Actor-Critic Algorithms

CS 285

Instructor: Sergey Levine
UC Berkeley
Recap: policy gradients

REINFORCE algorithm:
1. sample \(\{\tau^i\} \) from \(\pi_\theta(a_t|s_t) \) (run the policy)
2. \(\nabla_\theta J(\theta) \approx \sum_i \left(\sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_t^i|s_t^i) \left(\sum_{t'=t}^T r(s_{t'}, a_{t'}^i) \right) \right) \)
3. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)

\[
\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \hat{Q}_{i,t}^\pi
\]

"reward to go"

\[
\hat{Q}^\pi(x_t, u_t) = \sum_{t'=t}^T r(x_{t'}, u_{t'})
\]
Improving the policy gradient

\(\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\sum_{t'=1}^{T} r(s_{i,t'}, a_{i,t'}) \right) \)

"reward to go"

\(\hat{Q}_{i,t} \)

\(\hat{Q}_{i,t} \): estimate of expected reward if we take action \(a_{i,t} \) in state \(s_{i,t} \) can we get a better estimate?

\(Q(s_t, a_t) = \sum_{t'=t}^{T} E_{\pi_\theta} [r(s_{t'}, a_{t'})|s_t, a_t] \): true expected reward-to-go

\(\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t})Q(s_{i,t}, a_{i,t}) \)
What about the baseline?

\[Q(s_t, a_t) = \sum_{t'=t}^{T} E_{\pi_\theta} [r(s_{t'}, a_{t'})|s_t, a_t] : \text{true expected reward-to-go} \]

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}, (s_{i,t-1}, a_{i,t-1})) - Q_i(s_{i,t}) \]

\[b_t = \frac{1}{N} \sum_{i} Q(s_{i,t}, a_{i,t}) \quad \text{average what?} \]

\[V(s_t) = E_{a_t \sim \pi_\theta(a_t|s_t)} [Q(s_t, a_t)] \]

\[\dot{Q}_{i,t} \approx \sum_{t'=t}^{T} E_{\pi_\theta} [r(s_{t'}, a_{t'})|s_t, a_t] \]
State & state-action value functions

\[
Q(s_t, a_t) = \sum_{t'=t}^{T} \sum_{a' \in \mathcal{A}} E[\gamma r(s_{t'}, a_{t'}) | s_t, a_t] \text{: total reward from taking } a \text{ in } s_t
\]

\[
V^\pi(s_t) = E_{a_t \sim \pi^\theta} [Q^\pi(s_t, a_t)] : \text{total reward from } s_t
\]

\[
A^\pi(s_t, a_t) = Q^\pi(s_t, a_t) - V^\pi(s_t) : \text{how much better } a_t \text{ is}
\]

\[
\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi^\theta(a_{i,t}|s_{i,t}) A^\pi(s_{i,t}, a_{i,t})
\]

the better this estimate, the lower the variance

\[
\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi^\theta(a_{i,t}|s_{i,t}) \left(\sum_{t' = 1}^{T} \gamma r(s_{i,t'}, a_{i,t'}) - b \right)
\]

unbiased, but high variance single-sample estimate

fit \(Q^\pi, V^\pi, \text{ or } A^\pi\)

fit a model to estimate return

generate samples (i.e. run the policy)

improve the policy

\[
\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)
\]
Value function fitting

\[Q^\pi(s_t, a_t) = \sum_{t'=t}^{T} E_{\pi^{ \theta}} [r(s_{t'}, a_{t'}) | s_t, a_t] \]

\[V^\pi(s_t) = E_{a_t \sim \pi^{ \theta}(a_t | s_t)} [Q^\pi(s_t, a_t)] \]

\[A^\pi(s_t, a_t) = Q^\pi(s_t, a_t) - V^\pi(s_t) \]

\[\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi^{ \theta}(a_{i,t} | s_{i,t}) A^\pi(s_{i,t}, a_{i,t}) \]

fit what to what?

\(Q^\pi, V^\pi, A^\pi ? \)

\[Q^\pi(s_t, a_t) \approx \sum_{t'=t}^{T} E_{\pi^{ \theta}} [r(s_{t'}, a_{t'}) | s_t, a_t] + E_{\pi^{ \theta}} [E_{a_{t+1} \sim \pi^{ \phi}(a_{t+1} | s_{t+1})} [V^\pi(s_{t+1}, a_{t+1}) | s_t, a_t] | s_t, a_t] \]

\[A^\pi(s_t, a_t) \approx r(s_t, a_t) + V^\pi(s_{t+1}) - V^\pi(s_t) \]

let’s just fit \(V^\pi(s) \)!
Policy evaluation

\[V^\pi(s_t) = \sum_{t'=t}^{T} E_{\pi_\theta}[r(s_{t'}, a_{t'})|s_t] \]

\[J(\theta) = E_{s_1 \sim p(s_1)}[V^\pi(s_1)] \]

how can we perform policy evaluation?

