Introduction to Reinforcement Learning

CS 285: Deep Reinforcement Learning, Decision Making, and Control
Sergey Levine
1. Homework 1 is due next Monday!
2. Remember to start forming final project groups
 - Final project proposal due Sep 25
 - Final project ideas document coming soon!
Today’s Lecture

1. Definition of a Markov decision process
2. Definition of reinforcement learning problem
3. Anatomy of a RL algorithm
4. Brief overview of RL algorithm types

• Goals:
 • Understand definitions & notation
 • Understand the underlying reinforcement learning objective
 • Get summary of possible algorithms
Definitions
Terminology & notation

- o_t - observation
- a_t - action
- s_t - state

$\pi_\theta(a_t|o_t)$ - policy
$\pi_\theta(a_t|s_t)$ - policy (fully observed)

Markov property independent of s_{t-1}
Imitation Learning

\mathbf{o}_t $\pi_\theta(\mathbf{a}_t | \mathbf{o}_t)$ \mathbf{a}_t

\mathbf{o}_t \mathbf{a}_t training data supervised learning $\pi_\theta(\mathbf{a}_t | \mathbf{o}_t)$

Images: Bojarski et al. ’16, NVIDIA
Reward functions

which action is better or worse?

$r(s, a)$: reward function
tells us which states and actions are better

$s, a, r(s, a)$, and $p(s'|s, a)$ define Markov decision process

high reward

low reward
Definitions

Markov chain
\[\mathcal{M} = \{ \mathcal{S}, \mathcal{T} \} \]

\(\mathcal{S} \) – state space
states \(s \in \mathcal{S} \) (discrete or continuous)

\(\mathcal{T} \) – transition operator
\[p(s_{t+1}|s_t) \]

why “operator”?

let \(\mu_{t,i} = p(s_t = i) \)

let \(\mathcal{T}_{i,j} = p(s_{t+1} = i|s_t = j) \)

\(\bar{\mu}_t \) is a vector of probabilities
then \(\bar{\mu}_{t+1} = \mathcal{T} \bar{\mu}_t \)

Markov property
independent of \(s_{t-1} \)
Definitions

Markov decision process \(M = \{S, A, T, r\} \)

- **S** – state space
 - states \(s \in S \) (discrete or continuous)
- **A** – action space
 - actions \(a \in A \) (discrete or continuous)
- **T** – transition operator (now a tensor!)

let \(\mu_{t,i} = p(s_t = j) \)
let \(\xi_{t,k} = p(a_t = k) \)
let \(T_{i,j,k} = p(s_{t+1} = i|s_t = j, a_t = k) \)

\[
\mu_{t,i} = \sum_{j,k} T_{i,j,k} \mu_{t,j} \xi_{t,k}
\]
Definitions

Markov decision process \(M = \{S, A, T, r\} \)

- \(S \) – state space, states \(s \in S \) (discrete or continuous)
- \(A \) – action space, actions \(a \in A \) (discrete or continuous)
- \(T \) – transition operator (now a tensor!)
- \(r \) – reward function \(r : S \times A \rightarrow \mathbb{R} \)
 \(r(s_t, a_t) \) – reward
Definitions

partially observed Markov decision process \(\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{E}, r\} \)

\(\mathcal{S} \) – state space

states \(s \in \mathcal{S} \) (discrete or continuous)

\(\mathcal{A} \) – action space

actions \(a \in \mathcal{A} \) (discrete or continuous)

\(\mathcal{O} \) – observation space

observations \(o \in \mathcal{O} \) (discrete or continuous)

\(\mathcal{T} \) – transition operator (like before)

\(\mathcal{E} \) – emission probability \(p(o_t|s_t) \)

\(r \) – reward function

\(r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R} \)
The goal of reinforcement learning

\[p_\theta(s_1, a_1, \ldots, s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi_\theta(a_t|s_t) p(s_{t+1}|s_t, a_t) \]

\[p_\theta(\tau) \]

\[\theta^* = \arg \max_\theta E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right] \]
The goal of reinforcement learning

\[p_\theta(s_1, a_1, \ldots, s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi_\theta(a_t|s_t)p(s_{t+1}|s_t, a_t) \]

Markov chain on \((s, a)\)
The goal of reinforcement learning

\[
p_\theta(s_1, a_1, \ldots, s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi_\theta(a_t|s_t)p(s_{t+1}|s_t, a_t)
\]

