Policy Gradients

CS 285

Instructor: Sergey Levine
UC Berkeley
The goal of reinforcement learning

\[p_\theta(s_1, a_1, \ldots, s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi_\theta(a_t|s_t)p(s_{t+1}|s_t, a_t) \]

\[p_\theta(\tau) \]

\[\theta^* = \arg \max_{\theta} E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right] \]
The goal of reinforcement learning

\[\theta^* = \arg \max_\theta E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right] \]

\[\theta^* = \arg \max_\theta E_{(s,a) \sim p_\theta(s,a)}[r(s,a)] \]

infinite horizon case

\[\theta^* = \arg \max_\theta \sum_{t=1}^T E_{(s_t,a_t) \sim p_\theta(s_t,a_t)}[r(s_t,a_t)] \]

finite horizon case
Evaluating the objective

\[\theta^* = \arg \max_{\theta} E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right] \]

\[J(\theta) \]

\[J(\theta) = E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right] \approx \frac{1}{N} \sum_i \sum_t r(s_{i,t}, a_{i,t}) \]

sum over samples from \(\pi_\theta \)
Direct policy differentiation

$$\theta^* = \arg \max_\theta E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right]$$

$$J(\theta) = \sum_{t=1}^T r(s_t, a_t)$$

$$J(\theta) = E_{\tau \sim p_\theta(\tau)}[r(\tau)] = \int p_\theta(\tau) r(\tau) d\tau$$

$$\nabla_\theta J(\theta) = \int \nabla_\theta p_\theta(\tau) r(\tau) d\tau = \int p_\theta(\tau) \nabla_\theta \log p_\theta(\tau) r(\tau) d\tau = E_{\tau \sim p_\theta(\tau)}[\nabla_\theta \log p_\theta(\tau) r(\tau)]$$

a convenient identity

$$p_\theta(\tau) \nabla_\theta \log p_\theta(\tau) = p_\theta(\tau) \frac{\nabla_\theta p_\theta(\tau)}{p_\theta(\tau)} = \nabla_\theta p_\theta(\tau)$$
Direct policy differentiation

\[\theta^* = \arg \max_{\theta} J(\theta) \]

\[J(\theta) = E_{\tau \sim p_\theta(\tau)}[r(\tau)] \]

\[\nabla_{\theta} J(\theta) = E_{\tau \sim p_\theta(\tau)}[\nabla_{\theta} \log p_\theta(\tau) r(\tau)] \]

\[\nabla_{\theta} \left[\log p(s_1) + \sum_{t=1}^{T} \log \pi_\theta(a_t|s_t) + \log p(s_{t+1}|s_t, a_t) \right] \]

\[\nabla_{\theta} J(\theta) = E_{\tau \sim p_\theta(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_\theta(a_t|s_t) \right) \left(\sum_{t=1}^{T} r(s_t, a_t) \right) \right] \]
Evaluating the policy gradient

\[J(\theta) = E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right] \approx \frac{1}{N} \sum_i \sum_t r(s_{i,t}, a_{i,t}) \]

\[\nabla_\theta J(\theta) = E_{\tau \sim p_\theta(\tau)} \left[\left(\sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_t|s_t) \right) \left(\sum_{t=1}^T r(s_t, a_t) \right) \right] \]

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \left(\sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^T r(s_{i,t}, a_{i,t}) \right) \]

\[\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \]

REINFORCE algorithm:
1. sample \(\{\tau^i\} \) from \(\pi_\theta(a_t|s_t) \) (run the policy)
2. \(\nabla_\theta J(\theta) \approx \sum_i \left(\sum_t \nabla_\theta \log \pi_\theta(a_{i,t}^i|s_{i,t}^i) \right) \left(\sum_t r(s_{i,t}^i, a_{i,t}^i) \right) \)
3. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)
Understanding Policy Gradients
Evaluating the policy gradient

recall: $J(\theta) = E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right] \approx \frac{1}{N} \sum_i \sum_t r(s_{i,t}, a_{i,t})$

$\nabla_\theta J(\theta) = E_{\tau \sim p_\theta(\tau)} \left[\left(\sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_t|s_t) \right) \left(\sum_{t=1}^T r(s_t, a_t) \right) \right]$

$\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \left(\sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^T r(s_{i,t}, a_{i,t}) \right)$

what is this?

