Information-Theoretic Exploration, Challenges and Open Problems

CS 285: Deep Reinforcement Learning, Decision Making, and Control

Sergey Levine
Class Notes

1. Today: concluding lecture
2. Wednesday: guest lecture, Ofir Nachum
3. Next week: guest lecture, Chelsea Finn
4. Next next week: guest lectures, Karol Hausman, Karen Liu
5. Please attend the guest lectures!!
Today’s Lecture

1. Part 1: information theoretic exploration – how can we learn **without** any reward function at all?
2. Part 2: challenges and open problems in deep RL, takeaways and last-minute gift ideas

• Goals:
 • Provide high-level overview of information theoretic exploration and unsupervised reinforcement learning
 • Briefly summarize tradeoffs of current deep RL algorithms
 • Provide some perspective on current open problems and challenges
Unsupervised learning of diverse behaviors

What if we want to recover diverse behavior without any reward function at all?

Why?

➢ Learn skills without supervision, then use them to accomplish goals

➢ Learn sub-skills to use with hierarchical reinforcement learning

➢ Explore the space of possible behaviors
An Example Scenario

How can you prepare for an **unknown** future goal?

training time: unsupervised
In this lecture...

- Definitions & concepts from information theory
- Learning without a reward function by reaching goals
- Beyond state covering: covering the *space of skills*
- Using unsupervised reinforcement learning for meta-learning
In this lecture...

- Definitions & concepts from information theory
- Learning without a reward function by reaching goals
- Beyond state covering: covering the space of skills
- Using unsupervised reinforcement learning for meta-learning
Some useful identities

\[p(x) \text{ distribution (e.g., over observations } x) \]

\[H(p(x)) = -E_{x \sim p(x)}[\log p(x)] \]

entropy – how “broad” \(p(x) \) is
Some useful identities

\[\mathcal{H}(p(x)) = -E_{x \sim p(x)}[\log p(x)] \]
entropy – how “broad” \(p(x) \) is

\[\mathcal{I}(x; y) = D_{KL}(p(x, y) \parallel p(x)p(y)) \]

\[= E_{(x,y) \sim p(x,y)} \left[\log \frac{p(x, y)}{p(x)p(y)} \right] \]

\[= \mathcal{H}(p(y)) - \mathcal{H}(p(y \mid x)) \]

high MI: \(x \) and \(y \) are dependent

low MI: \(x \) and \(y \) are independent
Information theoretic quantities in RL

\(\pi(s) \) state marginal distribution of policy \(\pi \)

\(\mathcal{H}(\pi(s)) \) state marginal entropy of policy \(\pi \)

example of mutual information: “empowerment” (Polani et al.)

\[\mathcal{I}(s_{t+1}; a_t) = \mathcal{H}(s_{t+1}) - \mathcal{H}(s_{t+1}|a_t) \]

can be viewed as quantifying “control authority” in an information-theoretic way
In this lecture...

- Definitions & concepts from information theory
- Learning without a reward function by reaching goals
- Beyond state covering: covering the space of skills
- Using unsupervised reinforcement learning for meta-learning
An Example Scenario

How can you prepare for an unknown future goal?

training time: unsupervised
Learn without any rewards at all (but there are many other choices)

VAE (Kingma & Welling ’13)

Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. ’18
Learn without any rewards at all

Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. '18
Learn without any rewards at all

1. Propose goal: \(z_g \sim p(z), x_g \sim p_\theta(x_g|z_g) \)

2. Attempt to reach goal using \(\pi(a|x,x_g) \), reach \(\bar{x} \)

3. Use data to update \(\pi \)

4. Use data to update \(p_\theta(x_g|z_g), q_\phi(z_g|x_g) \)

Nair*, Pong*, Bahl, Dalal, Lin, L. *Visual Reinforcement Learning with Imagined Goals.* ’18

How do we get diverse goals?

Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. ’18
How do we get diverse goals?

1. Propose goal: $z_g \sim p(z), \ x_g \sim p_\theta(x_g|z_g)$

2. Attempt to reach goal using $\pi(a|x, x_g)$, reach \bar{x}

3. Use data to update π

4. Use data to update $p_\theta(x_g|z_g), q_\phi(z_g|x_g)$

- standard MLE: $\theta, \phi \leftarrow \arg \max_{\theta, \phi} E[\log p(\bar{x})]$
- weighted MLE: $\theta, \phi \leftarrow \arg \max_{\theta, \phi} E[w(\bar{x}) \log p(\bar{x})]$

$$w(\bar{x}) = p_\theta(\bar{x})^\alpha$$

key result: for any $\alpha \in [-1, 0)$, entropy $\mathcal{H}(p_\theta(x))$ increases!
How do we get diverse goals?

what is the objective?

\[\max \mathcal{H}(p(G)) - \mathcal{H}(p(G|S)) \]

goals get higher entropy due to Skew-Fit

what does RL do?