Monte Carlo policy evaluation (this is what policy gradient does)

\[V^\pi(s_t) \approx \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \]

\[V^\pi(s_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \]

(requires us to reset the simulator)
Monte Carlo evaluation with function approximation

\[V^\pi(s_t) \approx \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \]

not as good as this: \(V^\pi(s_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \)

but still pretty good!

training data: \(\{(s_{i,t}, \sum_{t'=t}^{T} r(s_{i,t'}, a_{i,t'})) \} \)

\[y_{i,t} \]

supervised regression: \(L(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_\phi^\pi(s_i) - y_i \right\|^2 \)
Can we do better?

ideal target: \(y_{i,t} = \sum_{t' = t}^{T} E_{\pi_\theta} [r(s_{t', a_{t'}}) | s_{i,t}] \approx r(s_{i,t}, a_{i,t}) + \sum_{t' = t}^{T} E_{\pi_\theta} [\pi(s_{i,t}, a_{i,t}) | s_{i,t}] + \hat{V}_\pi(s_{i,t+1}) \)

Monte Carlo target: \(y_{i,t} = \sum_{t' = t}^{T} r(s_{i,t'}, a_{i,t'}) \) directly use previous fitted value function!

training data: \(\{ (s_{i,t}, r(s_{i,t}, a_{i,t}) + \hat{V}_\phi(s_{i,t+1})) \} \)

\(y_{i,t} \)

supervised regression: \(L(\phi) = \frac{1}{2} \sum_i \left\| \hat{V}_\phi(s_i) - y_i \right\|^2 \)

sometimes referred to as a “bootstrapped” estimate
Policy evaluation examples

TD-Gammon, Gerald Tesauro 1992

AlphaGo, Silver et al. 2016

reward: game outcome
value function $\hat{V}_\phi^\pi(s_t)$:
expected outcome given board state

reward: game outcome
value function $\hat{V}_\phi^\pi(s_t)$:
expected outcome given board state
From Evaluation to Actor Critic
An actor-critic algorithm

batch actor-critic algorithm:

1. sample \(\{s_i, a_i\} \) from \(\pi_\theta(a|s) \) (run it on the robot)
2. fit \(\hat{V}_\phi^\pi(s) \) to sampled reward sums
3. evaluate \(\hat{A}^\pi(s_i, a_i) = r(s_i, a_i) + \hat{V}_\phi^\pi(s'_i) - \hat{V}_\phi^\pi(s_i) \)
4. \(\nabla_\theta J(\theta) \approx \sum_i \nabla_\theta \log \pi_\theta(a_i|s_i) \hat{A}^\pi(s_i, a_i) \)
5. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)

\[
V^\pi(s_t) \approx \sum_{t'=t}^T \mathbb{I}(s_t \in s_{t'}) [r(s_{t'}, a_{t'}) | s_t]
\]

\[
L(\phi) = \frac{1}{2} \sum_i \left\| \hat{V}_\phi^\pi(s_i) - y_i \right\|^2
\]

\[
V^\pi(s_t) = \sum_{t'=t}^T E_{\pi_\theta} [r(s_{t'}, a_{t'}) | s_t]
\]
Aside: discount factors

\[y_{i,t} \approx r(s_{i,t}, a_{i,t}) + \hat{V}_\phi^\pi(s_{i,t+1}) \]

\[\mathcal{L}(\phi) = \frac{1}{2} \sum_i \| \hat{V}_\phi^\pi(s_i) - y_i \|^2 \]

what if \(T \) (episode length) is \(\infty \)?
\(\hat{V}_\phi^\pi \) can get infinitely large in many cases

simple trick: better to get rewards sooner than later

\[y_{i,t} \approx r(s_{i,t}, a_{i,t}) + \gamma \hat{V}_\phi^\pi(s_{i,t+1}) \]

discount factor \(\gamma \in [0, 1] \) (0.99 works well)

\[\gamma \text{ changes the MDP:} \]

\[p(s'|s, a) = (1 - \gamma) \]

\[\hat{p}(s'|s, a) = \gamma p(s'|s, a) \]
Aside: discount factors for policy gradients

\[y_{i,t} \approx r(s_{i,t}, a_{i,t}) + \gamma \hat{V}_\phi(s_{i,t+1}) \]

\[\mathcal{L}(\phi) = \frac{1}{2} \sum_i \left\| \hat{V}_\phi(s_i) - y_i \right\|^2 \]

with critic:

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right) \]

\[\hat{A}_\pi(s_{i,t}, a_{i,t}) \]

what about (Monte Carlo) policy gradients?

option 1:

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right) \]

not the same!

option 2:

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^{T} \gamma^{t-1} r(s_{i,t'}, a_{i,t'}) \right) \]

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-1} r(s_{i,t'}, a_{i,t'}) \right) \]

(later steps matter less)

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right) \]
Which version is the right one?

option 1: \[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t} \mid s_{i,t}) \left(\sum_{t' = t}^{T} \gamma^{t' - t} r(s_{i,t'}, a_{i,t'}) \right) \]

option 2: \[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_\theta \log \pi_\theta(a_{i,t} \mid s_{i,t}) \left(\sum_{t' = t}^{T} \gamma^{t' - t} r(s_{i,t'}, a_{i,t'}) \right) \]

this is what we actually use... why?