$s_t \quad \pi_\theta(a_t|s_t) \quad a_t$
Comparison to maximum likelihood

policy gradient: \[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^{T} r(s_{i,t}, a_{i,t}) \right) \]

maximum likelihood: \[\nabla_\theta J_{ML}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \right) \]
Example: Gaussian policies

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^{T} r(s_{i,t}, a_{i,t}) \right) \]

e.g.: \[\pi_\theta(a_t|s_t) = \mathcal{N}(f_{\text{neural network}}(s_t); \Sigma) \]

\[\log \pi_\theta(a_t|s_t) = -\frac{1}{2} \left\| f(s_t) - a_t \right\|_\Sigma^2 + \text{const} \]

\[\nabla_\theta \log \pi_\theta(a_t|s_t) = -\frac{1}{2} \Sigma^{-1}(f(s_t) - a_t) \frac{df}{d\theta} \]

REINFORCE algorithm:
1. sample \(\{\tau^i\} \) from \(\pi_\theta(a_t|s_t) \) (run it on the robot)
2. \[\nabla_\theta J(\theta) \approx \sum_i \left(\sum_t \nabla_\theta \log \pi_\theta(a^i_t|s^i_t) \right) \left(\sum_t r(s^i_t, a^i_t) \right) \]
3. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)
What did we just do?

\[
\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^{T} r(s_{i,t}, a_{i,t}) \right)
\]

\[
\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_\theta \log \pi_\theta(\tau_i) r(\tau_i)
\]

maximum likelihood: \[
\nabla_\theta J_{ML}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_\theta \log \pi_\theta(\tau_i)
\]

good stuff is made more likely

bad stuff is made less likely

simply formalizes the notion of “trial and error”!

REINFORCE algorithm:

1. sample \(\{\tau^i\} \) from \(\pi_\theta(a_t|s_t) \) (run it on the robot)
2. \(\nabla_\theta J(\theta) \approx \sum_i \left(\sum_t \nabla_\theta \log \pi_\theta(a_{i,t}^i|s_{i,t}^i) \right) \left(\sum_t r(s_{i,t}^i, a_{i,t}^i) \right) \)
3. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)
Partial observability

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t} | o_{i,t}) \right) \left(\sum_{t=1}^{T} r(s_{i,t}, a_{i,t}) \right) \]

Markov property is not actually used!

Can use policy gradient in partially observed MDPs without modification
What is wrong with the policy gradient?

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_\theta \log p_{\theta}(\tau) r(\tau) \]

even worse: what if the two “good” samples have \(r(\tau) = 0 \)?

high variance
Review

• Evaluating the RL objective
 • Generate samples

• Evaluating the policy gradient
 • Log-gradient trick
 • Generate samples

• Understanding the policy gradient
 • Formalization of trial-and-error

• Partial observability
 • Works just fine

• What is wrong with policy gradient?

\[
\sum_{t=1}^{T} r(x_t, u_t)
\]

fit a model to estimate return

generate samples (i.e. run the policy)

improve the policy

\[
\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)
\]
Reducing Variance
Reducing variance

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^{T} r(s_{i,t}, a_{i,t}) \right) \]

Causality: policy at time \(t' \) cannot affect reward at time \(t \) when \(t < t' \)

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^{T} r(s_{i,t'}, a_{i,t'}) \right) \]

"reward to go"

\(\hat{Q}_{i,t} \)
Baselines

\[\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p_{\theta}(\tau)[r(\tau)] - b \]

\[b = \frac{1}{N} \sum_{i=1}^{N} r(\tau) \]

but... are we \textit{allowed} to do that??

\[E[\nabla_{\theta} \log p_{\theta}(\tau)b] = \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)b \, d\tau = \int \nabla_{\theta} p_{\theta}(\tau)b \, d\tau = b \nabla_{\theta} \int p_{\theta}(\tau) \, d\tau = b \nabla_{\theta} 1 = 0 \]

subtracting a baseline is \textit{unbiased} in expectation!

average reward is \textit{not} the best baseline, but it’s pretty good!
Analyzing variance

can we write down the variance?

\[\text{Var}[x] = E[x^2] - E[x]^2 \]

\[\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b)] \]

\[\text{Var} = E_{\tau \sim p_{\theta}(\tau)}[(\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b))^2] - E_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b)]^2 \]

\[\text{This bit is just } E_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log p_{\theta}(\tau)r(\tau)] \]

