Asynchronous & Parallel Algorithms

Sergey Levine UC Berkeley

Overview

- 1. We learned about a number of policy search methods
- 2. These algorithms have all been *sequential*
- 3. Is there a natural way to parallelize RL algorithms?
 - Experience sampling vs learning
 - Multiple learning threads
 - Multiple experience collection threads

Today's Lecture

- 1. High-level schematic of a generic RL algorithm
- 2. What can we parallelize?
- 3. Case studies: specific parallel RL methods
- 4. Tradeoffs & considerations
- Goals
 - Understand the high-level anatomy of reinforcement learning algorithms
 - Understand standard strategies for parallelization
 - Tradeoffs of different parallel methods

REMINDER: PROJECT GROUPS DUE TODAY! SEND TITLE & GROUP MEMBERS TO berkeleydeeprlcourse@gmail.com

High-level RL schematic

Which parts are slow?

Which parts can we parallelize?

Helps to group data generation and training (worker generates data, computes gradients, and gradients are pooled)

High-level decisions

- 1. Online or batch-mode?
- 2. Synchronous or asynchronous?

Relationship to parallelized SGD

- 1. Parallelizing model/critic/actor training typically involves parallelizing SGD
- 2. Simple parallel SGD:
 - 1. Each worker has a different slice of data
 - 2. Each worker computes gradients, sums them, sends to parameter server
 - 3. Parameter server sums gradients from all workers and sends back new parameters
- 3. Mathematically equivalent to SGD, but not asynchronous (communication delays)
- 4. Async SGD typically does not achieve perfect parallelism, but lack of locks can make it much faster
- 5. Somewhat problem dependent

Simple example: sample parallelism with PG

- 1. collect samples $\tau_i = \{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_T^i, \mathbf{a}_T^i\}$ by running $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ N times
- 2. compute $r_i = r(\tau_i)$
- 3. compute $\nabla_i = \left(\sum_t \nabla_\theta \log \pi_\theta(\mathbf{a}_t^i | \mathbf{s}_t^i)\right) (r_i b)$
- 4. update: $\theta \leftarrow \theta + \alpha \sum_i \nabla_i$

Simple example: sample parallelism with PG

- 1. collect samples $\tau_i = \{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_T^i, \mathbf{a}_T^i\}$ by running $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ N times
- 2. compute $r_i = r(\tau_i)$
- 3. compute $\nabla_i = \left(\sum_t \nabla_\theta \log \pi_\theta(\mathbf{a}_t^i | \mathbf{s}_t^i)\right) (r_i b)$
- 4. update: $\theta \leftarrow \theta + \alpha \sum_i \nabla_i$

Simple example: sample parallelism with PG

- 1. collect samples $\tau_i = \{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_T^i, \mathbf{a}_T^i\}$ by running $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ N times
- 2. compute $r_i = r(\tau_i)$
- 3. compute $\nabla_i = \left(\sum_t \nabla_\theta \log \pi_\theta(\mathbf{a}_t^i | \mathbf{s}_t^i)\right) (r_i b)$
- 4. update: $\theta \leftarrow \theta + \alpha \sum_i \nabla_i$

What if we add a critic?

- 1. collect samples $\tau_i = \{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_T^i, \mathbf{a}_T^i\}$ by running $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ N times
- 2. compute $r_i = r(\tau_i)$

3. update $\hat{A}_{\phi}(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i})$ with regression to target values \leftarrow see John's actor-critic lecture 4. compute $\nabla_{i} = \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i})\right) \hat{A}_{\phi}(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i})$

5. update: $\theta \leftarrow \theta + \alpha \sum_i \nabla_i$

What if we add a critic?

- 1. collect samples $\tau_i = {\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_T^i, \mathbf{a}_T^i}$ by running $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ N times
- 2. compute $r_i = r(\tau_i)$

3. update $\hat{A}_{\phi}(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i})$ with regression to target values \leftarrow see John's actor-critic lecture 4. compute $\nabla_{i} = \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i})\right) \hat{A}_{\phi}(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i})$

5. update: $\theta \leftarrow \theta + \alpha \sum_i \nabla_i$

What if we run online?