Markov chain on \((s, a)\)

\[
p((s_{t+1}, a_{t+1})|s_t, a_t) = p(s_{t+1}|s_t, a_t)\pi_\theta(a_{t+1}|s_{t+1})
\]
Finite horizon case: state-action marginal

\[\theta^* = \arg \max_\theta E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right] \]

\[= \arg \max_\theta \sum_{t=1}^T E_{(s_t, a_t) \sim p_\theta(s_t, a_t)}[r(s_t, a_t)] \]

\[p_\theta(s_t, a_t) \quad \text{state-action marginal} \]

\[p((s_{t+1}, a_{t+1})|(s_t, a_t)) = p(s_{t+1}|s_t, a_t) \pi_\theta(a_{t+1}|s_{t+1}) \]
Infinite horizon case: stationary distribution

\[\theta^* = \arg \max_{\theta} \sum_{t=1}^{T} E_{(s_t, a_t) \sim p_\theta(s_t, a_t)}[r(s_t, a_t)] \]

what if \(T = \infty \)?

does \(p(s_t, a_t) \) converge to a stationary distribution?

\[\mu = \mathcal{T} \mu \quad (\mathcal{T} - I)\mu = 0 \]

\(\mu \) is eigenvector of \(\mathcal{T} \) with eigenvalue 1!

\(\mu = p_\theta(s, a) \) stationary distribution

(\(\mu \) always exists under some regularity conditions)

State-action transition operator

\[
\begin{pmatrix}
 s_{t+1} \\
 a_{t+1}
\end{pmatrix}
= \mathcal{T}
\begin{pmatrix}
 s_t \\
 a_t
\end{pmatrix}
= \mathcal{T}^k
\begin{pmatrix}
 s_t \\
 a_t
\end{pmatrix}
\]
Infinite horizon case: stationary distribution

$$\theta^* = \arg \max_{\theta} \frac{1}{T} \sum_{t=1}^{T} E_{(s_t, a_t) \sim \pi_{\theta}(s_t, a_t)}[r(s_t, a_t)] \rightarrow E_{(s, a) \sim \pi_{\theta}(s, a)}[r(s, a)]$$

(in the limit as $T \rightarrow \infty$)

what if $T = \infty$?

does $p(s_t, a_t)$ converge to a stationary distribution?

$$\mu = \mathcal{T} \mu$$

$$(\mathcal{T} - I)\mu = 0$$

μ is eigenvector of \mathcal{T} with eigenvalue 1!

always exists under some regularity conditions

stationary = the same before and after transition

stationary distribution

state-action transition operator

$$
\begin{pmatrix}
 s_{t+1} \\
 a_{t+1}
\end{pmatrix}
= \mathcal{T}
\begin{pmatrix}
 s_t \\
 a_t
\end{pmatrix}

\begin{pmatrix}
 s_{t+k} \\
 a_{t+k}
\end{pmatrix}
= \mathcal{T}^k
\begin{pmatrix}
 s_t \\
 a_t
\end{pmatrix}
$$
Expectations and stochastic systems

\[\theta^* = \arg \max_{\theta} E_{(s,a) \sim p_\theta(s,a)}[r(s,a)] \]

infinite horizon case

\[\theta^* = \arg \max_{\theta} \sum_{t=1}^{T} E_{(s_t,a_t) \sim p_\theta(s_t,a_t)}[r(s_t,a_t)] \]

finite horizon case

In RL, we almost always care about expectations

\[r(x) - \text{not smooth} \]

\[\pi_\theta(a = \text{fall}) = \theta \]

\[E_{\pi_\theta}[r(x)] - \text{smooth in } \theta! \]
Algorithms
The anatomy of a reinforcement learning algorithm

- generate samples (i.e. run the policy)
- fit a model/estimate the return
- improve the policy
A simple example

generate samples (i.e. run the policy)

fit a model/ estimate the return

improve the policy

\[J(\theta) = E_\pi \left[\sum_t r_t \right] \approx \frac{1}{N} \sum_{i=1}^{N} \sum_t r_t^i \]

\[\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \]
Another example: RL by backprop

- generate samples (i.e. run the policy)
- fit a model/estimate the return
- improve the policy
- backprop through f_ϕ and r to train $\pi_\theta(s_t) = a_t$

Learn f_ϕ such that $s_{t+1} \approx f_\phi(s_t, a_t)$
Which parts are expensive?

