Asynchronous & Parallel Algorithms

Sergey Levine
UC Berkeley

Overview

1. We learned about a number of policy search methods
2. These algorithms have all been sequential

3. Is there a natural way to parallelize RL algorithms?
* Experience sampling vs learning
* Multiple learning threads
* Multiple experience collection threads

Today’s Lecture

1. High-level schematic of a generic RL algorithm
2. What can we parallelize?

3. Case studies: specific parallel RL methods

4. Tradeoffs & considerations

* Goals

* Understand the high-level anatomy of reinforcement learning algorithms
* Understand standard strategies for parallelization
* Tradeoffs of different parallel methods

REMINDER: PROJECT GROUPS DUE TODAY! SEND TITLE & GROUP MEMBERS TO
berkeleydeepricourse@gmail.com

High-level RL schematic

estimate p(s’[s,a) (model-based)
fit a model/

2 T ' . .
e compute @ =, v ~try (MC policy gradient)

fit Q4(s,a) (actor-critic, Q-learning)

generate samples

(i.e. run the policy)

optimize my(als) (model-based)
sl g | 0 < 0+ aVyJ(0) (policy gradient)
m(s) = argmax Q4(s,a) (Q-learning)

Which parts are slow?

& T r_
Q= Zt’:t 'Yt bry

trivial, fast
fit a model/

estimate the return fit qu(s, a)

(real robot/car/power\
grid/whatever:
1x real time, until we
\invent time travel D

expensive, but non-
trivial to parallelize

generate samples

(i.e. run the policy)
MuloCo simulator:

up to 10000x real time
7(s) = argmax Q,(s,a)

trivial, nothing to do
improve the policy

optimize my(als) (model-based)

expensive, but non-
trivial to parallelize

Which parts can we parallelize?

fit Qy(s,a)

fit a model/ parallel SGD
estimate the return

generate samples

(i.e. run the policy)

optimize my(als) (model-based)
improve the policy parallel SGD

Helps to group data generation and training
(worker generates data, computes gradients, and gradients are pooled)

High-level decisions

1. Online or batch-mode?

2. Synchronous or asynchronous?

generate one step
generate one step
generate one step

generate samples

generate samples [EZ 2 policy gradient

generate samples fit Q-value

fit Q-value

fit Q-value

Relationship to parallelized SGD

1. Parallelizing model/critic/actor training typically
fit a model/ involves parallelizing SGD

estimate the return _
2. Simple parallel SGD:

1. Each worker has a different slice of data

2. Each worker computes gradients, sums them, sends to
parameter server

3. Parameter server sums gradients from all workers and

improve the policy

@ sends back new parameters

<%:>®% 3. Mathematically equivalent to SGD, but not

@% P asynchronous (communication delays)

<gg®ﬁ 4. Async SGD typically does not achieve perfect

o kardill o parallelism, but lack of locks can make it much faster

e
Partitions Workers States

Dai et al. ‘15 5. Somewhat problem dependent

Simple example: sample parallelism with PG

collect samples 7; = {s},a’,...,s%, a%} by running 7 (as|s;) N times
compute r; = r(7;)

compute V; = (3, Vglogmy(al|si)) (r; — b)

update: 6 <+ 0+ a) .V,

= Lo

(1) (2,3,4)

generate samples

generate samples X 3 policy gradient

generate samples

Simple example: sample parallelism with PG

collect samples 7; = {s},a’,...,s%, a%} by running 7 (as|s;) N times
compute r; = r(7;)

compute V; = (3, Vglogmy(al|si)) (r; — b)

update: 6 <+ 0+ a) .V,

= Lo

(1) (2) (3, 4)

generate samples evaluate reward

generate samples [&3 evaluatereward [EZ EZ policy gradient

generate samples [=2 evaluate reward

Simple example: sample parallelism with PG

(@

1
1. collect samples 7; = {s%,a’,..., s, a%} by running mg(as|s¢) N times <%:>
D,
2. compute r; = r(7;) (%@
3. compute V; = (Zt Vo log 'Tre(aﬂSi)) (’f’z' - b) (%%@&7
4:. update: 9 < 9 + (8 Z’I, V@ g::taitions \?Vitfl;:rasra"el ZAEZ‘E(‘
Dai et al. 15

(2) (3)

generate samples 54 evaluate reward =4 compute gradient

(1)
» evaluate reward =@ compute gradient Ed =% AU T
gradient
B

generate samples 54 evaluate reward =4 compute gradient

What if we add a critic?