\(\pi(a|S, G) \) trained to reach goal \(G \)
as \(\pi \) gets better, final state \(S \) gets close to \(G \)
that means \(p(G|S) \) becomes more deterministic!

\[w(\bar{x}) = p_\theta(\bar{x})^\alpha \]
\[\alpha \in [-1, 0) \]

Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. ’18
How do we get diverse goals?

what is the objective?

$$\max \mathcal{H}(p(G)) - \mathcal{H}(p(G|S)) = \max \mathcal{I}(S; G)$$

maximizing mutual information between S and G leads to

good exploration (state coverage) – $\mathcal{H}(p(G))$
effective goal reaching – $\mathcal{H}(p(G|S))$

Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. ’18
Reinforcement learning with imagined goals

In this lecture...

- Definitions & concepts from information theory
- Learning without a reward function by reaching goals
- Beyond state covering: covering the *space of skills*
- Using unsupervised reinforcement learning for meta-learning
Learning diverse skills

\[\pi(a|s, z) \]

task index

Why can’t we just use MaxEnt RL or goal-reaching?

1. **action** entropy is not the same as **state** entropy

 agent can take very different actions, but land in similar states

2. Reaching diverse **goals** is not the same as performing diverse **tasks**

 not all behaviors can be captured by goal-reaching

3. MaxEnt policies are stochastic, but not always **controllable**

 intuitively, we want low diversity for a fixed \(z \), high diversity across \(z \)’s

Intuition: different **skills** should visit different **state-space regions**

Eysenbach, Gupta, Ibarz, Levine. **Diversity is All You Need.**
Diversity-promoting reward function

$$\pi(a|s, z) = \arg \max_\pi \sum_z E_{s \sim \pi(s|z)}[r(s, z)]$$

reward states that are unlikely for other $z' \neq z$

$$r(s, z) = \log p(z|s)$$

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.
Examples of learned tasks

Cheetah

Ant

Mountain car

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.
Results: hierarchical RL

Eysenbach, Gupta, Ibarz, Levine. **Diversity is All You Need.**
A connection to mutual information

\[\pi(a|s, z) = \arg \max_{\pi} \sum_z E_{s \sim \pi(s|z)}[r(s, z)] \]

\[r(s, z) = \log p(z|s) \]

\[I(z, s) = H(z) - H(z|s) \]

maximized by using uniform prior \(p(z) \)

minimized by maximizing \(\log p(z|s) \)

Eysenbach, Gupta, Ibarz, Levine. **Diversity is All You Need.**

See also: Gregor et al. **Variational Intrinsic Control.** 2016
In this lecture...

➢ Definitions & concepts from information theory
➢ Learning without a reward function by reaching goals
➢ Beyond state covering: covering the *space of skills*
➢ Using unsupervised reinforcement learning for meta-learning
Aside: Meta-Overfitting

• Meta learning requires task distributions
• When there are too few meta-training tasks, we can *meta-overfit*
• Specifying task distributions is hard, especially for meta-RL!
• Can we propose tasks *automatically*?
A General Recipe for Unsupervised Meta-RL

\[
\max_{\pi} E_z [E_{\pi'_z} [r(s, z)]] \quad \text{s.t.} \quad \pi'_z = \text{Adapt}(\pi, r(s, z))
\]

reward for task \(z \)

\[
I(z, s) = H(z) - H(z|s)
\]

difference from before: result is \(\not\pi(a|s, z) \)!

result is a model that can learn (quickly) from rewards!

Does it work?

2D Navigation

Cheetah

Ant

Meta-test performance with rewards

In this lecture...

- Definitions & concepts from information theory
- Learning without a reward function by reaching goals
- Beyond state covering: covering the *space of skills*
- Using unsupervised reinforcement learning for meta-learning
Break
Challenges in Deep Reinforcement Learning
What’s the problem?

Challenges with **core algorithms**:

• Stability: does your algorithm converge?
• Efficiency: how long does it take to converge? (how many samples)
• Generalization: after it converges, does it generalize?

