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Terminology & notation
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S; — state
0; — observation mg(as|o;) — policy
a; — action mo(a¢|s¢) — policy (fully observed)

0; — observation



Terminology & notation

S; — state
0; — observation mg(as|o;) — policy
a; — action mo(a¢|s¢) — policy (fully observed)

Markov property
independent of s;_1




Aside: notation

S; — state
a; — action

Richard Bellman

X; — State
u; — action  ynpaBneHue

Lev Pontryagin



Imitation Learning
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e (at |Ot)
training superv.ised 7o (az|oy)
data learning

behavioral cloning

Images: Bojarski et al. ‘16, NVIDIA



The original deep imitation learning system

ALVINN: Autonomous Land Vehicle In a Neural Network
1989
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Does it work? No

- = training trajectory
; _ T expected trajectory




Does it work?

Video: Bojarski et al. ‘16, NVIDIA



Why did that work?
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Can we make it work more often?

©7 == training trajectory
.+ = T expected trajectory

stability

(more on this later)



Can we make it work more often?

~ — training trajectory
— T expected trajectory
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can we make Paata(0t) = Pr,(0¢)7



Can we make it work more often?

can we make Pgata(0t) = pr, (0¢)7

idea: instead of being clever about p;,(0¢), be clever about pgata(0¢)!

DAgger: Dataset Aggregation

goal: collect training data from p,,(0;) instead of pgata(0¢)
how? just run mg(a;|o;)

but need labels a;!

1. train my(as|os) from human data D = {o1,a;,...,0n,an}
2. run mg(a;|oy) to get dataset D = {01,...,05}

3. Ask human to label D, with actions a;

4. Aggregate: D < DU D,

Ross et al. ‘11



DAgger Example

L]
-
-

Ross et al. ‘11



What’s the problem?

1. train my(as|os) from human data D = {o1,a;,...,0n,an}
2. run mg(a;|oy) to get dataset D = {01,...,05}

[3. Ask human to label D, with actions a; ]

4. Aggregate: D < DU D,

Ross et al. ‘11



Deep imitation learning in practice



Can we make it work without more data?

* DAgger addresses the problem of e rainig tajectory
. . . . T . =m Ty expected trajectory
distributional “drift” IR S

 What if our model is so good that it
doesn’t drift?

* Need to mimic expert behavior very
accurately

e But don’t overfit!



Why might we fail to fit the expert?

1. Non-Markovian behavior
2. Multimodal behavior

mo(as| o) mp(at|o1, ..., 0¢)
behavior depends only behavior depends on
on current observation all past observations

If we see the same thing
twice, we do the same thing  Often very unnatural for

twice, regardless of what human demonstrators
happened before



How can we use the whole history?

variable number of frames,
too many weights



How can we use the whole history?
shared weights \

A\ 4

RNN state

A 4

RNN state

v
RNN state

Typically, LSTM cells work better here



Aside: why might this work poorly?

Scenario A: Full Information Scenario B: Incomplete Information

policy attends to brake indicator policy attends to pedestrian

“causal confusion” see: de Haan et al., “Causal Confusion in Imitation Learning”

Question 1: Does including history mitigate causal confusion?

Question 2: Can DAgger mitigate causal confusion?



Why might we fail to fit the expert?

1. Non-Markovian behavior L0 )
: : . Output mixture o
2. Multimodal behavior :
lﬁl Gaussians

plorlp(a: Jplas) 2. Latent variable models

3. Autoregressive
discretization
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Why might we fail to fit the expert?

1. Output mixture of
Gaussians

2. Latent variable models W1y (41, 21, e o s WN AN ON

3. Autoregressive
discretization

m(alo) = Z wiN (s, ;)

)




Why might we fail to fit the expert?

1. Output mixture of
Gaussians

2. Latent variable models

3. Autoregressive
discretization

Look up some of these:

e Conditional variational autoencoder
* Normalizing flow/realNVP

e Stein variational gradient descent




Why might we fail to fit the expert?

1. Output mixture of
Gaussians

2. Latent va riab|e models (discretized) distribution_>

over dimension 1 only

3. Autoregressive
discretization

discrete dim 2
sampling value
discrete dim1
sampling value




Imitation learning: recap

training supervised

| . We(at|0t)
Jaite earning

e Often (but not always) insufficient by itself
* Distribution mismatch problem
 Sometimes works well (N}
* Hacks (e.g. left/right images)
* Samples from a stable trajectory distribution

* Add more on-policy data, e.g. using Dagger
* Better models that fit more accurately




A case study: trail following from
human demonstration data



Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception
of Forest Trails for Mobile Robots

Alessandro Giusti', Jérome Guzzi', Dan C. Ciresan', Fang-Lin He!, Juan P. Rodriguez'
Flavio Fontana?, Matthias Faessler?, Christian Forster?
Jiirgen Schmidhuber!, Gianni Di Caro!, Davide Scaramuzza2, Luca M. Gambardella’

Deep Network Outputs
Neural
Network

% ; Turn Go Turn

Left Straight Right







Cost functions, reward functions, and a
bit of theory



Imitation learning: what’s the problem?

