Introduction to Reinforcement Learning

CS 294-112: Deep Reinforcement Learning
Sergey Levine
Class Notes

1. Homework 1 is due next Wednesday!
 • Remember that Monday is a holiday, so no office hours

2. Remember to start forming final project groups
 • Final project assignment document and ideas document released
Today’s Lecture

1. Definition of a Markov decision process
2. Definition of reinforcement learning problem
3. Anatomy of a RL algorithm
4. Brief overview of RL algorithm types

• Goals:
 • Understand definitions & notation
 • Understand the underlying reinforcement learning objective
 • Get summary of possible algorithms
Definitions
Terminology & notation

- \(o_t \) – observation
- \(a_t \) – action
- \(s_t \) – state
- \(\pi_\theta(a_t|o_t) \) – policy
- \(\pi_\theta(a_t|s_t) \) – policy (fully observed)

Markov property independent of \(s_{t-1} \)
Imitation Learning
Reward functions

which action is better or worse?

$r(s, a)$: reward function

tells us which states and actions are better

$s, a, r(s, a), \text{ and } p(s' | s, a)$ define Markov decision process

high reward

car

low reward

broken car
Definitions

Markov chain
\[\mathcal{M} = \{\mathcal{S}, \mathcal{T}\} \]

\(\mathcal{S} \) – state space
states \(s \in \mathcal{S} \) (discrete or continuous)

\(\mathcal{T} \) – transition operator
\[p(s_{t+1}|s_t) \]

why “operator”?
let \(\mu_{t,i} = p(s_t = i) \)

\[\bar{\mu}_t \] is a vector of probabilities

let \(T_{i,j} = p(s_{t+1} = i|s_t = j) \)

then \(\bar{\mu}_{t+1} = \mathcal{T} \bar{\mu}_t \)

Markov property
independent of \(s_{t-1} \)
Definitions

Markov decision process \(\mathcal{M} = \{ \mathcal{S}, \mathcal{A}, \mathcal{T}, r \} \)

\(\mathcal{S} \) – state space \(\text{states } s \in \mathcal{S} \) (discrete or continuous)

\(\mathcal{A} \) – action space \(\text{actions } a \in \mathcal{A} \) (discrete or continuous)

\(\mathcal{T} \) – transition operator (now a tensor!)

let \(\mu_{t,j} = p(s_t = j) \)

let \(\xi_{t,k} = p(a_t = k) \)

let \(\mathcal{T}_{i,j,k} = p(s_{t+1} = i | s_t = j, a_t = k) \)

\[\mu_{t,i} = \sum_{j,k} \mathcal{T}_{i,j,k} \mu_{t,j} \xi_{t,k} \]
Definitions

Markov decision process \(\mathcal{M} = \{ \mathcal{S}, \mathcal{A}, \mathcal{T}, r \} \)

- \(\mathcal{S} \) – state space
 - states \(s \in \mathcal{S} \) (discrete or continuous)

- \(\mathcal{A} \) – action space
 - actions \(a \in \mathcal{A} \) (discrete or continuous)

- \(\mathcal{T} \) – transition operator (now a tensor!)

- \(r \) – reward function
 - \(r : \mathcal{S} \times \mathcal{A} \to \mathbb{R} \)
 - \(r(s_t, a_t) \) – reward
Definitions

partially observed Markov decision process \(M = \{S, \mathcal{A}, \mathcal{O}, T, \mathcal{E}, r\} \)

\(S \) – state space states \(s \in S \) (discrete or continuous)

\(\mathcal{A} \) – action space actions \(a \in \mathcal{A} \) (discrete or continuous)

\(\mathcal{O} \) – observation space observations \(o \in \mathcal{O} \) (discrete or continuous)

\(T \) – transition operator (like before)

\(\mathcal{E} \) – emission probability \(p(o_t|s_t) \)

\(r \) – reward function \(r : S \times \mathcal{A} \to \mathbb{R} \)
The goal of reinforcement learning

\[
p_\theta(s_1, a_1, \ldots, s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi_\theta(a_t|s_t)p(s_{t+1}|s_t, a_t)
\]

\[p_\theta(\tau)\]

\[
\theta^* = \arg \max_\theta E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right]
\]
The goal of reinforcement learning

\[
p_\theta(s_1, a_1, \ldots, s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi_\theta(a_t|s_t)p(s_{t+1}|s_t, a_t)
\]

Markov chain on \((s, a)\)
The goal of reinforcement learning

\[p_{\theta}(s_1, a_1, \ldots, s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t)p(s_{t+1}|s_t, a_t) \]

\[p_{\theta}(\tau) \]