\[
J(\theta) = E_{\pi} \left[\sum_t r_t \right] \approx \frac{1}{N} \sum_{i=1}^{N} \sum_t r^i_t
\]

trivial, fast

\[\text{learn } s_{t+1} \approx f_\phi(s_t, a_t)\]

expensive

\[\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)\]

backprop through \(f_\phi\) and \(r\) to train \(\pi_\theta(s_t) = a_t\)

real robot/car/power grid/whatever: 1x real time, until we invent time travel

MuJoCo simulator: up to 10000x real time

generate samples (i.e. run the policy)

fit a model/estimate the return

improve the policy
Review

- Definitions
 - Markov chain
 - Markov decision process
- RL objective
 - Expected reward
 - How to evaluate expected reward?
- Structure of RL algorithms
 - Sample generation
 - Fitting a model/estimating return
 - Policy Improvement

Diagram:
- Generate samples (i.e., run the policy)
- Fit a model/estimate return
- Improve the policy
Break
How do we deal with all these expectations?

\[
E_{\tau \sim p_\theta(\tau)} \left[\sum_{t=1}^{T} r(s_t, a_t) \right]
\]

\[
E_{s_1 \sim p(s_1)}
\]

\[
Q(s_1, a_1) = r(s_1, a_1) + E_{s_2 \sim p(s_2 | s_1, a_1)} \left[E_{a_2 \sim \pi(a_2 | s_2)} \left[r(s_2, a_2) + \ldots | s_2 \right] | s_1, a_1 \right]
\]

\[
E_{\tau \sim p_\theta(\tau)} \left[\sum_{t=1}^{T} r(s_t, a_t) \right] = E_{s_1 \sim p(s_1)} \left[E_{a_1 \sim \pi(a_1 | s_1)} \left[Q(s_1, a_1) | s_1 \right] \right]
\]

what if we knew this part?

easy to modify \(\pi_{\theta}(a_1 | s_1) \) if \(Q(s_1, a_1) \) is known!

example: \(\pi(a_1 | s_1) = 1 \) if \(a_1 = \arg \max_{a_1} Q(s_1, a_1) \)
Definition: Q-function

\[Q^\pi(s_t, a_t) = \sum_{t'=t}^T \mathbb{E}_{\pi^{\theta}}[r(s_{t'}, a_{t'})|s_t, a_t]: \text{total reward from taking } a_t \text{ in } s_t \]

Definition: value function

\[V^\pi(s_t) = \sum_{t'=t}^T \mathbb{E}_{\pi^{\theta}}[r(s_{t'}, a_{t'})|s_t]: \text{total reward from } s_t \]

\[V^\pi(s_t) = \mathbb{E}_{a_t \sim \pi(a_t|s_t)}[Q^\pi(s_t, a_t)] \]

\[\mathbb{E}_{s_1 \sim p(s_1)}[V^\pi(s_1)] \text{ is the RL objective!} \]
Using Q-functions and value functions

Idea 1: if we have policy \(\pi \), and we know \(Q^\pi(s, a) \), then we can improve \(\pi \):

set \(\pi'(a|s) = 1 \) if \(a = \arg \max_a Q^\pi(s, a) \)

this policy is at least as good as \(\pi \) (and probably better)!

and it doesn’t matter what \(\pi \) is

Idea 2: compute gradient to increase probability of good actions \(a \):

if \(Q^\pi(s, a) > V^\pi(s) \), then \(a \) is better than average (recall that \(V^\pi(s) = E[Q^\pi(s, a)] \) under \(\pi(a|s) \))

modify \(\pi(a|s) \) to increase probability of \(a \) if \(Q^\pi(s, a) > V^\pi(s) \)

These ideas are very important in RL; we’ll revisit them again and again!
The anatomy of a reinforcement learning algorithm

- **generate samples** (i.e. run the policy)
- **fit a model/estimate the return**
- **improve the policy**

This often uses Q-functions or value functions
Types of RL algorithms

\[\theta^* = \arg \max_{\theta} E_{T \sim p_{\theta}(T)} \left[\sum_t r(s_t, a_t) \right] \]

- Policy gradients: directly differentiate the above objective
- Value-based: estimate value function or Q-function of the optimal policy (no explicit policy)
- Actor-critic: estimate value function or Q-function of the current policy, use it to improve policy
- Model-based RL: estimate the transition model, and then:
 - Use it for planning (no explicit policy)
 - Use it to improve a policy
 - Something else
Model-based RL algorithms

- generate samples (i.e. run the policy)
- fit a model/estimate the return
- improve the policy

Learn $p(s_{t+1}|s_t, a_t)$

A few options
Model-based RL algorithms

1. Just use the model to plan (no policy)
 • Trajectory optimization/optimal control (primarily in continuous spaces) – essentially backpropagation to optimize over actions
 • Discrete planning in discrete action spaces – e.g., Monte Carlo tree search

