Actor-Critic Algorithms

CS 294-112: Deep Reinforcement Learning
Sergey Levine
Class Notes

1. Remember to start forming final project groups
Today’s Lecture

1. Improving the policy gradient with a critic
2. The policy evaluation problem
3. Discount factors
4. The actor-critic algorithm
 • Goals:
 • Understand how policy evaluation fits into policy gradients
 • Understand how actor-critic algorithms work
Recap: policy gradients

REINFORCE algorithm:

1. sample \(\{\tau^i\} \) from \(\pi_\theta(a_t|s_t) \) (run the policy)
2. \(\nabla_\theta J(\theta) \approx \sum_i \left(\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_t^i|s_t^i) \left(\sum_{t'=t}^{T} r(s_{t'}, a_{t'}^i) \right) \right) \)
3. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)

\[
\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \hat{Q}_{i,t}^\pi
\]

“reward to go”

\[
\hat{Q}^\pi(x_t, u_t) = \sum_{t'=t}^{T} r(x_{t'}, u_{t'})
\]
Improving the policy gradient

\[\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) \left(\sum_{t'=1}^{T} r(s_{i,t'}, a_{i,t'}) \right) \]

“reward to go”

\[\hat{Q}_{i,t} \]

\(\hat{Q}_{i,t} \): estimate of expected reward if we take action \(a_{i,t} \) in state \(s_{i,t} \) can we get a better estimate?

\[Q(s_t, a_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t, a_t] \]: true expected reward-to-go

\[\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) Q(s_{i,t}, a_{i,t}) - V(s_{i,t}) \]

\[V(s_t) = E_{a_t \sim \pi_{\theta}(a_t|s_t)}[Q(s_t, a_t)] \]
What about the baseline?

\[Q(s_t, a_t) = \sum_{t'=t}^T E_{\pi_\theta} [r(s_{t'}, a_{t'}) | s_t, a_t] : \text{true expected reward-to-go} \]

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T \nabla_\theta \log \pi_\theta (a_{i,t} | s_{i,t}) \left[Q(s_{i,t}, a_{i,t}) - b_i(s_{i,t}) \right] \]

\[b_t = \frac{1}{N} \sum_i Q(s_{i,t}, a_{i,t}) \quad \text{average what?} \]

\[V(s_t) = E_{a_t \sim \pi_\theta(a_t | s_t)} [Q(s_t, a_t)] \]

\[\hat{Q}_{i,t} \approx \sum_{t'=t}^T E_{\pi_\theta} [r(s_{t'}, a_{t'}) | s_t, a_t] \]
State & state-action value functions

\[
Q(s_t, a_t) = \sum_{i=1}^T \sum_{t=1}^T E_{\theta \sim \pi_q}[r(s_t, a_t, s_{t'}) + \gamma Q(s_{t'}, a_{t'}) | s_t, a_t]
\]

total reward from taking action \(a_t\) in \(s_t\)

\[
V^\pi(s_t) = E_{a_t \sim \pi^\theta(a_t|s_t)}[Q^\pi(s_t, a_t)]: \text{total reward from } s_t
\]

\[
A^\pi(s_t, a_t) = Q^\pi(s_t, a_t) - V^\pi(s_t): \text{how much better } a_t \text{ is}
\]

\[
\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) A^\pi(s_{i,t}, a_{i,t})
\]

fit \(Q^\pi, V^\pi, \text{ or } A^\pi\)

fit a model to estimate return

generate samples (i.e. run the policy)

improve the policy

\[
\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)
\]

the better this estimate, the lower the variance

\[
\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\sum_{t'=1}^T r(s_{i,t'}, a_{i,t'}) - b \right)
\]

unbiased, but high variance single-sample estimate
Value function fitting

\[Q^\pi(s_t, a_t) = \sum_{t'=t}^{T} \mathbb{E}_{\pi_{\theta}} [r(s_{t'}, a_{t'})|s_t, a_t] \]

\[V^\pi(s_t) = \mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} [Q^\pi(s_t, a_t)] \]

\[A^\pi(s_t, a_t) = Q^\pi(s_t, a_t) - V^\pi(s_t) \]

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_{\theta}(a_{i,t}|s_{i,t}) A^\pi(s_{i,t}, a_{i,t}) \]

fit what to what?

\(Q^\pi, V^\pi, A^\pi \)

\[Q^\pi(s_t, a_t) \approx r(s_t, a_t) + \mathbb{E}_{\pi_{\theta}} \left[V_{\hat{\theta}}(s_{t+1}) | s_t, a_t \right] \]

\[A^\pi(s_t, a_t) \approx r(s_t, a_t) + V^\pi(s_{t+1}) - V^\pi(s_t) \]

let’s just fit \(V^\pi(s) \)!

