Value Function Methods

CS 285: Deep Reinforcement Learning, Decision Making, and Control
Sergey Levine
Class Notes

1. Homework 2 is due in one week (next Monday)
2. Remember to start forming final project groups and writing your proposal!
 • Proposal due 9/25, this Wednesday!
Today’s Lecture

1. What if we just use a critic, without an actor?
2. Extracting a policy from a value function
3. The Q-learning algorithm
4. Extensions: continuous actions, improvements

• Goals:
 • Understand how value functions give rise to policies
 • Understand the Q-learning algorithm
 • Understand practical considerations for Q-learning
Recap: actor-critic

batch actor-critic algorithm:
1. sample \(\{s_i, a_i\} \) from \(\pi_\theta(a|s) \) (run it on the robot)
2. fit \(\hat{V}_\phi(s) \) to sampled reward sums
3. evaluate \(\hat{A}_\pi(s_i, a_i) = r(s_i, a_i) + \hat{V}_\phi(s_i') - \hat{V}_\phi(s_i) \)
4. \(\nabla_\theta J(\theta) \approx \sum_i \nabla_\theta \log \pi_\theta(a_i|s_i) \hat{A}_\pi(s_i, a_i) \)
5. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)
Can we omit policy gradient completely?

$A^\pi(s_t, a_t)$: how much better is a_t than the average action according to π

arg max$_{a_t} A^\pi(s_t, a_t)$: best action from s_t, if we then follow π

at least as good as any $a_t \sim \pi(a_t|s_t)$

regardless of what $\pi(a_t|s_t)$ is!

fit A^π (or Q^π or V^π)

$\pi'(a_t|s_t) = \begin{cases} 1 \text{ if } a_t = \text{arg max}_a A^\pi(s_t, a_t) \\ 0 \text{ otherwise} \end{cases}$

as good as π

(probably better)

忘记策略，我们就这样做吧！

generate samples (i.e. run the policy)

fit a model to estimate return

improve the policy

$\pi \leftarrow \pi'$
Policy iteration

High level idea:

policy iteration algorithm:

1. evaluate $A^{\pi}(s, a)$
2. set $\pi \leftarrow \pi'$

$$\pi'(a_t|s_t) = \begin{cases}
1 & \text{if } a_t = \arg \max_{a_t} A^{\pi}(s_t, a_t) \\
0 & \text{otherwise}
\end{cases}$$

as before: $A^{\pi}(s, a) = r(s, a) + \gamma E[V^{\pi}(s')] - V^{\pi}(s)$

let’s evaluate $V^{\pi}(s)$!
Dynamic programming

Let’s assume we know $p(s'|s,a)$, and s and a are both discrete (and small)

![Transition probabilities](image)

16 states, 4 actions per state

can store full $V^\pi(s)$ in a table!

\mathcal{T} is $16 \times 16 \times 4$ tensor

bootstrap update: $V^\pi(s) \leftarrow E_{a \sim \pi(a|s)}[r(s,a) + \gamma E_{s' \sim p(s'|s,a)}[V^\pi(s')]]$

just use the current estimate here

$\pi'(a_t|s_t) = \begin{cases} 1 & \text{if } a_t = \text{arg max}_a A^\pi(s_t,a_t) \\ 0 & \text{otherwise} \end{cases}$

deterministic policy $\pi(s) = a$

simplified: $V^\pi(s) \leftarrow r(s, \pi(s)) + \gamma E_{s' \sim p(s'|s,\pi(s))}[V^\pi(s')]$
Policy iteration with dynamic programming

Policy iteration:
1. evaluate $V^\pi(s)$
2. set $\pi \leftarrow \pi'$

$$\pi'(a_t|s_t) = \begin{cases}
1 & \text{if } a_t = \text{arg max}_{a_t} A^\pi(s_t, a_t) \\
0 & \text{otherwise}
\end{cases}$$

Policy evaluation:
$$V^\pi(s) \leftarrow r(s, \pi(s)) + \gamma E_{s' \sim p(s'|s, \pi(s))}[V^\pi(s')]$$

16 states, 4 actions per state

16 × 16 × 4 tensor

Generate samples (i.e. run the policy)

