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April 17th: Milestone report due & milestone presentations
April 26th: Beginning of project presentations

Starting Wednesday: guest lectures




Deep Learning Success Stories

RYF

speech recognition object detection machine translation

+ can handle raw sensory observations \/
+ scales to diversity of the real-world x

This course: deep learning for behavior



Deep Reinforcement Learning
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Why Transfer?

Don't start from scratch every time.
Use cheap experience in simulation for learning real-world skills.

Enable agent to effectively act in an environment it hasn't seen before.



What is Transfer?

many definitions
this lecture:

transfer learning: using experience from one set of tasks for faster
learning and/or better performance on a new task

A broad notion of “task”:

- varying objectives (reward)

- varying robots (can affect state, action, and dynamics)

- varying environments (can affect observation space, dynamics, reward)

Often make assumptions about what will change across tasks.

Note: can treat whole world as a single MDP (and not worry about transfer)
*but* usually more efficient to model how the world changes



What is Transfer?

transfer learning: using experience from one set of tasks for faster
learning and/or better performance on a new task

Some terminology...

source domain(s) -> target domain

0-shot generalization: don't use any data from target domain
few-shot generalization: use small amount of data from target domain

faster learning: use less data than training from scratch



Evaluating Transfer

How should we evaluate how well learning transfers?

For real robots: largely ad-hoc

Popular simulated benchmarks with no generalization evaluation

~A|E Brockman et al.’16

Bellemare et al.’13

(Though, because these are well-known, people have
used the environments to evaluate methods for transfer.)



Evaluating Transfer

How should we evaluate how well learning transfers?

Some recently proposed environments with diversity:

* LS IR

PROJECT MALMO PUBLIC

navigation, collaboration DeepMind Lab
Mmaze navigation

T .

DOOM video game  communication-based tasks

wide range of video games

not yet released: Starcraft || (DeepMind)

generally, no consensus on how to evaluate



Approach O: Try it, and hope for the best

Sometimes, a policy trained in one domain will generalize in others
but no reason for it to succeed with enough variation

Failure Modes




Approach 0.5: Fine-tuning

Initialize with a policy trained on source task(s) and fine-tune on target task
works well with ImageNet pre-training, doesn’t seem to work well for RL*

Some potential reasons as for why:
- We don't have ImageNet for behavior
RL networks tend to be much smaller than vision networks
RL algorithms are unstable at beginning, when there is no data

*Note: a couple approaches discussed today will involve fine-tuning



Outline: Achieving Transfer in RL

1. Handling changes in reward

a. task represented in the observation
2. Handling changes in environment

a. diversity for sim-to-real transfer
3. Reusing representations

a. progressive networks

b. PathNet

Cc. modular networks
4. Meta-learning

a. Learning to learn quickly

b. Few-shot adaptation



Approach 1: Pass in Task Representation

Goal represented in observation, train policy across goals

... v‘ Pros:

- simple

B - 0-shot generalization to new goals
} Cons:

B - need to densely sample goals for
good generalization/transfer

- task may be hard to represent

approach also applicable to differing objects/dynamics



Case Study: Multi-task Learning on Atari

Goal: learn a single policy that can play all Atari games

POLICY DISTILLATION

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Giilcehre; Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu & Raia Hadsel

Google DeepMind
ACTOR-MIMIC
DEEP MULTITASK AND TRANSFER REINFORCEMENT
LLEARNING

Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov
Department of Computer Science
University of Toronto

Note: no need to explicitly pass in task representation



Background: Ensembles & Distillation

Easy way to extract knowledge from training data:
train many different models in parallel, then take the average prediction

“ensemble”
how almost all ML competitions are won

but: expensive at test time...

ldea: “distill” knowledge from ensemble of networks into a single smaller network
train on soft targets:
° exp(z;/T)

P S exp(z;/T)

average probabilities over models to get z;, further soften with temperature T

slide adapted from Geoff Hinton



Case Study: Multi-task Learning on Atari

1. train N DQN agents on N tasks, simultaneously

2. train single student network to mimic Boltzmann
distribution of DQN agent [distillation*]

7TE7L (a’l 8) — Z eT—leEi (S,CL’) ‘C’,zi?olz'cy (9) — Z 7TEz’ (a"s) ]'Og 7TAMN (a’| S; 9)
a/ GAEi G’EAE?;
" oniine Data Collection ¢ Supervised Policy Training |
' : Target Predicted