(baselines are unbiased in expectation)

\[\frac{d\text{Var}}{db} = \frac{d}{db} E[g(\tau)^2(r(\tau) - b)^2] = \frac{d}{db} \left(E[g(\tau)^2 r(\tau)^2] - 2E[g(\tau)^2 r(\tau)b] + b^2 E[g(\tau)^2] \right) \]

\[= -2E[g(\tau)^2 r(\tau)] + 2bE[g(\tau)^2] = 0 \]

\[b = \frac{E[g(\tau)^2 r(\tau)]}{E[g(\tau)^2]} \]

This is just expected reward, but weighted by gradient magnitudes!
Review

• The high variance of policy gradient
• Exploiting causality
 • Future doesn’t affect the past
• Baselines
 • Unbiased!
• Analyzing variance
 • Can derive optimal baselines

\[
\hat{Q}^\pi(x_t, u_t) = \sum_{t'=t}^T r(x_{t'}, u_{t'})
\]

- fit a model to estimate return
- generate samples (i.e. run the policy)
- improve the policy

\[
\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)
\]
Off-Policy Policy Gradients
Policy gradient is on-policy

\[\theta^* = \arg \max_{\theta} J(\theta) \]

\[J(\theta) = E_{\tau \sim p_\theta(\tau)}[r(\tau)] \]

\[\nabla_\theta J(\theta) = E_{\tau \sim p_\theta(\tau)}[\nabla_\theta \log p_\theta(\tau)r(\tau)] \]

- Neural networks change only a little bit with each gradient step
- On-policy learning can be extremely inefficient!

REINFORCE algorithm:
1. sample \(\{\tau^i\} \) from \(\pi_\theta(a_t|s_t) \) (run it on the robot)
2. \(\nabla_\theta J(\theta) \approx \sum_i (\sum_t \nabla_\theta \log \pi_\theta(a_t^i|s_t^i)) \left(\sum_t r(s_t^i, a_t^i) \right) \)
3. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)
Off-policy learning & importance sampling

\[\theta^* = \arg \max_{\theta} J(\theta) \]

\[J(\theta) = E_{\tau \sim \rho(\tau)} [r(\tau)] \]

what if we don’t have samples from \(p_\theta(\tau) \)?
(we have samples from some \(\bar{p}(\tau) \) instead)

\[J(\theta) = E_{\tau \sim \bar{p}(\tau)} \left[\frac{p_\theta(\tau)}{\bar{p}(\tau)} r(\tau) \right] \]

\[p_\theta(\tau) = p(s_1) \prod_{t=1}^{T} \pi_\theta(a_t | s_t)p(s_{t+1} | s_t, a_t) \]

\[\frac{p_\theta(\tau)}{\bar{p}(\tau)} = \frac{p(s_1) \prod_{t=1}^{T} \pi_\theta(a_t | s_t)p(s_{t+1} | s_t, a_t)}{p(s_1) \prod_{t=1}^{T} \bar{\pi}(a_t | s_t)p(s_{t+1} | s_t, a_t)} = \frac{\prod_{t=1}^{T} \pi_\theta(a_t | s_t)}{\prod_{t=1}^{T} \bar{\pi}(a_t | s_t)} \]

importance sampling

\[E_{x \sim p(x)} [f(x)] = \int p(x) f(x) dx \]

\[= \int \frac{q(x)}{q(x)} p(x) f(x) dx \]

\[= \int q(x) \frac{p(x)}{q(x)} f(x) dx \]

\[= E_{x \sim q(x)} \left[\frac{p(x)}{q(x)} f(x) \right] \]
Deriving the policy gradient with IS

$$\theta^* = \arg\max_\theta J(\theta)$$

$$J(\theta) = E_{\tau \sim p_\theta(\tau)}[r(\tau)]$$

can we estimate the value of some new parameters θ'?

$$J(\theta') = E_{\tau \sim p_\theta(\tau)} \left[\frac{p_{\theta'}(\tau)}{p_\theta(\tau)} r(\tau) \right]$$

the only bit that depends on θ'

