
Asynchronous & Parallel Algorithms

Sergey Levine

UC Berkeley



1. We learned about a number of policy search methods

2. These algorithms have all been sequential

3. Is there a natural way to parallelize RL algorithms?
• Experience sampling vs learning

• Multiple learning threads

• Multiple experience collection threads

Overview



1. High-level schematic of a generic RL algorithm

2. What can we parallelize?

3. Case studies: specific parallel RL methods

4. Tradeoffs & considerations

• Goals
• Understand the high-level anatomy of reinforcement learning algorithms

• Understand standard strategies for parallelization

• Tradeoffs of different parallel methods

Today’s Lecture

REMINDER: PROJECT GROUPS DUE TODAY! SEND TITLE & GROUP MEMBERS TO
berkeleydeeprlcourse@gmail.com 



High-level RL schematic

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Which parts are slow?

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

real robot/car/power 
grid/whatever:
1x real time, until we 
invent time travel

MuJoCo simulator:
up to 10000x real time

trivial, fast

expensive, but non-
trivial to parallelize

trivial, nothing to do

expensive, but non-
trivial to parallelize



Which parts can we parallelize?

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

parallel SGD

parallel SGD

Helps to group data generation and training
(worker generates data, computes gradients, and gradients are pooled)



High-level decisions

1. Online or batch-mode?

2. Synchronous or asynchronous?

generate samples

generate samples

generate samples

policy gradient

generate one step

generate one step

generate one step

fit Q-value

fit Q-value

fit Q-value



Relationship to parallelized SGD

fit a model/ 
estimate the return

improve the policy

1. Parallelizing model/critic/actor training typically 
involves parallelizing SGD

2. Simple parallel SGD:
1. Each worker has a different slice of data
2. Each worker computes gradients, sums them, sends to 

parameter server
3. Parameter server sums gradients from all workers and 

sends back new parameters

3. Mathematically equivalent to SGD, but not 
asynchronous (communication delays)

4. Async SGD typically does not achieve perfect 
parallelism, but lack of locks can make it much faster

5. Somewhat problem dependentDai et al. ‘15



Simple example: sample parallelism with PG

generate samples

generate samples

generate samples

policy gradient

(1) (2, 3, 4)



Simple example: sample parallelism with PG

generate samples

generate samples

generate samples

(1)

evaluate reward

evaluate reward

evaluate reward

(2)

policy gradient

(3, 4)



Simple example: sample parallelism with PG

generate samples

generate samples

generate samples

(1)

evaluate reward

evaluate reward

evaluate reward

(2)

compute gradient

compute gradient

compute gradient

sum & apply 
gradient

(4)(3)

Dai et al. ‘15



What if we add a critic?

samples & rewards

samples & rewards

(1, 2)

critic gradients

critic gradients

(3)

sum & apply critic 
gradient

(3)

see John’s actor-critic lecture
for what the options here are

policy gradients

policy gradients

sum & apply policy 
gradient

(4) (5)
costly synchronization



What if we add a critic?

see John’s actor-critic lecture
for what the options here are

samples & rewards

samples & rewards

(1, 2)

critic gradients

critic gradients

(3)

sum & apply critic 
gradient

(3)

policy gradients

policy gradients

sum & apply policy 
gradient

(4) (5)



What if we run online?

samples & rewards

samples & rewards

(1, 2)

critic gradients

critic gradients

(3)

sum & apply critic 
gradient

(3)

policy gradients

policy gradients

sum & apply policy 
gradient

(4) (5)

only the parameter update
requires synchronization (actor + critic params)



Actor-critic algorithm: A3C

• Some differences vs DQN, DDPG, etc:
• No replay buffer, instead rely on diversity of samples from 

different workers to decorrelate
• Some variability in exploration between workers

• Pro: generally much faster in terms of wall clock

• Con: generally must slower in terms of # of samples (more 
on this later…)

Mnih et al. ‘16



Actor-critic algorithm: A3C

20,000,000 steps

DDPG:

1,000,000 steps

more on this later…



Model-based algorithms: parallel GPS

[parallelize sampling]

[parallelize dynamics]

[parallelize LQR]

[parallelize SGD]

Local policy optimization Global policy optimization

Rollout execution

(1)

(2, 3) (4)

(1)

(2, 3)

(4)

Yahya, Li, Kalakrishnan, Chebotar, L., ‘16



Model-based algorithms: parallel GPS



Real-world model-free deep RL: parallel NAF

Gu*, Holly*, Lillicrap, L., ‘16



Simplest example: sample parallelism with 
off-policy algorithms

sample

sample

sample

grasp success 
predictor training



Break



Challenges in Deep Reinforcement Learning

Sergey Levine

UC Berkeley



1. High-level summary of deep RL challenges

2. Stability

3. Sample complexity

4. Scaling up & generalization

5. Reward specification

• Goals
• Understand the open problems in deep RL

• Understand tradeoffs between different algorithms

Today’s Lecture



Deep Q-Networks
Mnih et al.
2013

Guided policy search
Levine et al.
2013

RL on raw visual input
Lange et al.
2009

Deep deterministic policy gradients
Lillicrap et al.
2015

Trust region policy optimization
Schulman et al.
2015

Some recent work on deep RL

End-to-end visuomotor policies
Levine*, Finn* et al.
2015

Supersizing self-supervision
Pinto & Gupta
2016

stability efficiency scale

AlphaGo
Silver et al.
2016



Stability and hyperparameter tuning

• Devising stable RL algorithms is very hard

• Q-learning/value function estimation
• Fitted Q/fitted value methods with deep network function 

estimators are typically not contractions, hence no guarantee 
of convergence

• Lots of parameters for stability: target network delay, replay 
buffer size, clipping, sensitivity to learning rates, etc.