1. collect samples 7; = {s%,a},...,s%,a’} by running m(a;|s;) N times

2. compute r; = r(7;)

3. update Ag4(s?,al) with regression to target values - :sre \:/?]2:’:haecgopr,;ii)r:]tsichlz.c;l;r:e
4. compute V,; = (Zt Vg log mg (a§|8§)) flqg(si, ai)

5. update: 0 — 0 +a) .V,

(1, 2) (3) (3)
samples & rewards [critic gradients B i & sy e
= gradient
samples & rewards\, k2 critic gradients L
(4) /) costly synchronization
policy gradients L - sum & apply policy
policy gradients > B

What if we add a critic?

1. collect samples 7; = {s%,a},...,s%,a’} by running m(a;|s;) N times

2. compute r; = r(7;)

3. update Ag4(s?,al) with regression to target values - :sre \:/?]2:’:haecgopr,;ii)r:]tsichf:;l;rrz
4. compute V,; = (Zt Vg log mg (a§|8§)) flqg(si, ai)

5. update: 0 — 0 +a) .V,

(1, 2)

samples & rewards [critic gradients ﬁ

sum & apply critic
samples & rewards\ [E3 critic gradients gradient

(4) / (5)
policy gradients) i @ arselhy (o

policy gradients == gradient

What if we run online?

collect sample (s;,a;,s;) by running my(als) for 1 step

compute r; = r(s;, a;)

update Ag(s?,al) with regression to target values

compute V; = Vg log mp(a’|s’) A, (s?, a’)

update: 6 < 0+ Zz v,) only the parameter update

requires synchronization (actor + critic params)
samples & rewards [critic gradients ﬁ

sum & apply critic
samples & rewards\ [E3 critic gradients gradient

(4) / (5)
policy gradients) i @ arselhy (o

policy gradients == gradient

A S

(1, 2)

Actor-critic algorithm: A3C

collect sample (s;, a;,s;) by running mg(als) for 1 step

compute r; = r(s;, a;)

I

v
I

. update Ay (s?,al) with regression to target values 9

I

. compute V; = Vylog Wa(ai|Si)A¢(Sia ai)

CUops W

update: 6 < 0 4+«) .V, (only do this every n steps)

 Some differences vs DQN, DDPG, etc:

* No replay buffer, instead rely on diversity of samples from
different workers to decorrelate

* Some variability in exploration between workers
* Pro: generally much faster in terms of wall clock

* Con: generally must slower in terms of # of samples (more

on this later...)
Mnih et al. ‘16

Actor-critic algorithm: A3C

16000 . Beamrider 600 . Breakout 30. Pong 12000
— DQN — DQN
. :1I_Step SARSA 300 s ihsiep (S)ARSA 207 OHOO
12000 SmESS R e
—— n-step Q —— n-step Q
_— 400 A3C 10 18000 -
v o g
S 8000 0 -6000 -
(V] (7]
8000 -10. = ‘1305‘ 5 14000 -
_ — 1-step
4000 - / — LstepSARSA
2000 - — n-step Q | |
A3C
0 0 - =30 : 0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Training time (hours) Training time (hours) Training time (hours)

Humanoid (27-DoF/21-dim. Actions) Reacher3 (3-DoF /3-dim. Actions) Cheetah (9-DoF /6-dim. Actions)

El

TrusT-TIS
TrusT-A3C
- TIS

ACER

---- A3C

M - - m
Million Steps Million Steps

- - =
Million Steps

20,000,000 steps

Q*bert 1600 Space Invaders

DQN — DQN
1-step Q 1400 — 1-step Q
1-step SARSA 1200. 1-step SARSA
n-step Q —— n-step Q
A3C 1000 A3C

&

§ 800 -

600 -

400/

(VI
8 10 12 14 0 2 4 6 8 10 12 14
Training time (hours)

200

4 6
Training time (hours)