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_\theta(\tau)} \left[\frac{\nabla_{\theta'} p_{\theta'}(\tau)}{p_\theta(\tau)} r(\tau) \right] = E_{\tau \sim p_\theta(\tau)} \left[\frac{p_{\theta'}(\tau)}{p_\theta(\tau)} \nabla_{\theta'} \log p_{\theta'}(\tau) r(\tau) \right]$$

now estimate locally, at $\theta = \theta'$: $$\nabla_{\theta} J(\theta) = E_{\tau \sim p_\theta(\tau)} \left[\nabla_{\theta} \log p_\theta(\tau) r(\tau) \right]$$
The off-policy policy gradient

\[\theta^* = \arg \max_{\theta} J(\theta) \]
\[J(\theta) = E_{\tau \sim p_\theta(\tau)}[r(\tau)] \]

\[\nabla_{\theta'} J(\theta') = E_{\tau \sim p_\theta(\tau)} \left[\frac{p_{\theta'}(\tau)}{p_\theta(\tau)} \nabla_{\theta'} \log \pi_{\theta'}(\tau) r(\tau) \right] \quad \text{when } \theta \neq \theta' \]

\[= E_{\tau \sim p_\theta(\tau)} \left[\left(\prod_{t=1}^{T} \frac{\pi_{\theta'}(a_t|s_t)}{\pi_\theta(a_t|s_t)} \right) \left(\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(a_t|s_t) \right) \left(\sum_{t=1}^{T} r(s_t, a_t) \right) \right] \]

\[= E_{\tau \sim p_\theta(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(a_t|s_t) \left(\prod_{t'=1}^{t} \frac{\pi_{\theta'}(a_{t'}|s_{t'})}{\pi_\theta(a_{t'}|s_{t'})} \right) \left(\sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \left(\prod_{t''=t}^{t'} \frac{\pi_{\theta'}(a_{t''}|s_{t''})}{\pi_\theta(a_{t''}|s_{t''})} \right) \right) \right] \]

future actions don’t affect current weight

if we ignore this, we get a policy iteration algorithm (more on this in a later lecture)
A first-order approximation for IS (preview)

\[
\nabla_{\theta'} J(\theta') = E_{\tau \sim p_\theta(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(a_t | s_t) \left(\prod_{t' = 1}^{t} \frac{\pi_{\theta'}(a_{t'} | s_{t'})}{\pi_{\theta}(a_{t'} | s_{t'})} \right) \left(\sum_{t' = t}^{T} r(s_{t'}, a_{t'}) \right) \right]
\]

let’s write the objective a bit differently...

on-policy policy gradient: \[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t} | s_{i,t}) \hat{Q}_{i,t} \]

off-policy policy gradient: \[\nabla_{\theta'} J(\theta') \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\pi_{\theta'}(s_{i,t}, a_{i,t})}{\pi_\theta(s_{i,t}, a_{i,t})} \nabla_{\theta'} \log \pi_{\theta'}(a_{i,t} | s_{i,t}) \hat{Q}_{i,t} \]

We’ll see why this is reasonable later in the course!

ignore this part
Implementing Policy Gradients
Policy gradient with automatic differentiation

\[\nabla_\theta J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \hat{Q}_{i,t} \]

pretty inefficient to compute these explicitly!

How can we compute policy gradients with automatic differentiation?

We need a graph such that its gradient is the policy gradient!

maximum likelihood: \[\nabla_\theta J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_{i,t}|s_{i,t}) \quad J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_\theta(a_{i,t}|s_{i,t}) \]

Just implement “pseudo-loss” as a weighted maximum likelihood:

\[\tilde{J}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_\theta(a_{i,t}|s_{i,t}) \hat{Q}_{i,t} \]

cross entropy (discrete) or squared error (Gaussian)
Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Maximum likelihood:

```python
# Given:
# actions - (N*T) x Da tensor of actions
# states - (N*T) x Ds tensor of states
# Build the graph:
logits = policy.predictions(states)  # This should return (N*T) x Da tensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
loss = tf.reduce_mean(negative_likelihoods)
gradients = loss.gradients(loss, variables)
```
Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:

Given:
actions - (N*T) x Da tensor of actions
states - (N*T) x Ds tensor of states
q_values - (N*T) x 1 tensor of estimated state-action values
Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
weighted_negative_likelihoods = tf.multiply(negative_likelihoods, q_values)
loss = tf.reduce_mean(weighted_negative_likelihoods)
gradients = loss.gradients(loss, variables)

\[
\hat{J}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}(a_{i,t}|s_{i,t}, Q_{i,t}) \cdot q_{values}
\]
Policy gradient in practice

• Remember that the gradient has high variance
 • This isn’t the same as supervised learning!
 • Gradients will be really noisy!