Output Output

Input States,

Game Labels &
Target Outputs

Input State &

Policy Net (Student)
Game Label

S T S ? *Hinton et al.’14



Case Study: Multi-task Learnmg on Atari
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Case Study: Multi-task Learning

Pros:
- Learn single policy for multiple tasks

Cons:
- still need to train on each game for same amount of time
- performance drops slightly from multi-task training (no transfer)

caveat: Atari games are likely not good for transfer



Memory for better Generalization in POMDPs

Control of Memory, Active Perception, and Action in Minecraft

Junhyuk Oh JUNHYUK @UMICH.EDU
Valliappa Chockalingam VALLI@ UMICH.EDU
Satinder Singh BAVEJA @ UMICH.EDU
Honglak Lee HONGLAK @ UMICH.EDU

Computer Science & Engineering, University of Michigan

feedforward networks may be forced to memorize training environments

the wrong memory mechanism may also lead to memorization



Memory for better Generalization in POMDPs

Can improve generalization with appropriate memory mechanism
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TRAIN UNSEEN
DQN 62.9% (£3.4%) | 60.1% (+2.8%)
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Memory for better Generalization in POMDPs

Can improve generalization with appropriate memory mechanism

— Q —Q ——Q Pros:
Q 0 Me%my Me%my MTLTW - easy to combine with other
T P
Context Context'\) 1 Context . Conter . Conter d p p roac h SN
I CNN [ CNN I CNN I CNN I CNN Cons:

- doesn’t completely solve the
problem
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Outline: Achieving Transfer in RL

2. Handling changes in environment
a. diversity for sim-to-real transfer
3. Reusing representations
a. progressive networks
b. PathNet
Cc. modular networks
4. Meta-learning
a. Learning to learn quickly
b. Few-shot adaptation



Transfer across Environments: Diversity

Case-Study: Simulation-to-real world transfer

(CAD)’RL: Real Single-Image Flight without a Single Real Image

Fereshteh Sadeghi! and Sergey Levine?

Collision
with wall

B
';. ““ k

Collision

Environment S | @ with Furniture

feedback

vary textures & hallway geometries



Case-Study: Simulation-to-real world transfer

After training entirely in simulation:

2
(CAD) RL :Real Indoor Flight

Various real world scenarios
- Navigate through Hallways
- Avoid General Obstacles




Case-Study: Simulation-to-real world transfer

Domain Randomization for Transferring Deep Neural Networks from
Simulation to the Real World

Josh Tobin!, Rachel Fong?, Alex Ray?, Jonas Schneider?, Wojciech Zaremba?, Pieter Abbeel?

object localization

vary object colors, lighting, camera angle



Case-Study: Simulation-to-real world transfer

object localization

the more diversity, the better!
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Transfer across Envwonments Dlver5|ty
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Pros:

C_ works surprisingly well, 0-shot generalization to real world
ons:

- Content creation requires large engineering effort
- No use of target domain data (not even unsupervised data)

- Only demonstrated for shift in observation space
(not yet for dynamics/reward)



Outline: Achieving Transfer in RL

3. Reusing representations
a. progressive networks
b. PathNet
c. modular networks

4. Meta-learning
a. Learning to learn quickly
b. Few-shot adaptation




Break



Outline: Achieving Transfer in RL

3. Reusing representations
a. progressive networks
b. PathNet
c. modular networks

4. Meta-learning
a. Learning to learn quickly
b. Few-shot adaptation




Reusing Representations: Progressive Networks

1. Train on new domain

2. Freeze weights on that domain

3. Reuse frozen representation on that domain when training on new domain
4. Repeat

source task

target task

random
input input — — =

(5) Progressive Net (6) Progressive Net

frozen
2 columns 3 columns

Rusu et al.’16



Reusing Representations: Progressive Networks

Variations on Pong

Pong to White Pong to H-flip

I ' I 20 Prog?2

- v f
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g \, 1 Base3 H.'
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I : SLEps e ’ steps tel
compared to scratch & fine-tuning
transfer from ; . L

pong, river raid, seaquest argeL boxing ) Prog4
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...............