DDPG:

Fixed Reacher

| more on this later...
0

1 Checgal 1,000,000 steps

0

Model-based algorithms: parallel GPS

fit local models for each initial state

a w o

. update policy my(a;|s:) by imitating all p;(as|s;)

(1)

Rollout execution —

y

Local policy optimization

\ 4

Global policy optimization

(2, 3) (4)

Yahya, Li, Kalakrishnan, Chebotar, L., ‘16

get IV samples 7; by running my(as|s;) N times for each initial state sg

use LQR to get updated local policies p;(as|s;) for each initial state S‘g)

// Rollout execution \

Local policy optimization -

Replay memory

Local worker

Global worker

A,
Global policy optimization
A

Parameter server }

[parallelize sampling]

[parallelize dynamics]
[parallelize LQR]
[parallelize SGD]

(1)
(2, 3)

(4)

Model-based algorithms: parallel GPS

Real-world model-free deep RL: parallel NAF

ALy

Robot 1

NAF Architectur

Updated Q

Robot 2

Training
Thread

1 Minibatehes

Samples

Gu*, Holly*, Lillicrap, L., ‘16

(s,a,rs’,t)

Replay Buffer

O(x,u|09) = A(x,u|6*) +V(x|6")

Al u|0) = — (u— p(x]0"))" P(x|6”) (u— 1 (x]0"))

Simplest example: sample parallelism with
off-policy algorithms

grasp success
predictor training

Break

Challenges in Deep Reinforcement Learning

Sergey Levine
UC Berkeley

Today’s Lecture

High-level summary of deep RL challenges
Stability

Sample complexity

Scaling up & generalization

Al S

Reward specification

* Goals
* Understand the open problems in deep RL
* Understand tradeoffs between different algorithms

a mpe i |8 AlphaGo

-a ms i\ i\B .
B-oesi-0: io: & Silver et al.

8 @\ i 2016

- o=

Supersizing self-supervision
Pinto & Gupta
2016

Stability and hyperparameter tuning

Devising stable RL algorithms is very hard

Q-learning/value function estimation

* Fitted Q/fitted value methods with deep network function
estimators are typically not contractions, hence no guarantee
of convergence

* Lots of parameters for stability: target network delay, replay e
buffer size, clipping, sensitivity to learning rates, etc.

Policy gradient/likelihood ratio/REINFORCE

* Very high variance gradient estimator
* Lots of samples, complex baselines, etc.
* Parameters: batch size, learning rate, design of baseline

Model-based RL algorithms
* Model class and fitting method

* Optimizing policy w.r.t. model non-trivial due to
backpropagation through time

\
(n)
) 3
.

Tuning hyperparameters

Grid Layout

* Get used to running multiple hyperparameters
 learning rate = [0.1, 0.5, 1.0, 5.0, 20.0]

* Grid layout for hyperparameter sweeps OK when
sweeping 1 or 2 parameters

Unimportant parameter

Important parameter

 Random layout generally more optimal, the only viable
option in higher dimensions

Random Layout

* Don’t forget the random seed!
* RLis self-reinforcing, very likely to get local optima
* Don’t assume it works well until you test a few random seeds
« Remember that random seed is not a hyperparameter!

Unimportant parameter

Important parameter

The challenge with hyperparameters

e Can’t run hyperparameter sweeps in the real
world

 How representative is your simulator? Usually the
answer is “not very”

* Actual sample complexity = time to run
algorithm x number of runs to sweep
* |In effect stochastic search + gradient-based
optimization

* Can we develop more stable algorithms that
are less sensitive to hyperparameters?

What can we do?

* Algorithms with favorable improvement and convergence properties
* Trust region policy optimization [Schulman et al. ‘16]
» Safe reinforcement learning, High-confidence policy improvement [Thomas ‘15]

e Algorithms that adaptively adjust parameters
* Q-Prop [Gu et al. “17]: adaptively adjust strength of control variate/baseline

e More research needed here!