Markov chain on \((s, a)\)
Finite horizon case: state-action marginal

\[\theta^* = \arg \max_{\theta} E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right] \]

\[= \arg \max_{\theta} \sum_{t=1}^{T} E_{(s_t, a_t) \sim p_\theta(s_t, a_t)} [r(s_t, a_t)] \]

\[p_\theta(s_t, a_t) \] state-action marginal

\[p((s_{t+1}, a_{t+1})|(s_t, a_t)) = p(s_{t+1}|s_t, a_t) \pi_\theta(a_{t+1}|s_{t+1}) \]
Infinite horizon case: stationary distribution

\[\theta^* = \arg \max_\theta \sum_{t=1}^T E_{(s_t, a_t) \sim p_\theta(s_t, a_t)} [r(s_t, a_t)] \]

what if \(T = \infty \)?

does \(p(s_t, a_t) \) converge to a stationary distribution?

\[\mu = \mathcal{T} \mu \quad \text{stationary distribution} \]

\[(\mathcal{T} - I) \mu = 0 \]

\(\mu \) is eigenvector of \(\mathcal{T} \) with eigenvalue 1!

(always exists under some regularity conditions)

\[\mu = p_\theta(s, a) \quad \text{(always exists under some regularity conditions)} \]

\(\mu \) is eigenvector of \(\mathcal{T} \) with eigenvalue 1!

\[(s_{t+1}, a_{t+1}) = \mathcal{T} (s_t, a_t) \quad (s_{t+k}, a_{t+k}) = \mathcal{T}^k (s_t, a_t) \]

state-action transition operator

\(\mathcal{T} \): transition operator

\(s_t, a_t \): state and action at time \(t \)

\(s_{t+1}, a_{t+1} \): state and action at time \(t+1 \)

\(s_{t+k}, a_{t+k} \): state and action at time \(t+k \)

\(\mathcal{T}^k \): \(k \)th power of the transition operator
Infinite horizon case: stationary distribution

\[\theta^* = \arg \max_{\theta} \frac{1}{T} \sum_{t=1}^{T} E_{(s_t,a_t) \sim p_{\theta}(s_t,a_t)}[r(s_t,a_t)] \rightarrow E_{(s,a) \sim p_{\theta}(s,a)}[r(s,a)] \]

(in the limit as \(T \rightarrow \infty \))

what if \(T = \infty \)?

does \(p(s_t,a_t) \) converge to a stationary distribution?

\[\mu = \mathcal{T} \mu \]
\[(\mathcal{T} - I)\mu = 0 \]

\(\mu \) is eigenvector of \(\mathcal{T} \) with eigenvalue 1!

\(\mu = p_{\theta}(s,a) \)
stationary distribution

(always exists under some regularity conditions)

stationary = the same before and after transition

\[\begin{pmatrix} a_1 \\ s_1 \end{pmatrix} \quad \longrightarrow \quad \begin{pmatrix} a_2 \\ s_2 \end{pmatrix} \quad \longrightarrow \quad \begin{pmatrix} a_3 \\ s_3 \end{pmatrix} \]

\(\begin{pmatrix} s_{t+1} \\ a_{t+1} \end{pmatrix} = \mathcal{T} \begin{pmatrix} s_t \\ a_t \end{pmatrix} \)

\(\begin{pmatrix} s_{t+k} \\ a_{t+k} \end{pmatrix} = \mathcal{T}^k \begin{pmatrix} s_t \\ a_t \end{pmatrix} \)
Expectations and stochastic systems

\[\theta^* = \arg \max_{\theta} E_{(s,a) \sim p_{\theta}(s,a)}[r(s,a)] \]

infinite horizon case

\[\theta^* = \arg \max_{\theta} \sum_{t=1}^{T} E_{(s_t,a_t) \sim p_{\theta}(s_t,a_t)}[r(s_t,a_t)] \]

finite horizon case

In RL, we almost always care about \textit{expectations}

\[p_{\theta}(\text{fall}) = \theta \]

\[r(\text{fall}) - \text{not smooth} \]

\[E_{p_{\theta}}[r(\text{fall})] - \text{smooth in } \theta! \]
Algorithms
The anatomy of a reinforcement learning algorithm

- **generate samples (i.e. run the policy)**
- **fit a model/estimate the return**
- **improve the policy**
A simple example

\[J(\theta) = E_{\pi} \left[\sum_t r_t \right] \approx \frac{1}{N} \sum_{i=1}^{N} \sum_t r_{ti} \]

\[\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta) \]
Another example: RL by backprop