Fit a model to estimate return

Improve the policy

$\pi \leftarrow \pi'$
Even simpler dynamic programming

\[\pi'(a_t|s_t) = \begin{cases}
1 & \text{if } a_t = \arg \max_{a_t} A^\pi(s_t, a_t) \\
0 & \text{otherwise}
\end{cases} \]

\[A^\pi(s, a) = r(s, a) + \gamma E[V^\pi(s')] - V^\pi(s) \]

\[\arg \max_{a_t} A^\pi(s_t, a_t) = \arg \max_{a_t} Q^\pi(s_t, a_t) \]

\[Q^\pi(s, a) = r(s, a) + \gamma E[V^\pi(s')] \text{ (a bit simpler)} \]

skip the policy and compute values directly!

value iteration algorithm:

1. set \(Q(s, a) \leftarrow r(s, a) + \gamma E[V(s')] \)
2. set \(V(s) \leftarrow \max_a Q(s, a) \)

\[Q^\pi(s, a) \leftarrow r(s, a) + \gamma E_{s' \sim p(s'|s,a)}[V^\pi(s')] \]

arg \(\max_a Q(s, a) \) \rightarrow \text{policy}

argmax_a Q(s, a) \rightarrow \text{policy}

approximates the new value!

\[Q^\pi(s, a) \leftarrow r(s, a) + \gamma E_{s' \sim p(s'|s,a)}[V^\pi(s')] \]

fit a model to estimate return

generate samples (i.e. run the policy)

improve the policy

\[V^\pi(s) \leftarrow \max_a Q^\pi(s, a) \]
Fitted value iteration

how do we represent $V(s)$?

big table, one entry for each discrete s

neural net function $V : S \to \mathbb{R}$

\[
\begin{align*}
 s = 0 &: V(s) = 0.2 \\
 s = 1 &: V(s) = 0.3 \\
 s = 2 &: V(s) = 0.5
\end{align*}
\]

parameters ϕ

\[
L(\phi) = \frac{1}{2} \left\| V_\phi(s) - \max_a Q^\pi(s, a) \right\|^2
\]

fitted value iteration algorithm:

1. set $y_i \leftarrow \max_{a_i} (r(s_i, a_i) + \gamma E[V_\phi(s'_i)])$
2. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \left\| V_\phi(s_i) - y_i \right\|^2$

cause of dimensionality

$|S| = (255^3)^{200 \times 200}$

(more than atoms in the universe)

\[
Q^\pi(s, a) \leftarrow r(s, a) + \gamma E_{s' \sim p(s' | s, a)}[V^\pi(s')]
\]
What if we don’t know the transition dynamics?

fitted value iteration algorithm:
1. set $y_i \leftarrow \max_{a_i} (r(s_i, a_i) + \gamma E[V_{\phi}(s_i')])$
2. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i \|V_{\phi}(s_i) - y_i\|^2$

need to know outcomes for different actions!

Back to policy iteration...

policy iteration:
1. evaluate $Q^\pi(s, a)$
2. set $\pi \leftarrow \pi'$

$\pi'(a_t|s_t) = \begin{cases} 1 & \text{if } a_t = \arg\max_{a_t} Q^\pi(s_t, a_t) \\ 0 & \text{otherwise} \end{cases}$

policy evaluation:

$V^\pi(s) \leftarrow r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim p(s'|s, \pi(s))}[V^\pi(s')]$

$Q^\pi(s, a) \leftarrow r(s, a) + \gamma \mathbb{E}_{s' \sim p(s'|s, a)}[Q^\pi(s', \pi(s'))]$
Can we do the “max” trick again?

Policy Iteration:
1. Evaluate $V^\pi(s)$
2. Set $\pi \leftarrow \pi'$

Fitted Value Iteration Algorithm:
1. Set $y_i \leftarrow \max_{a_i} (r(s_i, a_i) + \gamma E[V_\phi(s'_i)])$
2. Set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|V_\phi(s_i) - y_i\|^2$

Forget policy, compute value directly.

can we do this with Q-values also, without knowing the transitions?

Fitted Q Iteration Algorithm:
1. Set $y_i \leftarrow r(s_i, a_i) + \gamma E[V_\phi(s'_i)]$ \(\approx \max_{a'_i} Q_\phi(s'_i, a'_i)\)
2. Set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_\phi(s_i, a_i) - y_i\|^2$

Approximate $E[V(s'_i)]$ doesn’t require simulation of actions!