Iteration 2000

later steps don’t matter if you’re dead!

Further reading: Philip Thomas, Bias in natural actor-critic algorithms. ICML 2014
Actor-critic algorithms (with discount)

batch actor-critic algorithm:

1. sample \{s_i, a_i\} from \pi_\theta(a|s) (run it on the robot)
2. fit \hat{V}_\phi^\pi(s) to sampled reward sums
3. evaluate \hat{A}_\pi(s_i, a_i) = r(s_i, a_i) + \gamma \hat{V}_\phi^\pi(s_i') - \hat{V}_\phi^\pi(s_i)
4. \nabla_\theta J(\theta) \approx \sum_i \nabla_\theta \log \pi_\theta(a_i|s_i) \hat{A}_\pi(s_i, a_i)
5. \theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)

online actor-critic algorithm:

1. take action \(a \sim \pi_\theta(a|s)\), get \((s, a, s', r)\)
2. update \(\hat{V}_\phi^\pi\) using target \(r + \gamma \hat{V}_\phi^\pi(s')\)
3. evaluate \(\hat{A}_\pi(s, a) = r(s, a) + \gamma \hat{V}_\phi^\pi(s') - \hat{V}_\phi^\pi(s)\)
4. \(\nabla_\theta J(\theta) \approx \nabla_\theta \log \pi_\theta(a|s) \hat{A}_\pi(s, a)\)
5. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)\)
Actor-Critic Design Decisions
Architecture design

online actor-critic algorithm:

1. take action $a \sim \pi_\theta(a|s)$, get (s, a, s', r)
2. update \hat{V}_ϕ^π using target $r + \gamma \hat{V}_\phi^\pi(s')$
3. evaluate $\hat{A}^\pi(s, a) = r(s, a) + \gamma \hat{V}_\phi^\pi(s') - \hat{V}_\phi^\pi(s)$
4. $\nabla_\theta J(\theta) \approx \nabla_\theta \log \pi_\theta(a|s) \hat{A}^\pi(s, a)$
5. $\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)$

- two network design
 - simple & stable
 - no shared features between actor & critic

- shared network design
Online actor-critic in practice

online actor-critic algorithm:
1. take action $a \sim \pi_{\theta}(a|s)$, get (s, a, s', r)
2. update \hat{V}_ϕ using target $r + \gamma \hat{V}_\phi(s')$
3. evaluate $\hat{A}_\pi(s, a) = r(s, a) + \gamma \hat{V}_\phi(s') - \hat{V}_\phi(s)$
4. $\nabla_\theta J(\theta) \approx \nabla_\theta \log \pi_{\theta}(a|s) \hat{A}_\pi(s, a)$
5. $\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)$

synchronized parallel actor-critic
asynchronous parallel actor-critic
Critics as Baselines
Critics as state-dependent baselines

Actor-critic:

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t} | s_{i,t}) \left(r(s_{i,t}, a_{i,t}) + \gamma \hat{V}_\phi^\pi(s_{i,t+1}) - \hat{V}_\phi^\pi(s_{i,t}) \right) \]

+ lower variance (due to critic)
- not unbiased (if the critic is not perfect)

Policy gradient:

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t} | s_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right) - b \right) \]

+ no bias
- higher variance (because single-sample estimate)

Can we use \(\hat{V}_\phi^\pi \) and still keep the estimator unbiased?

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t} | s_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right) - \hat{V}_\phi^\pi(s_{i,t}) \right) \]

+ no bias
+ lower variance (baseline is closer to rewards)
Control variates: action-dependent baselines

\[Q_\pi(s_t, a_t) = \sum_{t' = t}^{T} E_{\pi_\theta} [r(s_{t'}, a_{t'}) | s_t, a_t] \]

\[V_\pi(s_t) = E_{a_t \sim \pi_\theta(a_t | s_t)} [Q_\pi(s_t, a_t)] \]

\[A_\pi(s_t, a_t) = Q_\pi(s_t, a_t) - V_\pi(s_t) \]

\[\hat{A}_\pi(s_t, a_t) = \sum_{t' = t}^{\infty} \gamma^{t' - t} r(s_{t'}, a_{t'}) - V_\phi(s_t) \]

\[\hat{A}_\pi(s_t, a_t) = \sum_{t' = t}^{\infty} \gamma^{t' - t} r(s_{t'}, a_{t'}) - Q_\phi(s_t, a_t) \]