\(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)

fit a model to estimate return

generate samples (i.e. run the policy)

improve the policy
Policy evaluation

\[V^\pi(s_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t] \]

\[J(\theta) = E_{s_1 \sim p(s_1)}[V^\pi(s_1)] \]

how can we perform policy evaluation?

Monte Carlo policy evaluation (this is what policy gradient does)

\[V^\pi(s_t) \approx \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \]

\[V^\pi(s_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \]
(requires us to reset the simulator)
Monte Carlo evaluation with function approximation

\[V^\pi(s_t) \approx \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \]

not as good as this: \[V^\pi(s_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \]

but still pretty good!

training data: \[\left\{ \left(s_{i,t}, \sum_{t'=t}^{T} r(s_{i,t'}, a_{i,t'}) \right) \right\} \]

\[y_{i,t} \]

supervised regression: \[L(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_\phi^\pi(s_i) - y_i \right\|^2 \]
ideal target: \[y_{i,t} = \sum_{t' = t}^{T} E_{\pi_{\theta}}[r(s_{i,t', a_{i,t'}}) | s_{i,t}] \approx r(s_{i,t}, a_{i,t}) + \sum_{t' = t}^{T} E_{\pi_{\theta}}[\pi(s_{i,t', a_{i,t'}} | s_{i,t}) \hat{V}_{\pi}(s_{i,t+1})] \]

Monte Carlo target: \[y_{i,t} = \sum_{t' = t}^{T} r(s_{i,t'}, a_{i,t'}) \]

directly use previous fitted value function!

training data: \(\{(s_{i,t}, r(s_{i,t}, a_{i,t}) + \hat{V}_{\phi}(s_{i,t+1}))\} \)

\[y_{i,t} \]

supervised regression: \[\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}(s_{i}) - y_{i} \right\|^2 \]

sometimes referred to as a “bootstrapped” estimate
Policy evaluation examples

TD-Gammon, Gerald Tesauro 1992

Figure 2. An illustration of the normal opening position in backgammon. TD-Gammon has sparked a near-universal conversion in the way experts play certain opening rolls. For example, with an opening roll of 4-1, most players have now switched from the traditional move of 13-8, 6-5, to TD-Gammon's preference, 13-8, 24-23. TD-Gammon's analysis is given in Table 2.

reward: game outcome
value function $\hat{V}_\phi^\pi(s_t)$:
expected outcome given board state

AlphaGo, Silver et al. 2016

Figure 1. An illustration of the multilayer perception architecture used in TD-Gammon's neural network. This architecture is also used in the popular backpropagation training procedure. Figure reproduced from [8].

reward: game outcome
value function $\hat{V}_\phi^\pi(s_t)$:
expected outcome given board state
An actor-critic algorithm

batch actor-critic algorithm:

1. sample \(\{s_i, a_i\} \) from \(\pi_\theta(a|s) \) (run it on the robot)
2. fit \(\hat{V}_\phi(s) \) to sampled reward sums
3. evaluate \(\tilde{A}^\pi(s_i, a_i) = r(s_i, a_i) + \hat{V}_\phi(s_i') - \hat{V}_\phi(s_i) \)
4. \(\nabla_\theta J(\theta) \approx \sum_i \nabla_\theta \log \pi_\theta(a_i|s_i) \tilde{A}^\pi(s_i, a_i) \)
5. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)

\[
V^\pi(s_{i+1}) \approx \sum_{t'=t}^{T} \mathbb{E}_{s_t \sim p} [r(s_{t'}, a_{t'}) | s_t] \\
\mathcal{L}(\phi) = \frac{1}{2} \sum_i \left\| \hat{V}_\phi(s_i) - y_i \right\|^2
\]

\[
V^\pi(s_t) = \sum_{t'=t}^{T} \mathbb{E}_{\pi_\theta} [r(s_{t'}, a_{t'}) | s_t]
\]
Aside: discount factors

\[y_{i,t} \approx r(s_{i,t}, a_{i,t}) + \hat{V}^\pi_\phi(s_{i,t+1}) \]

\[\mathcal{L}(\phi) = \frac{1}{2} \sum_i \left\| \hat{V}^\pi_\phi(s_i) - y_i \right\|^2 \]

what if \(T \) (episode length) is \(\infty \)?
\(\hat{V}^\pi_\phi \) can get infinitely large in many cases

simple trick: better to get rewards sooner than later

\[y_{i,t} \approx r(s_{i,t}, a_{i,t}) + \gamma \hat{V}^\pi_\phi(s_{i,t+1}) \]

discount factor \(\gamma \in [0, 1] \) (0.99 works well)

\[\tilde{p}(s'|s, a) = (1 - \gamma) \]

\[\tilde{p}(s'|s, a) = \gamma p(s'|s, a) \]
Aside: discount factors for policy gradients

$$y_{i,t} \approx r(s_{i,t}, a_{i,t}) + \gamma \hat{V}_\phi^\pi(s_{i,t+1})$$

$$L(\phi) = \frac{1}{2} \sum_i \left\| \hat{V}_\phi^\pi(s_i) - y_i \right\|^2$$

with critic:

$$\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^T \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right)$$

what about (Monte Carlo) policy gradients?