+ Works even for off-policy samples (unlike actor-critic)
+ Only one network, no high-variance policy gradient
- No convergence guarantees for non-linear function approximation (more on this later)
Fitted Q-iteration

full fitted Q-iteration algorithm:

1. collect dataset \(\{(s_i, a_i, s'_i, r_i)\} \) using some policy
2. set \(y_i \leftarrow r(s_i, a_i) + \gamma \max_{a'_i} Q_\phi(s'_i, a'_i) \)
3. set \(\phi \leftarrow \arg \min_\phi \frac{1}{2} \sum_i \|Q_\phi(s_i, a_i) - y_i\|^2 \)

parameters

dataset size \(N \), collection policy
iterations \(K \)
gradiant steps \(S \)
Review

• Value-based methods
 • Don’t learn a policy explicitly
 • Just learn value or Q-function
• If we have value function, we have a policy
• Fitted Q-iteration
Break
Why is this algorithm off-policy?

full fitted Q-iteration algorithm:

1. collect dataset $\{(s_i, a_i, s'_i, r_i)\}$ using some policy

2. set $y_i \leftarrow r(s_i, a_i) + \gamma \max_{a'_i} Q_\phi(s'_i, a'_i)$

3. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_\phi(s_i, a_i) - y_i\|^2$

this approximates the value of π' at s'_i

$\pi'(a_t | s_t) = \begin{cases} 1 \text{ if } a_t = \arg \max_{a_t} Q^\pi(s_t, a_t) \\ 0 \text{ otherwise} \end{cases}$

given s and a, transition is independent of π
What is fitted Q-iteration optimizing?

full fitted Q-iteration algorithm:

1. collect dataset \{ (s_i, a_i, s'_i, r_i) \} using some policy

2. set \(y_i \leftarrow r(s_i, a_i) + \gamma \max_{a'_i} Q_\phi(s'_i, a'_i) \)

3. set \(\phi \leftarrow \arg \min_\phi \frac{1}{2} \sum_i \| Q_\phi(s_i, a_i) - y_i \|^2 \)

error \(E \)

\[
E = \frac{1}{2} E_{(s,a) \sim \beta} \left[\left(Q_\phi(s,a) - [r(s,a) + \gamma \max_{a'} Q_\phi(s',a')] \right)^2 \right]
\]

if \(E = 0 \), then \(Q_\phi(s,a) = r(s,a) + \gamma \max_{a'} Q_\phi(s',a') \)

this is an optimal Q-function, corresponding to optimal policy \(\pi' \):

\[
\pi'(a_t | s_t) = \begin{cases}
1 & \text{if } a_t = \arg \max_{a_t} Q_\phi(s_t, a_t) \\
0 & \text{otherwise}
\end{cases}
\]

maximizes reward sometimes written \(Q^* \) and \(\pi^* \)

most guarantees are lost when we leave the tabular case (e.g., when we use neural network function approximation)
Online Q-learning algorithms

full fitted Q-iteration algorithm:

1. collect dataset \(\{(s_i, a_i, s'_i, r_i)\} \) using some policy
2. set \(y_i \leftarrow r(s_i, a_i) + \gamma \max_{a'_i} Q_\phi(s'_i, a'_i) \)
3. set \(\phi \leftarrow \arg \min_\phi \frac{1}{2} \sum_i \|Q_\phi(s_i, a_i) - y_i\|^2 \)

online Q iteration algorithm:

1. take some action \(a_i \) and observe \((s_i, a_i, s'_i, r_i) \)
2. \(y_i = r(s_i, a_i) + \gamma \max_{a'_i} Q_\phi(s'_i, a'_i) \)
3. \(\phi \leftarrow \phi - \alpha \frac{dQ_\phi}{d\phi}(s_i, a_i)(Q_\phi(s_i, a_i) - y_i) \)

\[Q_\phi(s, a) \leftarrow r(s, a) + \gamma \max_{a'} Q_\phi(s', a') \]

fit a model to estimate return

generate samples (i.e. run the policy)

improve the policy

\[a = \arg \max_a Q_\phi(s, a) \]