A . S Rusu et al.’16




Reusing Representations: Progressive Networks

Simulation (A3C) to Real World (A2C)
target reaching task

Real-robot-trained progressive nets vs. baselines

35
25 '
r ‘ !

- \Nide column (progressive)

| =ry = ~ = Narrow column (progressive)
- | = = \Wide column (finetuned)
| ' _ = Narrow column (from scratch)
."L ’,’ ‘

=
Ul

Rewards

[

5 = =+ Wide column (from scratch)

0 10000 20000 30000 40000 50000 60000
Steps

Rusu et al.”16



Reusing Representations: Progressive Networks

Pros:

- effective outputs output

_ simple A 'a,_é EN

Cons: » .

- dissatisfying: network grows larger B B
and larger with each new domain v B 4
(fixed topology) L

- experience in new domains doesn't % hi” by’
help old domains (unless you train T f/'
on them again) s

- learning still fairly slow



Reusing Representations: PathNet

Contrast to progressive nets: “evolve” relationships between columns

1. Pick new task

2. Evolve path through network and learn weights along path
3. Freeze weights along evolved path

4. Repeat, only changing unfrozen weights

genetic algorithm select paths (which parameters to train)
gradient-based RL (A3C) to learn parameter values

Fernando et al.”17



16e7 steps

8e7 steps

7%

Fernando et al



Reusing Representations: PathNet

Transfer from River Raid to other games:
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Reusing Representations: PathNet

Pros:

- network size is fixed (and straight-forward to grow if needed)

- effective combination of evolutionary & gradient-based learning
Cons:

- learning a new task is still fairly slow

- experience in new domains doesn’t help old domains (unless
you train on them again)



Reusing Representations: Modular Networks

Main ldea: transfer across robots/tasks by training modules for each

Traditional: One policy per

e Modular Policy Network
robot-task combination

action action

. ) 4 Y
Robot Reuse with
Specific other tasks
A Y
g R
Task Reuse with
Specific other robots
o / = Y,

state

state



Reusing Representations: Modular Networks

Main ldea: transfer across robots/tasks by training modules for each

8 O 8

Actions  Gradients Actions Gradients Act|ons Gradients

b Py :

- D

- - - Y
A v

~ R C R
Task 1 Task 1

\_ ) 0 T )

To prevent modules from overfitting to each other: dropout, bottleneck

Robot 2




Reusing Representations: Modular Networks

Robots

Tasks

3li

nk

3link different config

4link

Unseen World

0-shot generalization to
new combination

Goal is to push block to target

4




Reusing Representations: Modular Networks

0-shot

with 10 iterations of trainin




Reusing Representations: Modular Networks

Pros:

- interpretable representation

- can achieve 0-shot generalization in some cases, and if not, can fine-tune
Cons:

- need to limit information-passing & reqgularize for modular effect

Can we learn to adapt quickly?



Outline: Achieving Transfer in RL

4. Meta-learning
a. Learning to learn quickly
b. Few-shot adaptation




Meta-Learning

Learn structure across tasks, such that learning on a new task is faster

Learn an update rule / Bayesian Modeling
generating weights Tenenbaum "99,°00
Schmidhuber ‘87,792 Fei-Fei et al. '05,'07

Bengio et al. '90, 92 Lake et al. "11
Ravi & Larochelle 17 Edwards & Storkey "17
Haetal.'17 Memory-Augmentation
Li & Malik "17 Santoro etal, '16
Andrychowicz et al. "17 Vinyals et al.’16

[and more in the last month]



Meta-Learning: Learning Fast RL

RL%: FAST REINFORCEMENT LEARNING VIA SLOW
REINFORCEMENT LEARNING

Yan Duan'#, John Schulman'*, Xi Chen'#, Peter L. Bartlett’, Ilya Sutskever?, Pieter Abbeel'*

I UC Berkeley, Department of Electrical Engineering and Computer Science
t OpenAl

[LEARNING TO REINFORCEMENT LEARN

JX Wang', Z Kurth-Nelson', D Tirumala’, H Soyer', JZ Leibo’,
R Munos', C Blundell’, D Kumaran'-®, M Botvinick'*?