Challenges with **assumptions**:

• Is this even the right problem formulation?
• What is the source of *supervision*?
Stability and hyperparameter tuning

• Devising stable RL algorithms is very hard

• Q-learning/value function estimation
 • Fitted Q/fitted value methods with deep network function estimators are typically not contractions, hence no guarantee of convergence
 • Lots of parameters for stability: target network delay, replay buffer size, clipping, sensitivity to learning rates, etc.

• Policy gradient/likelihood ratio/REINFORCE
 • Very high variance gradient estimator
 • Lots of samples, complex baselines, etc.
 • Parameters: batch size, learning rate, design of baseline

• Model-based RL algorithms
 • Model class and fitting method
 • Optimizing policy w.r.t. model non-trivial due to backpropagation through time
 • More subtle issue: policy tends to exploit the model
The challenge with hyperparameters

• Can’t run hyperparameter sweeps in the real world
 • How representative is your simulator? Usually the answer is “not very”

• Actual sample complexity = time to run algorithm x number of runs to sweep
 • In effect stochastic search + gradient-based optimization

• Can we develop more stable algorithms that are less sensitive to hyperparameters?
What can we do?

• Algorithms with favorable improvement and convergence properties
 • Trust region policy optimization [Schulman et al. ‘16]
 • Safe reinforcement learning, High-confidence policy improvement [Thomas ‘15]

• Algorithms that adaptively adjust parameters
 • Q-Prop [Gu et al. ‘17]: adaptively adjust strength of control variate/baseline

• More research needed here!

• Not great for beating benchmarks, but absolutely essential to make RL a viable tool for real-world problems
Sample Complexity
gradient-free methods (e.g. NES, CMA, etc.)

fully online methods (e.g. A3C)

policy gradient methods (e.g. TRPO)

replay buffer value estimation methods (Q-learning, DDPG, NAF, SAC, etc.)

model-based deep RL (e.g. PETS, guided policy search)

model-based “shallow” RL (e.g. PILCO)

Evolution Strategies as a Scalable Alternative to Reinforcement Learning

- Wang et al. ‘17
 - TRPO+GAE (Schulman et al. ‘16)
 - 100,000,000 steps (100,000 episodes) (~15 days real time)

- Gu et al. ‘16
 - 1,000,000 steps (1,000 episodes) (~3 hours real time)

- Chebotar et al. ‘17 (note log scale)
 - 10x gap
 - about 20 minutes of experience on a real robot

- Chua et al. ‘18: Deep Reinforcement Learning in a Handful of Trials
 - 30,000 steps (30 episodes) (~5 min real time)
The challenge with sample complexity

• Need to wait for a long time for your homework to finish running
• Real-world learning becomes difficult or impractical
• Precludes the use of expensive, high-fidelity simulators
• Limits applicability to real-world problems
What can we do?

- Better model-based RL algorithms
- Design faster algorithms
 - Addressing Function Approximation Error in Actor-Critic Algorithms (Fujimoto et al. ‘18): simple and effective tricks to accelerate DDPG-style algorithms
 - Soft Actor-Critic (Haarnoja et al. ‘18): very efficient maximum entropy RL algorithm
- Reuse prior knowledge to accelerate reinforcement learning
 - RL2: Fast reinforcement learning via slow reinforcement learning (Duan et al. ‘17)
 - Learning to reinforcement learning (Wang et al. ‘17)
 - Model-agnostic meta-learning (Finn et al. ‘17)
Scaling & Generalization
Scaling up deep RL & generalization

- Large-scale
- Emphasizes diversity
- Evaluated on generalization

- Small-scale
- Emphasizes mastery
- Evaluated on performance
- Where is the generalization?
RL has a **big** problem

reinforcement learning

- this is done **many** times

supervised machine learning

- this is done **once**
- train for **many epochs**
RL has a **big** problem

reinforcement learning

this is done *many* times

actual reinforcement learning

this is done *many* times

this is done *many many* times
How bad is it?

Iteration 0

- This is quite cool
- It takes 6 days of real time (if it was real time)
- ...to run on an infinite flat plane

The real world is not so simple!

Schulman, Moritz, L., Jordan, Abbeel ’16
Off-policy RL?

reinforcement learning

this is done many times

off-policy reinforcement learning

big dataset from past interaction

occasionally get more data

train for many epochs

many
Not just robots!

autonomous driving

language & dialogue
(structured prediction)

finance
What’s the problem?

Challenges with *core algorithms*:
• Stability: does your algorithm converge?
• Efficiency: how long does it take to converge? (how many samples)
• Generalization: after it converges, does it generalize?