off policy, so many choices here!
Exploration with Q-learning

online Q iteration algorithm:
1. take some action a_i and observe (s_i, a_i, s'_i, r_i)
2. $y_i = r(s_i, a_i) + \gamma \max_{a'} Q_\phi(s'_i, a'_i)$
3. $\phi \leftarrow \phi - \alpha \frac{dQ_\phi}{d\phi}(s_i, a_i)(Q_\phi(s_i, a_i) - y_i)$

final policy:

\[
\pi(a_t|s_t) = \begin{cases}
1 & \text{if } a_t = \arg\max_{a_t} Q_\phi(s_t, a_t) \\
\frac{\epsilon}{(|A| - 1)} & \text{otherwise}
\end{cases}
\]

why is this a bad idea for step 1?

“epsilon-greedy”

\[
\pi(a_t|s_t) \propto \exp(Q_\phi(s_t, a_t))
\]

“Boltzmann exploration”

We’ll discuss exploration in more detail in a later lecture!
Review

• Value-based methods
 • Don’t learn a policy explicitly
 • Just learn value or Q-function

• If we have value function, we have a policy

• Fitted Q-iteration
 • Batch mode, off-policy method

• Q-learning
 • Online analogue of fitted Q-iteration

\[Q_\phi(s, a) \leftarrow r(s, a) + \gamma \max_{a'} Q_\phi(s', a') \]

- fit a model to estimate return
- generate samples (i.e. run the policy)
- improve the policy
- \(a = \arg \max_a Q_\phi(s, a) \)
Value function learning theory

value iteration algorithm:

1. set $Q(s, a) \leftarrow r(s, a) + \gamma E[V(s')]$
2. set $V(s) \leftarrow \max_a Q(s, a)$

does it converge? and if so, to what?

stacked vector of rewards at all states for action a

define an operator B: $BV = \max_a r_a + \gamma T_a V$

matrix of transitions for action a such that $T_{a,i,j} = p(s' = i|s = j, a)$

V^* is a fixed point of B $V^*(s) = \max_a r(s, a) + \gamma E[V^*(s')]$, so $V^* = BV^*$

always exists, is always unique, always corresponds to the optimal policy

...but will we reach it?
Value function learning theory

value iteration algorithm:

1. set $Q(s, a) \leftarrow r(s, a) + \gamma E[V(s')]$
2. set $V(s) \leftarrow \max_a Q(s, a)$

V^* is a fixed point of \mathcal{B}

$V^*(s) = \max_a r(s, a) + \gamma E[V^*(s')]$, so $V^* = \mathcal{B}V^*$

we can prove that value iteration reaches V^* because \mathcal{B} is a contraction

contraction: for any V and \tilde{V}, we have $\|\mathcal{B}V - \mathcal{B}\tilde{V}\|_{\infty} \leq \gamma \|V - \tilde{V}\|_{\infty}$

gap always gets smaller by γ!
(with respect to ∞-norm)

what if we choose V^* as \tilde{V}? $\mathcal{B}V^* = V^*$!

$\|\mathcal{B}V - V^*\|_{\infty} \leq \gamma \|V - V^*\|_{\infty}$
Non-tabular value function learning

value iteration algorithm (using \mathcal{B}):

1. $V \leftarrow \mathcal{B}V$

fitted value iteration algorithm (using \mathcal{B} and Π):

1. $V \leftarrow \PiBV$

fitted value iteration algorithm:

1. set $y_i \leftarrow \max_{a_i} (r(s_i, a_i) + \gamma E[V_\phi(s'_i)])$
2. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i \|V_\phi(s_i) - y_i\|^2$

what does this do?

define new operator Π: $\Pi V = \arg\min_{V' \in \Omega} \frac{1}{2} \sum \|V'(s) - V(s)\|^2$

Π is a projection onto Ω (in terms of ℓ_2 norm)

updated value function

$V' \leftarrow \arg\min_{V' \in \Omega} \frac{1}{2} \sum \|V'(s) - (\mathcal{B}V)(s)\|^2$

all value functions represented by, e.g., neural nets

set Ω (e.g., neural nets)
Non-tabular value function learning

fitted value iteration algorithm (using \mathcal{B} and Π):
1. $V \leftarrow \Pi \mathcal{B} V$