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t} | s_{i,t}) \left(\hat{Q}_{i,t} - Q_\phi(s_{i,t}, a_{i,t}) \right) + \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta E_{a \sim \pi_\theta(a_t | s_{i,t})} [Q_\phi(s_{i,t}, a_t)] \]

use a critic without the bias (still unbiased), provided second term can be evaluated

Gu et al. 2016 (Q-Prop)
Eligibility traces & n-step returns

\[\hat{A}_C^\pi(s_t, a_t) = r(s_t, a_t) + \gamma \hat{V}_\phi^\pi(s_{t+1}) - \hat{V}_\phi^\pi(s_t) \]

\[\hat{A}_{MC}^\pi(s_t, a_t) = \sum_{t' = t}^{\infty} \gamma^{t' - t} r(s_{t'}, a_{t'}) - \hat{V}_\phi^\pi(s_t) \]

+ lower variance
- higher bias if value is wrong (it always is)
+ no bias
- higher variance (because single-sample estimate)

Can we combine these two, to control bias/variance tradeoff?

\[\hat{A}_n^\pi(s_t, a_t) = \sum_{t' = t}^{t+n} \gamma^{t' - t} r(s_{t'}, a_{t'}) - \hat{V}_\phi^\pi(s_t) + \gamma^n \hat{V}_\phi^\pi(s_{t+n}) \]

Choosing \(n > 1 \) often works better!
Generalized advantage estimation

Do we have to choose just one n?

Cut everywhere all at once!

$$
\hat{A}_n^{\pi}(s_t, a_t) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(s_{t'}, a_{t'}) - \hat{V}_\phi^{\pi}(s_t) + \gamma^n \hat{V}_\phi^{\pi}(s_{t+n})
$$

$$
\hat{A}_{\text{GAE}}^{\pi}(s_t, a_t) = \sum_{n=1}^{\infty} w_n \hat{A}_n^{\pi}(s_t, a_t)
$$

weighted combination of n-step returns

How to weight?

Mostly prefer cutting earlier (less variance)

exponential falloff

$$
w_n \propto \lambda^{n-1}
$$

$$
\hat{A}_{\text{GAE}}^{\pi}(s_t, a_t) = r(s_t, a_t) + \gamma((1 - \lambda)\hat{V}_\phi^{\pi}(s_{t+1}) + \lambda r(s_{t+1}, a_{t+1}) + \gamma((1 - \lambda)\hat{V}_\phi^{\pi}(s_{t+2}) + \lambda r(s_{t+2}, a_{t+2}) + \ldots
$$

$$
\hat{A}_{\text{GAE}}^{\pi}(s_t, a_t) = \sum_{t'=t}^{\infty} (\gamma \lambda)^{t'-t} \delta_{t'}
$$

$$
\delta_{t'} = r(s_{t'}, a_{t'}) + \gamma \hat{V}_\phi^{\pi}(s_{t'+1}) - \hat{V}_\phi^{\pi}(s_{t'})
$$

similar effect as discount!

option 1:

$$
\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t} | s_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(s_{i,t'}, a_{i,t'}) \right)
$$

remember this?

discount = variance reduction!

Schulman, Moritz, Levine, Jordan, Abbeel '16
Review, Examples, and Additional Readings
Review

• Actor-critic algorithms:
 • Actor: the policy
 • Critic: value function
 • Reduce variance of policy gradient

• Policy evaluation
 • Fitting value function to policy

• Discount factors
 • Carpe diem Mr. Robot 🕶️
 • ...but also a variance reduction trick

• Actor-critic algorithm design
 • One network (with two heads) or two networks
 • Batch-mode, or online (+ parallel)

• State-dependent baselines
 • Another way to use the critic
 • Can combine: n-step returns or GAE
Actor-critic examples

- High dimensional continuous control with generalized advantage estimation (Schulman, Moritz, L., Jordan, Abbeel ‘16)
- Batch-mode actor-critic
- Blends Monte Carlo and function approximator estimators (GAE)
Actor-critic examples

• Asynchronous methods for deep reinforcement learning (Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu ‘16)
• Online actor-critic, parallelized batch
• N-step returns with N = 4
• Single network for actor and critic
Actor-critic suggested readings

• Classic papers

• Deep reinforcement learning actor-critic papers
 • Schulman, Moritz, L., Jordan, Abbeel (2016). High-dimensional continuous control using generalized advantage estimation: batch-mode actor-critic with blended Monte Carlo and function approximator returns