- 1. collect sample $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i)$ by running $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ for 1 step
- 2. compute $r_i = r(\mathbf{s}_i, \mathbf{a}_i)$
- 3. update $\hat{A}_{\phi}(\mathbf{s}_t^i, \mathbf{a}_t^i)$ with regression to target values

4. compute
$$\nabla_i = \nabla_\theta \log \pi_\theta(\mathbf{a}^i | \mathbf{s}^i) \hat{A}_\phi(\mathbf{s}^i, \mathbf{a}^i)$$

5. update: $\theta \leftarrow \theta + \alpha \sum_i \nabla_i$

only the parameter update requires synchronization (actor + critic params)

Actor-critic algorithm: A3C

- 1. collect sample $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i)$ by running $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ for 1 step
- 2. compute $r_i = r(\mathbf{s}_i, \mathbf{a}_i)$
- 3. update $\hat{A}_{\phi}(\mathbf{s}_t^i, \mathbf{a}_t^i)$ with regression to target values
- 4. compute $\nabla_i = \nabla_\theta \log \pi_\theta(\mathbf{a}^i | \mathbf{s}^i) \hat{A}_\phi(\mathbf{s}^i, \mathbf{a}^i)$
- 5. update: $\theta \leftarrow \theta + \alpha \sum_i \nabla_i$ (only do this every *n* steps)

- Some differences vs DQN, DDPG, etc:
 - No replay buffer, instead rely on diversity of samples from different workers to decorrelate
 - Some variability in exploration between workers
- Pro: generally much faster in terms of wall clock
- Con: generally must slower in terms of # of samples (more on this later...)

Mnih et al. '16

Actor-critic algorithm: A3C

Model-based algorithms: parallel GPS

- 1. get N samples τ_i by running $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ N times for each initial state \mathbf{s}_0^j
- 2. fit local models for each initial state
- 3. use LQR to get updated local policies $p_j(\mathbf{a}_t|\mathbf{s}_t)$ for each initial state \mathbf{s}_0^j
- 4. update policy $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ by imitating all $p_j(\mathbf{a}_t | \mathbf{s}_t)$

[parallelize sampling]
[parallelize dynamics]
[parallelize LQR]
[parallelize SGD]
3)

Yahya, Li, Kalakrishnan, Chebotar, L., '16

Model-based algorithms: parallel GPS

Real-world model-free deep RL: parallel NAF

NAF Architecture.

$$Q(\mathbf{x}, \mathbf{u} | \boldsymbol{\theta}^{Q}) = A(\mathbf{x}, \mathbf{u} | \boldsymbol{\theta}^{A}) + V(\mathbf{x} | \boldsymbol{\theta}^{V})$$
$$A(\mathbf{x}, \mathbf{u} | \boldsymbol{\theta}^{A}) = -\frac{1}{2} (\mathbf{u} - \boldsymbol{\mu}(\mathbf{x} | \boldsymbol{\theta}^{\mu}))^{T} \boldsymbol{P}(\mathbf{x} | \boldsymbol{\theta}^{P}) (\mathbf{u} - \boldsymbol{\mu}(\mathbf{x} | \boldsymbol{\theta}^{\mu}))$$

Gu*, Holly*, Lillicrap, L., '16

Simplest example: sample parallelism with off-policy algorithms

Break

Challenges in Deep Reinforcement Learning

Sergey Levine UC Berkeley

Today's Lecture

- 1. High-level summary of deep RL challenges
- 2. Stability
- 3. Sample complexity
- 4. Scaling up & generalization
- 5. Reward specification
- Goals
 - Understand the open problems in deep RL
 - Understand tradeoffs between different algorithms

Some recent work on deep RL

Trust region policy optimization Schulman et al. 2015

Supersizing self-supervision Pinto & Gupta 2016

Stability and hyperparameter tuning

- Devising stable RL algorithms is very hard
- Q-learning/value function estimation
 - Fitted Q/fitted value methods with deep network function estimators are typically not contractions, hence no guarantee of convergence
 - Lots of parameters for stability: target network delay, replay buffer size, clipping, sensitivity to learning rates, etc.
- Policy gradient/likelihood ratio/REINFORCE
 - Very high variance gradient estimator
 - Lots of samples, complex baselines, etc.
 - Parameters: batch size, learning rate, design of baseline
- Model-based RL algorithms
 - Model class and fitting method
 - Optimizing policy w.r.t. model non-trivial due to backpropagation through time

