unstable at beginning, when there is no data

*Note: a couple approaches discussed today will involve fine-tuning



Outline: Achieving Transfer in RL
1. Handling changes in reward 

a. task represented in the observation 
2. Handling changes in environment 

a. diversity for sim-to-real transfer 
3. Reusing representations 

a. progressive networks 
b. PathNet 
c. modular networks 

4. Meta-learning 
a. Learning to learn quickly 
b. Few-shot adaptation



Approach 1: Pass in Task Representation
Goal represented in observation, train policy across goals

Pros:  
- simple 
- 0-shot generalization to new goals
Cons:  
- need to densely sample goals for 

good generalization/transfer 
- task may be hard to represent

approach also applicable to differing objects/dynamics



Case Study: Multi-task Learning on Atari
Goal: learn a single policy that can play all Atari games

Note: no need to explicitly pass in task representation



Background: Ensembles & Distillation

Idea: “distill” knowledge from ensemble of networks into a single smaller network

Easy way to extract knowledge from training data: 
train many different models in parallel, then take the average prediction

slide adapted from Geoff Hinton

“ensemble”
how almost all ML competitions are won

but: expensive at test time…

train on soft targets:

average probabilities over models to get , further soften with temperature T



Case Study: Multi-task Learning on Atari
1. train N DQN agents on N tasks, simultaneously 
2. train single student network to mimic Boltzmann 

distribution of DQN agent  [distillation*]

*Hinton et al. ‘14



blue: single actor-mimic policy 
red: separate DQN policies Parisotto et al. ‘16

Case Study: Multi-task Learning on Atari



Case Study: Multi-task Learning

Pros: 
- Learn single policy for multiple tasks

Cons: 
- still need to train on each game for same amount of time 
- performance drops slightly from multi-task training (no transfer)

caveat: Atari games are likely not good for transfer



Memory for better Generalization in POMDPs

feedforward networks may be forced to memorize training environments

the wrong memory mechanism may also lead to memorization



Can improve generalization with appropriate memory mechanism

Memory for better Generalization in POMDPs



Pros: 
- easy to combine with other 

approaches 
Cons: 
- doesn’t completely solve the 

problem

Memory for better Generalization in POMDPs
Can improve generalization with appropriate memory mechanism



Outline: Achieving Transfer in RL
1. Handling changes in reward 

a. task represented in the observation 
2. Handling changes in environment 

a. diversity for sim-to-real transfer 
3. Reusing representations 

a. progressive networks 
b. PathNet 
c. modular networks 

4. Meta-learning 
a. Learning to learn quickly 
b. Few-shot adaptation



Transfer across Environments: Diversity
Case-Study: Simulation-to-real world transfer

vary textures & hallway geometries 



Case-Study: Simulation-to-real world transfer

After training entirely in simulation:



Case-Study: Simulation-to-real world transfer

object localization

vary object colors, lighting, camera angle



Case-Study: Simulation-to-real world transfer
object localization

the more diversity, the better!



Transfer across Environments: Diversity

Cons: 
- Content creation requires large engineering effort 
- No use of target domain data (not even unsupervised data) 
- Only demonstrated for shift in observation space                 

(not yet for dynamics/reward)

Pros: 
- works surprisingly well, 0-shot generalization to real world



Outline: Achieving Transfer in RL
1. Handling changes in reward 

a. task represented in the observation 
2. Handling changes in environment 

a. diversity for sim-to-real transfer 
3. Reusing representations 

a. progressive networks 
b. PathNet 
c. modular networks 

4. Meta-learning 
a. Learning to learn quickly 
b. Few-shot adaptation



Break



Outline: Achieving Transfer in RL
1. Handling changes in reward 

a. task represented in the observation 
2. Handling changes in environment 

a. diversity for sim-to-real transfer 
3. Reusing representations 

a. progressive networks 
b. PathNet 
c. modular networks 

4. Meta-learning 
a. Learning to learn quickly 
b. Few-shot adaptation



Reusing Representations: Progressive Networks
1. Train on new domain 
2. Freeze weights on that domain 
3. Reuse frozen representation on that domain when training on new domain 
4. Repeat

Rusu et al. ‘16



Reusing Representations: Progressive Networks
Variations on Pong

compared to scratch & fine-tuning

pong, river raid, seaquest
transfer from

Rusu et al. ‘16



Reusing Representations: Progressive Networks
Simulation (A3C) to Real World (A2C)

target reaching task

Rusu et al. ‘16



Reusing Representations: Progressive Networks
Pros: 

- effective 
- simple 
Cons: 
- dissatisfying: network grows larger 

and larger with each new domain 
(fixed topology) 

- experience in new domains doesn’t 
help old domains (unless you train 
on them again) 

- learning still fairly slow



Reusing Representations: PathNet

genetic algorithm select paths (which parameters to train) 
gradient-based RL (A3C) to learn parameter values