1DeepMind, London, UK

2Gatsby Computational Neuroscience Unit, UCL, London, UK
SInstitute of Cognitive Neuroscience, UCL, London, UK

Key idea: Train an RNN to learn in new MDPs



Meta-Learning: Learning Fast RL

Representation of the fast RL algorithm:

= RNN =generic computation architecture
= different weights in the RNN means different RL algorithm

= different activations in the RNN means different current policy
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slide adapted from Pieter Abbeel



Meta-Learning: Learning Fast RL

comparison to asymptotically optimal algorithms
on correlated-arm bandit problems

trained on medium difficulty

— LSTM A2C “Medium” 4 — LSTM A2C*Medium” s

T 3 ...Gittins ---%i‘ttins ''''''
= +  ==Thompson So”
o -=Thompson D Tho P I--
7 UCB S >3

? Conmanse o
v U v
o I’ 2
& / 5 2

-

=L S S S E
a ;/‘.-_..-- O 1

0 20 40 60 80 100 20 40 60 80 100

test on medium difficulty test on hard difficulty

Wang etal. 17 (arms less correlated)



Meta-Learning: Learning Fast RL

before meta-learning after meta-learning

Duanetal. ‘17



Meta-Learning: Learning Fast RL

Pros:

- simple approach

- can learn new tasks from the distribution seen during training
Cons:

- asking a lot of the LSTM

- might not handle tasks from outside the distribution well
(doesn’t reduce to running RL at test-time)



Learning Few-Shot Adaptation

Few-shot/Transfer learning: incorporate prior knowledge from other tasks for fast learning

K pretrained parameters

Fine-tuning: 0 < 0 — aVQET(Q)
[test-time] ‘\_/ task

Our method: m@int Ek:T L0 — aVeLr(6))

Key idea: Train over many tasks, to learn parameter vector O that transfers

. Finnetal.”17



Learning Few-Shot Adaptation

m@int Z};T L0 — aVoLr(6))

— Mmeta-learning

9 parameter vector 9 ---- |learning/adaptation

being meta-learned

* optimal parameter
1 vector for task i VL,

¥ 4 \\
x // “\ 0*
0 0
1 y

Model-Agnostic Meta-Learning Finn etal.”17



Fast Adaptation in Reinforcement Learning

Locomotion problems: ,
run at goal velocity

1.
(continuous range of tasks)
2. run forward or backward
(2 tasks)
Methods:

MAML meta-learner: TRPO
learner: vanilla policy gradient (REINFORCE)

Baselines: ~oracle pretrain on all tasks: random |n|t

(gets task as input)l

all: 20 roll-outs for learner update o et al 117



walk/run at goal velocity
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Finnetal.’17



run backward or forward

random Inlﬂo g-rafent_steﬁ
.

Finnetal.’17



Quantitative Results

half-cheetah ant

40

average return
N
-

average return

20

3
- *— MAML (ours ! N )
number of gradient steps ,( ) number of gradient steps
--a-- pretrained

—-%-= Oracle

key finding: continues to improve with more updates

Finnetal.’17



Few-Shot Image Classification

| B siamese

3.0% Omnialot networks [1

5-way J 20-way 1]

B matching

86 2.3% 9.0% networks [2]

t = neural

L 1.5% 6.0% statistician [3]

4o

0 B memory

L 0.8% I 3.0% module [4]
I...- N MAML

0.0% .. 0.0%

1-shot 5-shot shot 5-shot
[1] Koch "15 [3] Edwards & Storkey 17

i [2] Vinyals et al. "16 [4] Kaiser etal.’17
60.0% Mini-lmagenet
B matching

45.0%
networks [1]
Bl LsT™
30.0% optimizer [2]
MAML
15.0% -
[1] Vinyals 16
0.0% 2] Ravi & Larochelle "17 Finn et al. 17

5-way 1-shot 5-way 5-shot

Test error




Meta-Learning: MAML

Pros:

- same learning rule at test time — just run RL

- few-shot adaptation

Cons:

- need to enumerate tasks at meta-training time



Takeaways: Achieving Transfer in RL

Most popular RL benchmarks evaluate mastery, not generalization.

Approaches for transfer in RL

1. Task represented in the observation
2. Diversity for sim-to-real transfer

3. Reusing representations

4. Meta-learning

Not covered.: catastrophic forgetting, options framework (Sutton, Precup, & Singh, ‘99)

Next time: Quoc Le & Barret Zoph (Google Brain)