Tuning hyperparameters

- Get used to running multiple hyperparameters
 - learning_rate = [0.1, 0.5, 1.0, 5.0, 20.0]
- Grid layout for hyperparameter sweeps OK when sweeping 1 or 2 parameters
- Random layout generally more optimal, the only viable option in higher dimensions
- Don't forget the random seed!
 - RL is self-reinforcing, very likely to get local optima
 - Don't assume it works well until you test a few random seeds
 - Remember that random seed is not a hyperparameter!

The challenge with hyperparameters

- Can't run hyperparameter sweeps in the real world
 - How representative is your simulator? Usually the answer is "not very"
- Actual sample complexity = time to run algorithm x number of runs to sweep
 - In effect stochastic search + gradient-based optimization
- Can we develop more stable algorithms that are less sensitive to hyperparameters?

What can we do?

- Algorithms with favorable improvement and convergence properties
 - Trust region policy optimization [Schulman et al. '16]
 - Safe reinforcement learning, High-confidence policy improvement [Thomas '15]
- Algorithms that adaptively adjust parameters
 - Q-Prop [Gu et al. '17]: adaptively adjust strength of control variate/baseline

- More research needed here!
- Not great for beating benchmarks, but absolutely essential to make RL a viable tool for real-world problems

Sample Complexity

What about more realistic tasks?

- Big cost paid for dimensionality
- Big cost paid for using raw images
- Big cost in the presence of real-world diversity (many tasks, many situations, etc.)

The challenge with sample complexity

- Need to wait for a long time for your homework to finish running
- Real-world learning becomes difficult or impractical
- Precludes the use of expensive, high-fidelity simulators
- Limits applicability to real-world problems

What can we do?

- Better model-based RL algorithms
- Design faster algorithms
 - Q-Prop (Gu et al. '17): policy gradient algorithm that is as fast as value estimation
 - Learning to play in a day (He et al. '17): Q-learning algorithm that is much faster on Atari than DQN
- Reuse prior knowledge to accelerate reinforcement learning
 - RL2: Fast reinforcement learning via slow reinforcement learning (Duan et al. '17)
 - Learning to reinforcement learning (Wang et al. '17)
 - Model-agnostic meta-learning (Finn et al. '17)

Scaling up deep RL & generalization

- Large-scale
- Emphasizes diversity
- Evaluated on generalization

- Small-scale
- Emphasizes mastery
- Evaluated on performance
- Where is the generalization?

Generalizing from massive experience

Levine et al. 2016

Pinto & Gupta, 2015

Generalizing from multi-task learning

- Train on multiple tasks, then try to generalize or finetune
 - Policy distillation (Rusu et al. '15)
 - Actor-mimic (Parisotto et al. '15)
 - Model-agnostic meta-learning (Finn et al. '17)
 - many others...
- Unsupervised or weakly supervised learning of diverse behaviors
 - Stochastic neural networks (Florensa et al. '17)
 - Reinforcement learning with deep energy-based policies (Haarnoja et al. '17)
 - many others...

Generalizing from prior knowledge & experience

- Can we get better generalization by leveraging off-policy data?
- Model-based methods: perhaps a good avenue, since the model (e.g. physics) is more task-agnostic
- What does it mean to have a "feature" of decision making, in the same sense that we have "features" in computer vision?
 - Options framework (mini behaviors)
 - Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning (Sutton et al. '99)
 - The option-critic architecture (Bacon et al. '16)
 - Muscle synergies & low-dimensional spaces
 - Unsupervised learning of sensorimotor primitives (Todorov & Gahramani '03)

Reward specification

- If you want to learn from many different tasks, you need to get those tasks somewhere!
- Learn objectives/rewards from demonstration (inverse reinforcement learning)
- Generative objectives automatically?

Mnih et al. '15 reinforcement learning agent

what is the reward?