• Policy gradient/likelihood ratio/REINFORCE
• Very high variance gradient estimator
• Lots of samples, complex baselines, etc.
• Parameters: batch size, learning rate, design of baseline

• Model-based RL algorithms
• Model class and fitting method
• Optimizing policy w.r.t. model non-trivial due to 

backpropagation through time



Tuning hyperparameters

• Get used to running multiple hyperparameters
• learning_rate = [0.1, 0.5, 1.0, 5.0, 20.0]

• Grid layout for hyperparameter sweeps OK when 
sweeping 1 or 2 parameters

• Random layout generally more optimal, the only viable 
option in higher dimensions

• Don’t forget the random seed!
• RL is self-reinforcing, very likely to get local optima

• Don’t assume it works well until you test a few random seeds

• Remember that random seed is not a hyperparameter!



The challenge with hyperparameters

• Can’t run hyperparameter sweeps in the real 
world
• How representative is your simulator? Usually the 

answer is “not very”

• Actual sample complexity = time to run 
algorithm x number of runs to sweep
• In effect stochastic search + gradient-based 

optimization

• Can we develop more stable algorithms that 
are less sensitive to hyperparameters?



What can we do?

• Algorithms with favorable improvement and convergence properties
• Trust region policy optimization [Schulman et al. ‘16]

• Safe reinforcement learning, High-confidence policy improvement [Thomas ‘15]

• Algorithms that adaptively adjust parameters
• Q-Prop [Gu et al. ‘17]: adaptively adjust strength of control variate/baseline

• More research needed here!

• Not great for beating benchmarks, but absolutely essential to make RL a 
viable tool for real-world problems



Sample Complexity



model-based deep RL
(e.g. guided policy search)

model-based “shallow” RL
(e.g. PILCO)

replay buffer value estimation methods
(Q-learning, DDPG, NAF, etc.)

policy gradient methods
(e.g. TRPO)

fully online methods
(e.g. A3C)

gradient-free methods
(e.g. NES, CMA, etc.)

100,000,000 steps
(100,000 episodes)
(~ 15 days real time)

Wang et al. ‘17

TRPO+GAE (Schulman et al. ‘16)

half-cheetah (slightly different version)

10,000,000 steps
(10,000 episodes)
(~ 1.5 days real time)half-cheetah

Gu et al. ‘16

1,000,000 steps
(1,000 episodes)
(~ 3 hours real time)

Chebotar et al. ’17 (note log scale)

10x gap

about 20 minutes of 
experience on a real 
robot

10x

10x

10x

10x

10x



What about more realistic tasks?

• Big cost paid for dimensionality

• Big cost paid for using raw images

• Big cost in the presence of real-world diversity 
(many tasks, many situations, etc.)



The challenge with sample complexity

• Need to wait for a long time for your 
homework to finish running

• Real-world learning becomes difficult or 
impractical

• Precludes the use of expensive, high-fidelity 
simulators

• Limits applicability to real-world problems



What can we do?

• Better model-based RL algorithms

• Design faster algorithms
• Q-Prop (Gu et al. ‘17): policy gradient algorithm that is as fast as value estimation

• Learning to play in a day (He et al. ‘17): Q-learning algorithm that is much faster 
on Atari than DQN

• Reuse prior knowledge to accelerate reinforcement learning
• RL2: Fast reinforcement learning via slow reinforcement learning (Duan et al. ‘17)

• Learning to reinforcement learning (Wang et al. ‘17)

• Model-agnostic meta-learning (Finn et al. ‘17)



Scaling up deep RL & generalization

• Large-scale

• Emphasizes diversity

• Evaluated on generalization

• Small-scale

• Emphasizes mastery

• Evaluated on performance

• Where is the generalization?



Generalizing from massive experience

Pinto & Gupta, 2015

Levine et al. 2016



Generalizing from multi-task learning

• Train on multiple tasks, then try to generalize or finetune
• Policy distillation (Rusu et al. ‘15)

• Actor-mimic (Parisotto et al. ‘15)

• Model-agnostic meta-learning (Finn et al. ‘17)

• many others…

• Unsupervised or weakly supervised learning of diverse behaviors
• Stochastic neural networks (Florensa et al. ‘17)

• Reinforcement learning with deep energy-based policies (Haarnoja et al. ‘17)

• many others…



Generalizing from prior knowledge & 
experience

• Can we get better generalization by leveraging off-policy data?

• Model-based methods: perhaps a good avenue, since the model (e.g. 
physics) is more task-agnostic

• What does it mean to have a “feature” of decision making, in the same 
sense that we have “features” in computer vision?
• Options framework (mini behaviors)

• Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement 
learning (Sutton et al. ’99)

• The option-critic architecture (Bacon et al. ‘16)

• Muscle synergies & low-dimensional spaces
• Unsupervised learning of sensorimotor primitives (Todorov & Gahramani ’03)



Reward specification

• If you want to learn from many 
different tasks, you need to get those 
tasks somewhere!

• Learn objectives/rewards from 
demonstration (inverse 
reinforcement learning)

• Generative objectives automatically?