• Consider using much larger batches

• Tweaking learning rates is very hard
 • Adaptive step size rules like ADAM can be OK-ish
 • We’ll learn about policy gradient-specific learning rate adjustment methods later!
Review

- Policy gradient is on-policy
- Can derive off-policy variant
 - Use importance sampling
 - Exponential scaling in T
 - Can ignore state portion (approximation)
- Can implement with automatic differentiation – need to know what to backpropagate
- Practical considerations: batch size, learning rates, optimizers

\[
\hat{Q}^\pi(x_t, u_t) = \sum_{t'=t}^{T} r(x_{t'}, u_{t'})
\]

\[
\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)
\]

fit a model to estimate return

generate samples (i.e., run the policy)

improve the policy
Advanced Policy Gradients
What else is wrong with the policy gradient?

\[r(s_t, a_t) = -s_t^2 - a_t^2 \]

\[\log \pi_{\theta}(a_t | s_t) = -\frac{1}{2\sigma^2} (ks_t - a_t)^2 + \text{const} \quad \theta = (k, \sigma) \]

Essentially the same problem as this:
Covariant/natural policy gradient

\[\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \]
\[\pi_\theta(a_t|s_t) \]

some parameters change probabilities a lot more than others!

\[\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla_\theta J(\theta) \quad \text{s.t.} \quad \|\theta' - \theta\|^2 \leq \epsilon \]

controls how far we go

can we rescale the gradient so this doesn’t happen?

\[\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla_\theta J(\theta) \quad \text{s.t.} \quad D(\pi_{\theta'}, \pi_\theta) \leq \epsilon \]

parameterization-independent divergence measure

usually KL-divergence: \[D_{KL}(\pi_{\theta'} || \pi_\theta) = E_{\pi_{\theta'}} [\log \pi_{\theta'} - \log \pi_\theta] \]

\[D_{KL}(\pi_{\theta'} || \pi_\theta) \approx (\theta' - \theta)^T F (\theta' - \theta) \]

\[F = E_{\pi_\theta} [\nabla_\theta \log \pi_\theta(a|s) \nabla_\theta \log \pi_\theta(a|s)^T] \]

Fisher-information matrix can estimate with samples
Covariant/natural policy gradient

\[D_{KL}(\pi_{\theta'}\|\pi_{\theta}) \approx (\theta' - \theta)^T F (\theta' - \theta) \]

\[F = E_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s)^T] \]

\[\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta) \quad \text{s.t.} \quad \frac{\|\theta(\pi_{\theta'}, \theta)\|^2_F}{F} \leq \epsilon \]

\[\theta \leftarrow \theta + \alpha F^{-1} \nabla_{\theta} J(\theta) \]

natural gradient: pick \(\alpha \)

trust region policy optimization: pick \(\epsilon \)

can solve for optimal \(\alpha \) while solving \(F^{-1} \nabla_{\theta} J(\theta) \)

conjugate gradient works well for this

see Schulman, L., Moritz, Jordan, Abbeel (2015) Trust region policy optimization
Advanced policy gradient topics

• What more is there?
• Next time: introduce value functions and Q-functions
• Later in the class: more on natural gradient and automatic step size adjustment
Example: policy gradient with importance sampling

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(a_t | s_t) \left(\prod_{t'=1}^{t} \frac{\pi_{\theta'}(a_{t'} | s_{t'})}{\pi_{\theta}(a_{t'} | s_{t'})} \right) \left(\sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \right) \right]$$

- Incorporate example demonstrations using importance sampling
- Neural network policies

Levine, Koltun ‘13
Example: trust region policy optimization

• Natural gradient with automatic step adjustment
• Discrete and continuous actions
• Code available (see Duan et al. ‘16)
Policy gradients suggested readings

• Classic papers
 • Williams (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning: introduces REINFORCE algorithm
 • Baxter & Bartlett (2001). Infinite-horizon policy-gradient estimation: temporally decomposed policy gradient (not the first paper on this! see actor-critic section later)
 • Peters & Schaal (2008). Reinforcement learning of motor skills with policy gradients: very accessible overview of optimal baselines and natural gradient

• Deep reinforcement learning policy gradient papers
 • Levine & Koltun (2013). Guided policy search: deep RL with importance sampled policy gradient (unrelated to later discussion of guided policy search)
 • Schulman, Wolski, Dhariwal, Radford, Klimov (2017). Proximal policy optimization algorithms: deep RL with importance sampled policy gradient