\mathcal{B} is a contraction w.r.t. ∞-norm ("max" norm)

Π is a contraction w.r.t. ℓ_2-norm (Euclidean distance)

but... $\Pi \mathcal{B}$ is not a contraction of any kind

Conclusions:
value iteration converges (tabular case)
fitted value iteration does not converge
not in general
often not in practice
What about fitted Q-iteration?

fitted Q iteration algorithm:

1. set $y_i \leftarrow r(s_i, a_i) + \gamma E[V_\phi(s_i')]$
2. set $\phi \leftarrow \arg \min_\phi \frac{1}{2} \sum_i \|Q_\phi(s_i, a_i) - y_i\|^2$

define an operator B: $BQ = r + \gamma T \max_a Q$

max now after the transition operator

define an operator Π: $\Pi Q = \arg \min_{Q' \in \Omega} \frac{1}{2} \sum \|Q'(s, a) - Q(s, a)\|^2$

fitted Q-iteration algorithm (using B and Π):

1. $Q \leftarrow \Pi BQ$

B is a contraction w.r.t. ∞-norm ("max" norm)

Π is a contraction w.r.t. ℓ_2-norm (Euclidean distance)

ΠB is not a contraction of any kind

Applies also to online Q-learning
But... it’s just regression!

online Q iteration algorithm:

1. take some action \(a_i \) and observe \((s_i, a_i, s'_i, r_i) \)
2. \(y_i = r(s_i, a_i) + \gamma \max_{a'} Q(\phi)(s'_i, a'_i) \)
3. \(\phi \leftarrow \phi - \alpha \frac{dQ(\phi)}{d\phi} (s_i, a_i) (Q(\phi)(s_i, a_i) - y_i) \)

isn’t this just gradient descent? that converges, right?

Q-learning is not gradient descent!

\[
\phi \leftarrow \phi - \alpha \frac{dQ(\phi)}{d\phi} (s_i, a_i) (Q(\phi)(s_i, a_i) - [r(s_i, a_i) + \gamma \max_{a'} Q(\phi)(s'_i, a'_i)])
\]

no gradient through target value
A sad corollary

batch actor-critic algorithm:
1. sample \(\{s_i, a_i\} \) from \(\pi_\theta(a|s) \) (run it on the robot)
2. fit \(\hat{V}_\phi^\pi(s) \) to sampled reward sums
3. evaluate \(\hat{A}_\pi^\pi(s_i, a_i) = r(s_i, a_i) + \hat{V}_\phi^\pi(s'_i) - \hat{V}_\phi^\pi(s_i) \)
4. \(\nabla_\theta J(\theta) \approx \sum_i \nabla_\theta \log \pi_\theta(a_i|s_i) \hat{A}_\pi^\pi(s_i, a_i) \)
5. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)

\(\ell_\infty \) contraction \(\mathcal{B} \) (but without max)

\[y_{i,t} \approx r(s_{i,t}, a_{i,t}) + \gamma \hat{V}_\phi^\pi(s_{i,t+1}) \]

\[\mathcal{L}(\phi) = \frac{1}{2} \sum_i \left\| \hat{V}_\phi^\pi(s_i) - y_i \right\|^2 \]

\(\ell_2 \) contraction \(\Pi \)

fitted bootstrapped policy evaluation doesn’t converge!

An aside regarding terminology

\(V^\pi \): value function for policy \(\pi \)
this is what the critic does

\(V^* \): value function for optimal policy \(\pi^* \)
this is what value iteration does
Review

- Value iteration theory
 - Linear operator for backup
 - Linear operator for projection
 - Backup is contraction
 - Value iteration converges
- Convergence with function approximation
 - Projection is also a contraction
 - Projection + backup is not a contraction
 - Fitted value iteration does not in general converge
- Implications for Q-learning
 - Q-learning, fitted Q-iteration, etc. does not converge with function approximation
- But we can make it work in practice!
 - Sometimes – tune in next time

\[Q_\theta(s, a) \leftarrow r(s, a) + \gamma \max_{a'} Q_\phi(s', a') \]

fit a model to estimate return

generate samples (i.e. run the policy)

improve the policy

a = \arg\max_a Q_\phi(s, a)