Contrast to progressive nets: “evolve” relationships between columns

Fernando et al. ‘17

1. Pick new task 
2. Evolve path through network and learn weights along path 
3. Freeze weights along evolved path 
4. Repeat, only changing unfrozen weights



PathNet

Fernando et al. ‘17



Reusing Representations: PathNet
Transfer from River Raid to other games:

red: scratch
green: fine-tuning

blue: PathNet



Reusing Representations: PathNet

Pros: 
- network size is fixed (and straight-forward to grow if needed) 
- effective combination of evolutionary & gradient-based learning 
Cons: 
- learning a new task is still fairly slow 
- experience in new domains doesn’t help old domains (unless 

you train on them again)



Reusing Representations: Modular Networks
Main Idea: transfer across robots/tasks by training modules for each 



Reusing Representations: Modular Networks
Main Idea: transfer across robots/tasks by training modules for each 

To prevent modules from overfitting to each other: dropout, bottleneck



Reusing Representations: Modular Networks

0-shot generalization to 
new combination



Reusing Representations: Modular Networks
0-shot

with 10 iterations of training



Reusing Representations: Modular Networks

Pros: 
- interpretable representation 
- can achieve 0-shot generalization in some cases, and if not, can fine-tune 
Cons: 
- need to limit information-passing & regularize for modular effect

Can we learn to adapt quickly?



Outline: Achieving Transfer in RL
1. Handling changes in reward 

a. task represented in the observation 
2. Handling changes in environment 

a. diversity for sim-to-real transfer 
3. Reusing representations 

a. progressive networks 
b. PathNet 
c. modular networks 

4. Meta-learning 
a. Learning to learn quickly 
b. Few-shot adaptation



Meta-Learning
Learn structure across tasks, such that learning on a new task is faster

Learn an update rule /  
generating weights

Bayesian Modeling

Memory-Augmentation

Schmidhuber ’87, ’92 
Bengio et al. ’90, ’92 
Ravi & Larochelle ’17 

Ha et al. ’17 
Li & Malik ’17 

Andrychowicz et al. ’17

Tenenbaum ’99, ‘00 
Fei-Fei et al. ’05, ’07 

Lake et al. ’11 
Edwards & Storkey ’17

Santoro et al., ’16 
Vinyals et al. ‘16 

[and more in the last month]



Meta-Learning: Learning Fast RL

Key idea: Train an RNN to learn in new MDPs



Meta-Learning: Learning Fast RL

slide adapted from Pieter Abbeel



Meta-Learning: Learning Fast RL
comparison to asymptotically optimal algorithms  

on correlated-arm bandit problems

trained on medium difficulty

test on hard difficultytest on medium difficulty
(arms less correlated)Wang et al. ‘17



Meta-Learning: Learning Fast RL

before meta-learning after meta-learning

Duan et al. ‘17



Meta-Learning: Learning Fast RL

Pros: 
- simple approach 
- can learn new tasks from the distribution seen during training 
Cons: 
- asking a lot of the LSTM 
- might not handle tasks from outside the distribution well  

(doesn’t reduce to running RL at test-time)



Key idea: Train over many tasks, to learn parameter vector θ that transfers

Fine-tuning:

Few-shot/Transfer learning: incorporate prior knowledge from other tasks for fast learning

Learning Few-Shot Adaptation

task

pretrained parameters

Our method:

[test-time]

51 Finn et al. ‘17



Model-Agnostic Meta-Learning

Learning Few-Shot Adaptation

optimal parameter  
vector for task i

parameter vector 
being meta-learned

Finn et al. ‘17



Fast Adaptation in Reinforcement Learning

1. run at goal velocity 
(continuous range of tasks) 

2. run forward or backward    
(2 tasks)

Locomotion problems:

meta-learner: TRPO 
learner: vanilla policy gradient (REINFORCE)

Baselines: oracle 
(gets task as input)

pretrain on all tasks random init

MAML

all: 20 roll-outs for learner update

Methods:

Finn et al. ‘17



walk/run at goal velocity

Finn et al. ‘17



run backward or forward

Finn et al. ‘17



Quantitative Results

anthalf-cheetah

Finn et al. ‘17
key finding: continues to improve with more updates



Few-Shot Image Classification

Mini-Imagenet

Omniglot

[1] Vinyals ’16   
[2] Ravi & Larochelle ’17

[1] Koch ’15 [3] Edwards & Storkey ’17  
[2] Vinyals et al. ’16 [4]  Kaiser  et al. ’17        

Finn et al. ‘17



Meta-Learning: MAML

Pros: 
- same learning rule at test time — just run RL 
- few-shot adaptation 
Cons: 
- need to enumerate tasks at meta-training time



Takeaways: Achieving Transfer in RL

1. Task represented in the observation 
2. Diversity for sim-to-real transfer 
3. Reusing representations 
4. Meta-learning

Most popular RL benchmarks evaluate mastery, not generalization.

Not covered: catastrophic forgetting, options framework (Sutton, Precup, & Singh, ‘99)

Approaches for transfer in RL

Next time: Quoc Le & Barret Zoph (Google Brain)