2. Backpropagate gradients into the policy
 • Requires some tricks to make it work

3. Use the model to learn a value function
 • Dynamic programming
 • Generate simulated experience for model-free learner
Value function based algorithms

generate samples (i.e. run the policy)

fit a model/ estimate the return
fit \(V(s) \) or \(Q(s, a) \)

improve the policy

set \(\pi(s) = \arg\max_a Q(s, a) \)
Direct policy gradients

generate samples (i.e. run the policy)

fit a model/estimate the return

evaluate returns

\[R_{\tau} = \sum_t r(s_t, a_t) \]

improve the policy

\[\theta \leftarrow \theta + \alpha \nabla_{\theta} E[\sum_t r(s_t, a_t)] \]
Actor-critic: value functions + policy gradients

- generate samples (i.e. run the policy)
- fit a model
- estimate the return
- improve the policy

\[\theta \leftarrow \theta + \alpha \nabla \theta E[Q(s_t, a_t)] \]

fit \(V(s) \) or \(Q(s, a) \)
Tradeoffs
Why so many RL algorithms?

• Different tradeoffs
 • Sample efficiency
 • Stability & ease of use
• Different assumptions
 • Stochastic or deterministic?
 • Continuous or discrete?
 • Episodic or infinite horizon?
• Different things are easy or hard in different settings
 • Easier to represent the policy?
 • Easier to represent the model?
Comparison: sample efficiency

• Sample efficiency = how many samples do we need to get a good policy?

• Most important question: is the algorithm off policy?
 • Off policy: able to improve the policy without generating new samples from that policy
 • On policy: each time the policy is changed, even a little bit, we need to generate new samples

\[\theta \leftarrow \theta + \alpha \nabla_{\theta} E[\sum_{t} r(s_t, a_t)] \]

just one gradient step
Comparison: sample efficiency

More efficient (fewer samples)
- model-based shallow RL
- model-based deep RL
- off-policy Q-function learning
- actor-critic style methods

Less efficient (more samples)
- on-policy policy gradient algorithms
- evolutionary or gradient-free algorithms

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!
Comparison: stability and ease of use

• Does it converge?
• And if it converges, to what?
• And does it converge every time?

Why is any of this even a question???

• Supervised learning: almost *always* gradient descent
• Reinforcement learning: often *not* gradient descent
 • Q-learning: fixed point iteration
 • Model-based RL: model is not optimized for expected reward
 • Policy gradient: *is* gradient descent, but also often the least efficient!
Comparison: stability and ease of use

• Value function fitting
 • At best, minimizes error of fit (“Bellman error”)
 • Not the same as expected reward
 • At worst, doesn’t optimize anything
 • Many popular deep RL value fitting algorithms are not guaranteed to converge to anything in the nonlinear case

• Model-based RL
 • Model minimizes error of fit
 • This will converge
 • No guarantee that better model = better policy

• Policy gradient
 • The only one that actually performs gradient descent (ascent) on the true objective
Comparison: assumptions

• Common assumption #1: full observability
 • Generally assumed by value function fitting methods
 • Can be mitigated by adding recurrence

• Common assumption #2: episodic learning
 • Often assumed by pure policy gradient methods
 • Assumed by some model-based RL methods

• Common assumption #3: continuity or smoothness
 • Assumed by some continuous value function learning methods
 • Often assumed by some model-based RL methods
Examples of specific algorithms

• Value function fitting methods
 • Q-learning, DQN
 • Temporal difference learning
 • Fitted value iteration

• Policy gradient methods
 • REINFORCE
 • Natural policy gradient
 • Trust region policy optimization

• Actor-critic algorithms
 • Asynchronous advantage actor-critic (A3C)
 • Soft actor-critic (SAC)

• Model-based RL algorithms
 • Dyna
 • Guided policy search

We’ll learn about most of these in the next few weeks!
Example 1: Atari games with Q-functions

- Playing Atari with deep reinforcement learning, Mnih et al. ‘13
- Q-learning with convolutional neural networks
Example 2: robots and model-based RL

- End-to-end training of deep visuomotor policies, L.* , Finn* ’16
- Guided policy search (model-based RL) for image-based robotic manipulation
Example 3: walking with policy gradients

• High-dimensional continuous control with generalized advantage estimation, Schulman et al. ‘16

• Trust region policy optimization with value function approximation
Example 4: robotic grasping with Q-functions

• QT-Opt, Kalashnikov et al. ‘18
• Q-learning from images for real-world robotic grasping