option 1: $$\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^T \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right)$$

option 2: $$\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^T \gamma^{t'-1} r(s_{i,t'}, a_{i,t'}) \right)$$

$$\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T \gamma^{t-1} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^T \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right)$$

not the same!
Which version is the right one?

option 1: \[\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) \left(\sum_{t' = t}^{T} \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right) \]

option 2: \[\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) \left(\sum_{t' = t}^{T} \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right) \]

later steps don’t matter if you’re dead!

this is what we actually use... why?

Further reading: Philip Thomas, Bias in natural actor-critic algorithms. ICML 2014
Actor-critic algorithms (with discount)

batch actor-critic algorithm:
1. sample \(\{s_i, a_i\} \) from \(\pi_\theta(a|s) \) (run it on the robot)
2. fit \(\hat{V}_\phi^\pi(s) \) to sampled reward sums
3. evaluate \(\hat{A}_\pi^\pi(s_i, a_i) = r(s_i, a_i) + \gamma \hat{V}_\phi^\pi(s_i') - \hat{V}_\phi^\pi(s_i) \)
4. \(\nabla_\theta J(\theta) \approx \sum_i \nabla_\theta \log \pi_\theta(a_i|s_i) \hat{A}_\pi^\pi(s_i, a_i) \)
5. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)

online actor-critic algorithm:
1. take action \(a \sim \pi_\theta(a|s) \), get \((s, a, s', r) \)
2. update \(\hat{V}_\phi^\pi \) using target \(r + \gamma \hat{V}_\phi^\pi(s') \)
3. evaluate \(\hat{A}_\pi^\pi(s, a) = r(s, a) + \gamma \hat{V}_\phi^\pi(s') - \hat{V}_\phi^\pi(s) \)
4. \(\nabla_\theta J(\theta) \approx \nabla_\theta \log \pi_\theta(a|s) \hat{A}_\pi^\pi(s, a) \)
5. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)
Break
Architecture design

online actor-critic algorithm:
1. take action \(a \sim \pi_\theta(a|s) \), get \((s, a, s', r)\)
2. update \(\hat{V}_\phi^\pi \) using target \(r + \gamma \hat{V}_\phi^\pi(s') \)
3. evaluate \(\hat{A}_\pi^\pi(s, a) = r(s, a) + \gamma \hat{V}_\phi^\pi(s') - \hat{V}_\phi^\pi(s) \)
4. \(\nabla_\theta J(\theta) \approx \nabla_\theta \log \pi_\theta(a|s) \hat{A}_\pi^\pi(s, a) \)
5. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)

- two network design
 - + simple & stable
 - - no shared features between actor & critic

- shared network design
Online actor-critic in practice

online actor-critic algorithm:

1. take action $a \sim \pi_\theta(a|s)$, get (s, a, s', r)
2. update \hat{V}_ϕ^π using target $r + \gamma \hat{V}_\phi^\pi(s')$
 works best with a batch (e.g., parallel workers)
3. evaluate $\hat{A}_\pi^\pi(s, a) = r(s, a) + \gamma \hat{V}_\phi^\pi(s') - \hat{V}_\phi^\pi(s)$
4. $\nabla_\theta J(\theta) \approx \nabla_\theta \log \pi_\theta(a|s) \hat{A}_\pi^\pi(s, a)$
5. $\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)$
Critics as state-dependent baselines

Actor-critic: \[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_\phi^\pi(\mathbf{s}_{i,t+1}) - \hat{V}_\phi^\pi(\mathbf{s}_{i,t}) \right) \]

- + lower variance (due to critic)
- - not unbiased (if the critic is not perfect)

Policy gradient: \[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) - b \right) \]

- + no bias
- - higher variance (because single-sample estimate)

can we use \(\hat{V}_\phi^\pi \) and still keep the estimator unbiased?