Challenges with *assumptions*:
• Is this even the right problem formulation?
• What is the source of *supervision*?
Problem Formulation
Single task or multi-task?

The real world is not so simple!

this is where generalization can come from...

maybe doesn’t require any new assumption, but might merit additional treatment

pick MDP randomly in first state

$$p(s_0)$$

$$s_0 \xrightarrow{\pi(a_0|s_0)} s_1 \xrightarrow{\pi(a_0|s_0)} s_1 \xrightarrow{\pi(a_0|s_0)} s_1 \xrightarrow{\text{etc.}} \text{MDP 0}$$

$$s_0 \xrightarrow{\pi(a_0|s_0)} s_1 \xrightarrow{\pi(a_0|s_0)} s_1 \xrightarrow{\pi(a_0|s_0)} s_1 \xrightarrow{\text{etc.}} \text{MDP 1}$$

$$s_0 \xrightarrow{\pi(a_0|s_0)} s_1 \xrightarrow{\pi(a_0|s_0)} s_1 \xrightarrow{\pi(a_0|s_0)} s_1 \xrightarrow{\text{etc.}} \text{MDP 2}$$
Generalizing from multi-task learning

• Train on multiple tasks, then try to generalize or finetune
 • Policy distillation (Rusu et al. ‘15)
 • Actor-mimic (Parisotto et al. ‘15)
 • Model-agnostic meta-learning (Finn et al. ‘17)
 • many others...

• Unsupervised or weakly supervised learning of diverse behaviors
 • Stochastic neural networks (Florensa et al. ‘17)
 • Reinforcement learning with deep energy-based policies (Haarnoja et al. ‘17)
 • many others...
Where does the **supervision** come from?

- If you want to learn from many different tasks, you need to get those tasks somewhere!
- Learn objectives/rewards from demonstration (inverse reinforcement learning)
- Generate objectives automatically?
What is the role of the reward function?

\[r(s, a) = \begin{cases} 1 \text{ if walker is running} \\ 0 \text{ otherwise} \end{cases} \]

\[
 r(s, a) = w_1 v(s) + \\
 w_2 \delta(|\theta_{\text{torso}}(s)| < \epsilon) + \\
 w_3 \delta(h_{\text{torso}}(s) \geq h)
\]
Unsupervised reinforcement learning?

1. Interact with the world, without a reward function
2. Learn *something* about the world (what?)
3. Use what you learned to quickly solve new tasks

Eysenbach, Gupta, Ibarz, L. Diversity is All You Need.
Other sources of supervision

• Demonstrations
 • Muelling, K et al. (2013). Learning to Select and Generalize Striking Movements in Robot Table Tennis

• Language
 • Andreas et al. (2018). Learning with latent language

• Human preferences
 • Christiano et al. (2017). Deep reinforcement learning from human preferences

Should supervision tell us **what** to do or **how** to do it?
Rethinking the Problem Formulation

• How should we define a *control* problem?
 • What is the data?
 • What is the goal?
 • What is the supervision?
 • may not be the same as the goal...

• Think about the assumptions that fit your problem setting!

• Don’t assume that the basic RL problem is set in stone
Back to the Bigger Picture
Learning as the basis of intelligence

• Reinforcement learning = can reason about decision making
• Deep models = allows RL algorithms to learn and represent complex input-output mappings

Deep models are what allow reinforcement learning algorithms to solve complex problems end to end!
What is missing?

How Much Information Does the Machine Need to Predict?

- **“Pure” Reinforcement Learning** (cherry)
 - The machine predicts a scalar reward given once in a while.
 - A few bits for some samples

- **Supervised Learning** (icing)
 - The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - 10→10,000 bits per sample

- **Unsupervised/Predictive Learning** (cake)
 - The machine predicts any part of its input for any observed part.
 - Predicts future frames in videos
 - Millions of bits per sample

(Yes, I know, this picture is slightly offensive to RL folks. But I’ll make it up)
Where does the *signal* come from?

- Yann LeCun’s cake
 - Unsupervised or self-supervised learning
 - Model learning (predict the future)
 - Generative modeling of the world
 - Lots to do even before you accomplish your goal!

- Imitation & understanding other agents
 - We are social animals, and we have culture – for a reason!

- The giant value backup
 - All it takes is one +1

- All of the above
How should we answer these questions?

• Pick the right problems!
• Pay attention to generative models, prediction, etc., not just RL algorithms
• Carefully understand the relationship between RL and other ML fields