1. generate samples (i.e. run the policy)
2. fit a model/estimate the return
3. learn f_ϕ such that $s_{t+1} \approx f_\phi(s_t, a_t)$
4. backprop through f_ϕ and r to train $\pi_\theta(s_t) = a_t$
5. improve the policy
Simple example: RL by backprop

\[
\begin{align*}
 r(s_t, a_t) & \quad \text{collect data} \\
 a_t = \pi_\theta(s_t) & \quad \text{update the model } f \\
 s_{t+1} = f(s_t, a_t) & \quad \text{update the policy with backprop} \\
 r(s_t, a_t) & \quad \text{fit a model/estimate return} \\
 a_t = \pi_\theta(s_t) & \quad \text{generate samples (i.e. run the policy)} \\
 s_{t+1} = f(s_t, a_t) & \quad \text{improve the policy}
\end{align*}
\]
Which parts are expensive?

\[J(\theta) = E_\pi \left[\sum_t r_t \right] \approx \frac{1}{N} \sum_{i=1}^{N} \sum_t r_t^i \]

- **real robot/car/power grid/whatever:** 1x real time, until we invent time travel
- **MuJoCo simulator:** up to 10000x real time

fit a model/estimate the return

generate samples (i.e. run the policy)

learn\(s_{t+1} \approx f_\phi(s_t, a_t) \)

improve the policy

\[\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \]

backprop through \(f_\phi \) and \(r \) to train \(\pi_\theta(s_t) = a_t \)
Why is this not enough?

- Only handles deterministic dynamics
- Only handles deterministic policies
- Only continuous states and actions
- Very difficult optimization problem
- We’ll talk about this more later!
How can we work with *stochastic* systems?

Conditional expectations

\[
\sum_{t=1}^{T} E_{(s_t,a_t) \sim p_\theta(s_t,a_t)}[r(s_t,a_t)]
\]

\[
E_{s_1 \sim p(s_1)}
\]

what if we knew this part?

\[
Q(s_1, a_1) = r(s_1, a_1) + E_{s_2 \sim p(s_2 | s_1, a_1)}[E_{a_2 \sim \pi(a_2 | s_2)}[r(s_2, a_2) + ... | s_2] | s_1, a_1]
\]

\[
E_{s_1 \sim p(s_1)}[E_{a_1 \sim \pi(a_1 | s_1)}[Q(s_1, a_1) | s_1]]
\]

easy to modify \(\pi_\theta(a_1 | s_1)\) if \(Q(s_1, a_1)\) is known!

example: \(\pi(a_1 | s_1) = 1\) if \(a_1 = \text{arg max}_{a_1} Q(s_1, a_1)\)
Definition: Q-function

$$Q^\pi(s_t, a_t) = \sum_{t'=t}^{T} E_{\pi^\theta} [r(s_{t'}, a_{t'})|s_t, a_t]$$: total reward from taking a_t in s_t

Definition: value function

$$V^\pi(s_t) = \sum_{t'=t}^{T} E_{\pi^\theta} [r(s_{t'}, a_{t'})|s_t]$$: total reward from s_t

$$V^\pi(s_t) = E_{a_t \sim \pi(a_t|s_t)} [Q^\pi(s_t, a_t)]$$

$$E_{s_1 \sim p(s_1)} [V^\pi(s_1)]$$ is the RL objective!
Using Q-functions and value functions

Idea 1: if we have policy π, and we know $Q^{\pi}(s, a)$, then we can improve π:

set $\pi'(a|s) = 1$ if $a = \arg \max_a Q^{\pi}(s, a)$

this policy is at least as good as π (and probably better)!

and it doesn’t matter what π is

Idea 2: compute gradient to increase probability of good actions a:

if $Q^{\pi}(s, a) > V^{\pi}(s)$, then a is better than average \(\text{(recall that } V^{\pi}(s) = E[Q^{\pi}(s, a)] \text{ under } \pi(a|s)\)\)

modify $\pi(a|s)$ to increase probability of a if $Q^{\pi}(s, a) > V^{\pi}(s)$

These ideas are very important in RL; we’ll revisit them again and again!
Review

- Definitions
 - Markov chain
 - Markov decision process
- RL objective
 - Expected reward
 - How to evaluate expected reward?
- Structure of RL algorithms
 - Sample generation
 - Fitting a model/estimating return
 - Policy Improvement
- Value functions and Q-functions
Break
Types of RL algorithms

\[\theta^* = \arg \max_{\theta} E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right] \]

• Policy gradients: directly differentiate the above objective
• Value-based: estimate value function or Q-function of the optimal policy (no explicit policy)
• Actor-critic: estimate value function or Q-function of the current policy, use it to improve policy
• Model-based RL: estimate the transition model, and then...
 • Use it for planning (no explicit policy)
 • Use it to improve a policy
 • Something else
Model-based RL algorithms

generate samples (i.e. run the policy)

fit a model/estimate the return

learn \(p(s_{t+1}|s_t, a_t) \)

improve the policy

a few options
Model-based RL algorithms

1. Just use the model to plan (no policy)
 - Trajectory optimization/optimal control (primarily in continuous spaces) – essentially backpropagation to optimize over actions
 - Discrete planning in discrete action spaces – e.g., Monte Carlo tree search
2. Backpropagate gradients into the policy
 - Requires some tricks to make it work
3. Use the model to learn a value function
 - Dynamic programming
 - Generate simulated experience for model-free learner (Dyna)
Value function based algorithms