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) - \hat{V}_\phi^\pi(\mathbf{s}_{i,t}) \right) \]

- + no bias
- + lower variance (baseline is closer to rewards)

You’ll implement this for HW2!
Control variates: action-dependent baselines

\[
Q^\pi(s_t, a_t) = \sum_{t'=t}^T E_{\pi_\theta} [r(s_{t'}, a_{t'})|s_t, a_t]
\]

\[
V^\pi(s_t) = E_{a_t \sim \pi_\theta(a_t|s_t)} [Q^\pi(s_t, a_t)]
\]

\[
A^\pi(s_t, a_t) = Q^\pi(s_t, a_t) - V^\pi(s_t)
\]

\[
\hat{A}^\pi(s_t, a_t) = \sum_{t'=t}^\infty \gamma^{t'-t} r(s_{t'}, a_{t'}) - V^\pi_\phi(s_t)
\]

\[
\hat{A}^\pi(s_t, a_t) = \sum_{t'=t}^\infty \gamma^{t'-t} r(s_{t'}, a_{t'}) - Q^\pi_\phi(s_t, a_t)
\]

\[
\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\hat{Q}_{i,t} - Q^\pi_\phi(s_{i,t}, a_{i,t}) \right) + \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T \nabla_\theta E_{a_t \sim \pi_\theta(a_t|s_{i,t})} [Q^\pi_\phi(s_{i,t}, a_t)]
\]

use a critic \textit{without} the bias (still unbiased), provided second term can be evaluated

Gu et al. 2016 (Q-Prop)
Eligibility traces & n-step returns

\[\hat{A}_C^\pi(s_t, a_t) = r(s_t, a_t) + \gamma \hat{V}_\phi^\pi(s_{t+1}) - \hat{V}_\phi^\pi(s_t) \]

\[\hat{A}_{MC}^\pi(s_t, a_t) = \sum_{t'=t}^{\infty} \gamma^{t'-t} r(s_{t'}, a_{t'}) - \hat{V}_\phi^\pi(s_t) \]

Can we combine these two, to control bias/variance tradeoff?

+ lower variance
- higher bias if value is wrong (it always is)
+ no bias
- higher variance (because single-sample estimate)

Bigger variance
Cut here before variance gets too big!

Smaller variance

\[\hat{A}_n^\pi(s_t, a_t) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(s_{t'}, a_{t'}) - \hat{V}_\phi^\pi(s_t) + \gamma^n \hat{V}_\phi^\pi(s_{t+n}) \]

Choosing \(n > 1 \) often works better!
Generalized advantage estimation

Do we have to choose just one n?

Cut everywhere all at once!

$$\hat{A}_n^\pi(s_t, a_t) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(s_{t'}, a_{t'}) - \hat{V}_\phi^\pi(s_t) + \gamma^n \hat{V}_\phi^\pi(s_{t+n})$$

$$\hat{A}_{\text{GAE}}^\pi(s_t, a_t) = \sum_{n=1}^{\infty} w_n \hat{A}_n^\pi(s_t, a_t)$$
Weighted combination of n-step returns

How to weight? Mostly prefer cutting earlier (less variance)

$$w_n \propto \lambda^{n-1}$$

$$\hat{A}_{\text{GAE}}^\pi(s_t, a_t) = r(s_t, a_t) + \gamma((1 - \lambda)\hat{V}_\phi^\pi(s_{t+1}) + \lambda r(s_{t+1}, a_{t+1}) + \gamma((1 - \lambda)\hat{V}_\phi^\pi(s_{t+2}) + \lambda r(s_{t+2}, a_{t+2}) + \ldots$$

$$\hat{A}_{\text{GAE}}^\pi(s_t, a_t) = \sum_{t'=t}^{\infty} (\gamma \lambda)^{t'-t} \delta_{t'}$$

$$\delta_{t'} = r(s_{t'}, a_{t'}) + \gamma \hat{V}_\phi^\pi(s_{t'+1}) - \hat{V}_\phi^\pi(s_{t'})$$

similar effect as discount!

option 1: $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log p_{\theta}(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right)$

remember this?

discount = variance reduction!

Schulman, Moritz, Levine, Jordan, Abbeel ‘16
Review

- Actor-critic algorithms:
 - Actor: the policy
 - Critic: value function
 - Reduce variance of policy gradient
- Policy evaluation
 - Fitting value function to policy
- Discount factors
 - Carpe diem Mr. Robot 🕶️
 - ...but also a variance reduction trick
- Actor-critic algorithm design
 - One network (with two heads) or two networks
 - Batch-mode, or online (+ parallel)
- State-dependent baselines
 - Another way to use the critic
 - Can combine: n-step returns or GAE

\[\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \]
Actor-critic examples

- High dimensional continuous control with generalized advantage estimation (Schulman, Moritz, L., Jordan, Abbeel ‘16)
- Batch-mode actor-critic
- Blends Monte Carlo and function approximator estimators (GAE)
Actor-critic examples

- Asynchronous methods for deep reinforcement learning (Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu ‘16)
- Online actor-critic, parallelized batch
- N-step returns with N = 4
- Single network for actor and critic
Actor-critic suggested readings

• Classic papers

• Deep reinforcement learning actor-critic papers
 • Schulman, Moritz, L., Jordan, Abbeel (2016). High-dimensional continuous control using generalized advantage estimation: batch-mode actor-critic with blended Monte Carlo and function approximator returns