
Introduction to Reinforcement Learning

CS 285

Instructor: Sergey Levine
UC Berkeley



Definitions



1. run away

2. ignore

3. pet

Terminology & notation



Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imitation Learning



Reward functions



Definitions

Andrey Markov



Definitions

Andrey MarkovRichard Bellman



Definitions

Richard Bellman



Definitions



The goal of reinforcement learning
we’ll come back to partially observed later



The goal of reinforcement learning



The goal of reinforcement learning



Finite horizon case: state-action marginal

state-action marginal



Infinite horizon case: stationary distribution

stationary distribution

stationary = the 
same before and 
after transition



Infinite horizon case: stationary distribution

stationary distribution

stationary = the 
same before and 
after transition



Expectations and stochastic systems

infinite horizon case finite horizon case

In RL, we almost always care about expectations

+1 -1



Algorithms



The anatomy of a reinforcement learning algorithm

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



A simple example

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Another example: RL by backprop

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Which parts are expensive?

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

real robot/car/power 
grid/whatever:
1x real time, until we 
invent time travel

MuJoCo simulator:
up to 10000x real time

trivial, fast

expensive



Value Functions



How do we deal with all these expectations?

what if we knew this part?



Definition: Q-function

Definition: value function



Using Q-functions and value functions



The anatomy of a reinforcement learning algorithm

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

this often uses Q-
functions or value 
functions



Types of Algorithms



Types of RL algorithms

• Policy gradients: directly differentiate the above objective

• Value-based: estimate value function or Q-function of the optimal policy 
(no explicit policy)

• Actor-critic: estimate value function or Q-function of the current policy, 
use it to improve policy

• Model-based RL: estimate the transition model, and then…
• Use it for planning (no explicit policy)

• Use it to improve a policy

• Something else



Model-based RL algorithms

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Model-based RL algorithms

improve the policy

1. Just use the model to plan (no policy)
• Trajectory optimization/optimal control (primarily in continuous spaces) –

essentially backpropagation to optimize over actions
• Discrete planning in discrete action spaces – e.g., Monte Carlo tree search

2. Backpropagate gradients into the policy
• Requires some tricks to make it work

3. Use the model to learn a value function
• Dynamic programming
• Generate simulated experience for model-free learner



Value function based algorithms

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Direct policy gradients

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Actor-critic: value functions + policy gradients

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Tradeoffs Between Algorithms



Why so many RL algorithms?

• Different tradeoffs
• Sample efficiency

• Stability & ease of use

• Different assumptions
• Stochastic or deterministic?

• Continuous or discrete?

• Episodic or infinite horizon?

• Different things are easy or hard in 
different settings
• Easier to represent the policy?

• Easier to represent the model?

generate 
samples (i.e. 

run the policy)

fit a model/ 
estimate return

improve the 
policy



Comparison: sample efficiency

• Sample efficiency = how many samples 
do we need to get a good policy?

• Most important question: is the 
algorithm off policy?
• Off policy: able to improve the policy 

without generating new samples from that 
policy

• On policy: each time the policy is changed, 
even a little bit, we need to generate new 
samples

generate 
samples (i.e. 

run the policy)

fit a model/ 
estimate return

improve the 
policy

just one gradient step



Comparison: sample efficiency

More efficient 
(fewer samples)

Less efficient 
(more samples)

on-policyoff-policy

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!

evolutionary or 
gradient-free 
algorithms

on-policy policy 
gradient 
algorithms

actor-critic
style 
methods

off-policy 
Q-function 
learning

model-based 
deep RL

model-based 
shallow RL



Comparison: stability and ease of use

Why is any of this even a question???

• Does it converge?

• And if it converges, to what?

• And does it converge every time?

• Supervised learning: almost always gradient descent

• Reinforcement learning: often not gradient descent
• Q-learning: fixed point iteration

• Model-based RL: model is not optimized for expected reward

• Policy gradient: is gradient descent, but also often the least 
efficient!



Comparison: stability and ease of use

• Value function fitting
• At best, minimizes error of fit (“Bellman error”)

• Not the same as expected reward

• At worst, doesn’t optimize anything
• Many popular deep RL value fitting algorithms are not guaranteed to 

converge to anything in the nonlinear case

• Model-based RL
• Model minimizes error of fit

• This will converge

• No guarantee that better model = better policy

• Policy gradient
• The only one that actually performs gradient descent (ascent) on 

the true objective



Comparison: assumptions

• Common assumption #1: full observability
• Generally assumed by value function fitting 

methods

• Can be mitigated by adding recurrence

• Common assumption #2: episodic learning
• Often assumed by pure policy gradient methods

• Assumed by some model-based RL methods

• Common assumption #3: continuity or 
smoothness
• Assumed by some continuous value function 

learning methods

• Often assumed by some model-based RL 
methods



Examples of Algorithms



Examples of specific algorithms

• Value function fitting methods
• Q-learning, DQN
• Temporal difference learning
• Fitted value iteration

• Policy gradient methods
• REINFORCE
• Natural policy gradient
• Trust region policy optimization

• Actor-critic algorithms
• Asynchronous advantage actor-critic (A3C)
• Soft actor-critic (SAC)

• Model-based RL algorithms
• Dyna
• Guided policy search

We’ll learn about 
most of these in the 

next few weeks!



Example 1: Atari games with Q-functions

• Playing Atari with deep 
reinforcement learning, 
Mnih et al. ‘13

• Q-learning with 
convolutional neural 
networks



Example 2: robots and model-based RL

• End-to-end training of 
deep visuomotor 
policies, L.* , Finn* ’16

• Guided policy search 
(model-based RL) for 
image-based robotic 
manipulation



Example 3: walking with policy gradients

• High-dimensional 
continuous control with 
generalized advantage 
estimation, Schulman et 
al. ‘16

• Trust region policy 
optimization with value 
function approximation



Example 4: robotic grasping with Q-functions

• QT-Opt, Kalashnikov et 
al. ‘18

• Q-learning from images 
for real-world robotic 
grasping