* Not great for beating benchmarks, but absolutely essential to make RL a
viable tool for real-world problems

Sample Complexity

gra dient-free methods Evolution Strategies as a
(e g N ES CM A etc) Scalable Alternative to Reinforcement Learning
O ’ ’ .

id (27-DoF /21-dim. Actions) Reacher3 (3-DoF/3-dim. Actions) . Cheetah (9-DoF /6-dim. Actions)

Tim Salimans' Jonathan Ho' Xi Chen' Ilya Sutskever'

4'

fully online methods half-cheetah (slightly different version) | SO —
(e.g. A3C) Learning performance Episode Total Reward * Episode v Wang et al. ‘17 f
e 100,000,000 steps
. . 0 1 .
policy gradient methods h | | \ 10,000,000 steps §~0105’(ng?, serp;zclailier;L)
TRPO+GAE (S .16
(e.g. TRPO) *GAE (Schulman et al. “16) (10,000 episodes)
- half-cheetah (~ 1.5 days real time)
1,000,000 steps

replay buffer value estimation methods
(Q-learning, DDPG, NAF, etc.)

AverageReturn

(1,000 episodes)
(~ 3 hours real time)

1000 2000 3000 4000 5000 6000

ﬁ

Guetal. 16 e
model-based deep RL o

0.20

(e.g. guided policy search) " RS

0.15

about 20 minutes of
experience on a real

Avg final distance

0.10

ﬁ

| cart-pole cart-double-pole unicycle

model-based “shallow” RL %™ | 20 w0 " \
- rials — =
experience ~20s =~ 60s-90s ~ 20s-30s 0.0 1 OX ga p rO b Ot
(e . g . P I LCO) paramater space R R R —o,oswv 10! 10? 163 104 10°
samples

Chebotar et al. "17 (note log scale)

What about more realistic tasks?

* Big cost paid for dimensionality
* Big cost paid for using raw images

* Big cost in the presence of real-world diversity
(many tasks, many situations, etc.)

The challenge with sample complexity

* Need to wait for a long time for your nEB_3
homework to finish running

e Real-world learning becomes difficult or
impractical

* Precludes the use of expensive, high-fidelity
simulators

* Limits applicability to real-world problems

What can we do?

* Better model-based RL algorithms

e Design faster algorithms
 Q-Prop (Gu et al. “17): policy gradient algorithm that is as fast as value estimation

e Learning to play in a day (He et al. “17): Q-learning algorithm that is much faster
on Atari than DQN

e Reuse prior knowledge to accelerate reinforcement learning
e RL2: Fast reinforcement learning via slow reinforcement learning (Duan et al. “17)

e Learning to reinforcement learning (Wang et al. ‘17)
 Model-agnostic meta-learning (Finn et al. ‘17)

Scaling up deep RL & generalization

 Large-scale
 Emphasizes diversity
* Evaluated on generalization

* Small-scale
* Emphasizes mastery
* Evaluated on performance

* Where is the generalization?

Generalizing from massive experience

Levine et al. 2016

Pinto & Gupta, 2015

Generalizing from multi-task learning

* Train on multiple tasks, then try to generalize or finetune
 Policy distillation (Rusu et al. ‘15)
e Actor-mimic (Parisotto et al. ‘15)
* Model-agnostic meta-learning (Finn et al. ‘17)
* many others...

* Unsupervised or weakly supervised learning of diverse behaviors
e Stochastic neural networks (Florensa et al. ‘17)
* Reinforcement learning with deep energy-based policies (Haarnoja et al. ‘17)
* many others...

Generalizing from prior knowledge &
experience

* Can we get better generalization by leveraging off-policy data?

* Model-based methods: perhaps a good avenue, since the model (e.g.
physics) is more task-agnostic

* What does it mean to have a “feature” of decision making, in the same
sense that we have “features” in computer vision?

e Options framework (mini behaviors)

 Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement
learning (Sutton et al. ’99)

* The option-critic architecture (Bacon et al. ‘16)
* Muscle synergies & low-dimensional spaces
e Unsupervised learning of sensorimotor primitives (Todorov & Gahramani '03)

Reward specification

* If you want to learn from many reward
different tasks, you need to get those
tasks somewhere!

* Learn objectives/rewards from
demonstration (inverse
reinforcement learning)

Mnih et al.’15

* Generative objectives automatically? reinforcement learning agent what is the reward?