- **generate samples** (i.e. run the policy)
- **fit a model/estimate the return**
- **improve the policy**
- **set** $\pi(s) = \arg\max_a Q(s, a)$

fit $V(s)$ or $Q(s, a)$
Direct policy gradients

- Generate samples (i.e., run the policy)
- Fit a model/estimate the return: $R_{\tau} = \sum_t r(s_t, a_t)$
- Evaluate returns
- Improve the policy: $\theta \leftarrow \theta + \alpha \nabla_{\theta} E[\sum_t r(s_t, a_t)]$
Actor-critic: value functions + policy gradients

generate samples (i.e. run the policy)

fit a model/estimate the return

fit $V(s)$ or $Q(s, a)$

improve the policy

$\theta \leftarrow \theta + \alpha \nabla_\theta E[Q(s_t, a_t)]$
Tradeoffs
Why so many RL algorithms?

• Different tradeoffs
 • Sample efficiency
 • Stability & ease of use
• Different assumptions
 • Stochastic or deterministic?
 • Continuous or discrete?
 • Episodic or infinite horizon?
• Different things are easy or hard in different settings
 • Easier to represent the policy?
 • Easier to represent the model?
Comparison: sample efficiency

• Sample efficiency = how many samples do we need to get a good policy?

• Most important question: is the algorithm off policy?
 • Off policy: able to improve the policy without generating new samples from that policy
 • On policy: each time the policy is changed, even a little bit, we need to generate new samples

\[
\theta \leftarrow \theta + \alpha \nabla_{\theta} E \left[\sum_t r(s_t, a_t) \right]
\]

just one gradient step

fit a model/estimate return

generate samples (i.e. run the policy)
improve the policy

Comparison: sample efficiency

Why would we use a *less* efficient algorithm? Wall clock time is not the same as efficiency!
Comparison: stability and ease of use

- Does it converge?
- And if it converges, to what?
- And does it converge every time?

Why is any of this even a question???

- Supervised learning: almost *always* gradient descent
- Reinforcement learning: often *not* gradient descent
 - Q-learning: fixed point iteration
 - Model-based RL: model is not optimized for expected reward
 - Policy gradient: *is* gradient descent, but also often the least efficient!
Comparison: stability and ease of use

• Value function fitting
 • At best, minimizes error of fit (“Bellman error”)
 • Not the same as expected reward
 • At worst, doesn’t optimize anything
 • Many popular deep RL value fitting algorithms are not guaranteed to converge to anything in the nonlinear case

• Model-based RL
 • Model minimizes error of fit
 • This will converge
 • No guarantee that better model = better policy

• Policy gradient
 • The only one that actually performs gradient descent (ascent) on the true objective
Comparison: assumptions

• **Common assumption #1: full observability**
 • Generally assumed by value function fitting methods
 • Can be mitigated by adding recurrence

• **Common assumption #2: episodic learning**
 • Often assumed by pure policy gradient methods
 • Assumed by some model-based RL methods

• **Common assumption #3: continuity or smoothness**
 • Assumed by some continuous value function learning methods
 • Often assumed by some model-based RL methods
Examples of specific algorithms

• Value function fitting methods
 • Q-learning, DQN
 • Temporal difference learning
 • Fitted value iteration

• Policy gradient methods
 • REINFORCE
 • Natural policy gradient
 • Trust region policy optimization

• Actor-critic algorithms
 • Asynchronous advantage actor-critic (A3C)
 • Soft actor-critic (SAC)

• Model-based RL algorithms
 • Dyna
 • Guided policy search

We’ll learn about most of these in the next few weeks!
Example 1: Atari games with Q-functions

• Playing Atari with deep reinforcement learning, Mnih et al. ‘13
• Q-learning with convolutional neural networks
Example 2: robots and model-based RL

- End-to-end training of deep visuomotor policies, L.*, Finn* ’16
- Guided policy search (model-based RL) for image-based robotic manipulation
Example 3: walking with policy gradients

• High-dimensional continuous control with generalized advantage estimation, Schulman et al. ‘16
• Trust region policy optimization with value function approximation
Example 4: robotic grasping with Q-functions

- QT-Opt, Kalashnikov et al. ‘18
- Q-learning from images for real-world robotic grasping