Exploration (Part 2)

CS 285

Instructor: Sergey Levine
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this is easy (mostly) this is impossible




Unsupervised learning of diverse behaviors

What if we want to recover diverse behavieithout any reward function at alp
Why?

U Learn skills without supervision, then
use them to accomplish goals

U Learn subskills to use with
hierarchical reinforcement learning

U Explore the space of possible
behaviors




An Example Scenario

How can you prepare for an
unknown future goal?

training time: unsupervised
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U Definitions & concepts from information theory

U Learning without a reward function by reaching goals

U Astate distributiommatchingformulation of reinforcement learning
U Is coverage of valid statesggaodexploration objective?

U Beyond state covering. covering tBpace of skills
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U Definitions & concepts from information theory



Some useful identities
p(X) distribution (e.g., over observations x)

H(p(X)) — — Lix~op(x) [logp(x)]

entropy — how “broad” p(x) is




Some useful iIdentities

entropy — how “broad” p(x) is

H(p(X)) — — Lix~op(x) [logp(x)]

I(x;y) = DxL(p(x,y)|lp(x)p(y))
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log o

= H(p(y)) — H(p(y[x))
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high MI: x and y are dependent
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low MI: x and y are independent



Information theoretic quantities in RL

state marginal

distribution of policy 7

guantifiescoverage

state marginal entropy of policy 7

example of mutual information: “empowerment” (Polani et al.)
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U Learning without a reward function by reaching goals



An Example Scenario

How can you prepare for an
unknown future goal?

training time: unsupervised



Learn without any rewards at all

Nair*, Pong*,Bahl| Dalal Lin, LVisual Reinforcement Learning with Imagined Gaéls Q my
Dalat, Pong?*, Lin*, NairBah| Levine SkewFit: StateCovering SelSupervised Reinforcement Learning).m o
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VAE (Kingma & Welling ’13)

(but there are many other choices)
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Learn without any rewards at all

Nair*, Pong*Bahl| Dalal Lin, LVisual Reinforcement Learning with Imagined Gagls Q m y
DalaF, Pong*, Lin*, NaiBah| Levine SkewFit: StateCovering SelSupervised Reinforcement Learning.m ¢
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Learn without any rewards at all
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2. Attempt to reach goal using mw(al|x,z,), reach Z p(2)

1. Propose goal: z, ~ p(2), x4 ~ po(z4|24)

4. Use data to update p9($g|zg), Q¢(Zg|37g) qu(z\g) ¢ 0 pg(ac|z)

Nair*, Pong*,Bahl| Dalal Lin, LVisual Reinforcement Learning with Imagined Gaéls Q my
Dalat, Pong?*, Lin*, NairBah| Levine SkewFit: StateCovering SelSupervised Reinforcement Learning).m o



How do we get diverse goals?
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Nair*, Pong*,Bahl| Dalal Lin, LVisual Reinforcement Learning with Imagined Gaéls Q my
Dalat, Pong?*, Lin*, NairBah| Levine SkewFit: StateCovering SelSupervised Reinforcement Learning).m o
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