* Humans need to provide data, which is typically finite
* Deep learning works best when data is plentiful

* Humans are not good at providing some kinds of actions

P(TL) P(GS) P(TR)

* Humans can learn autonomously; can our machines do the same?
* Unlimited data from own experience
e Continuous self-improvement



Terminology & notation

S; — state
0; — observation
a; — action

mein B rrartats

—
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c(st, a;) — cost function

r(s¢, a¢) — reward function
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Aside: notation

S; — state
a; — action
r(s,a) — reward function

Richard Bellman

r(s,a) = —c(x,u)

X; — State
u; — action
¢(x,u) — cost function

Lev Pontryagin



Cost functions, reward functions, and a
bit of theory



A cost function for imitation?

1.
2.
3.
4

Ross et al. ‘11

training supervised

| . We(at\ot)
Tefts earning

(s, a) = 0if a = 7*(s)
] 1 otherwise
train mg(a;|o;) from human data D = {01,a1,...,0nx,an}

run 7g(a;|o;) to get dataset D, = {01,...,0n}

Ask human to label D, with actions a;

. Aggregate: D+ DUD,



: Oifa=n~"
Some analysis o) =

assume: mg(a #= 1*(s)|s) < €

= training trajectory

= 7Ty expected trajectory for all S E Dt .
A rain

' ) W@(at|0t)
D> [>|>]|>[>]>]>
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Z c(ss, ayp)

O(eT?) T terms, each O(eT)




1 otherwise

More general analysis c(s,a):{ 0if a=r"(s)

assume: mp(a # 7 (s)|s) < e

w for s ~ ptrain(s) with DAggerv ptrain(s) — pg(S)

actually enough for E, . (s [mg(a # n*(s)|s)] < e E Z c(st, at)] < T

t

if Ptrain (S) # Po (S):
pQ(St) — (1 — E)tptrain(st) + (1 — (1 — E)t))lpmista,ke(st)'

D —

probability we made no mistakes some other distribution

For more analysis, see Ross et al. “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”



More general analysis
assume: mp(a # 7 (s)|s) < e

for all s € Divain  for s ~ ptrain(s)

p@(st) — (1 — E)tptrain(st) + (1 — (1 — e)t))lpmista,ke(st)'

l_'_l
probability we made no mistakes some other distribution

|p9(St) — ptrain(st)| — (1 — (1 — e)t)‘pmistake(st) — ptrain(st)| < 2(1 — (1 — E)t)
useful identity: (1 —€)* > 1 — et for € € [0, 1] < 2Zet

Z po(st) Ct Zzpé’ St Ct St < Zzptram St Ct St) + |p9(St) ptrain(st)|cmax
t
< Z € —|— 2¢€t

O(eT?)

For more analysis, see Ross et al. “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”



Another way to imitate



Another imitation idea

mo(als)

P1 policy for reaching p;

mo (a\s, p)
P2
policy for reaching any p

P1

P3



Goal-conditioned behavioral cloning

training time:

demo 1: {si,a;,...,S7_1,ar_1,S7} < successful demo for reaching s
demo 2: {s1,ay,...,S7_1,a7_1,ST} learn my(als,g) <«—— goal state
demo 3: {517 Aty ..., ST_1,A7T 1, ST}

for each demo {s{,a},...,s% ,,a%_{,s}}

maximize log 7T9(32|S%, g = quﬂ)



Learning [.atent Plans Unsupervised Visuomotor Control through
fr()m Play Distributional Planning Networks

Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, Chelsea Finn

COREY LYMCH  MOHI KHAMNSARI  TED XIAD VIKASH KUMAR — JOMATHAN TOMPSOM  SERGEY LEVINE  PIERRE SERMAMET
Google Brain Google X Google Brain  Google Brain Google Brain Google Brain Google Brain
Stanford University
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Learning Latent Plans
from Play

TED XIAQ IKASH KUMAR  JOMATHAN TOMPSOMN  SERGEY LEVIME  PIERRE
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Learning Latent Plans
from Play

COREY LYNCH MOHI KHANSARI  TED XIAQ VIKASH KUMAR  JOMATHAN TOMPSON  SERGEY LEVINE  PIERRE SERMAMNET

3. Reach goals

Single Play-LMP policy



Going beyond just imitation?

Learning to Reach Goals via Iterated Supervised

Learning
» Start with a random policy
Dibya Ghosh* Abhishek Gupta* Ashwin Reddy Justin Fu » Collect data with random goals
UC Berkeley UC Berkeley UC Berkeley UC Berkeley
. " H V4
Coline Devin Benjamin Eysenbach Sergey Levine » Treat this data as “demonstrations” for
UC Berkeley Carnegie Mellon University UC Berkeley the goaIS that were reached
» Use this to improve the policy
Collect policy rollouts ‘ ‘ Behavioral cloning on relabeled data ‘
[(s6. a8, B) ..., (s}, af, B)] » Repeat

max E, , ,»~plog m(als, g)
[id o
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i, a0, 4) -7, (s¥ b, A}]”” }D

| Iterate process




