Model-Based Policy Learning

CS 285: Deep Reinforcement Learning, Decision Making, and Control
Sergey Levine
Class Notes

1. Homework 3 is out! Due next week
 • Start early, this one will take a bit longer!
Today’s Lecture

1. Last time: model-based reinforcement learning *without* policies
2. Today: model-based reinforcement learning of policies
 • Learning global policies
 • Learning local policies
3. Combining local policies into global policies
 • Guided policy search
 • Policy distillation
• Goals:
 • Understand how and why we should use models to learn policies
 • Understand global and local policy learning
 • Understand how local policies can be merged via supervised learning into a global policy
model-based reinforcement learning version 1.5:

1. run base policy $\pi_0(a_t|s_t)$ (e.g., random policy) to collect $D = \{(s, a, s')\}

2. learn dynamics model $f(s, a)$ to minimize $\sum_i \| f(s_i, a_i) - s'_i \|^2$

3. plan through $f(s, a)$ to choose actions

4. execute the first planned action, observe resulting state s' (MPC)

5. append (s, a, s') to dataset D
The stochastic open-loop case

why is this suboptimal?

\[p_\theta(s_1, \ldots, s_T | a_1, \ldots, a_T) = p(s_1) \prod_{t=1}^{T} p(s_{t+1}|s_t, a_t) \]

\[a_1, \ldots, a_T = \arg \max_{a_1, \ldots, a_T} E \left[\sum_t r(s_t, a_t) | a_1, \ldots, a_T \right] \]
The stochastic closed-loop case

\[p(s_1, a_1, \ldots, s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi(a_t|s_t)p(s_{t+1}|s_t, a_t) \]

\[\pi = \arg \max_{\pi} E_{\tau \sim p(\tau)} \left[\sum_{t} r(s_t, a_t) \right] \]
Backpropagate directly into the policy?

Easy for deterministic policies, but also possible for stochastic policy

Model-based reinforcement learning version 2.0:

1. run base policy $\pi_0(a_t|s_t)$ (e.g., random policy) to collect $D = \{(s, a, s')_i\}$
2. learn dynamics model $f(s, a)$ to minimize $\sum_i ||f(s_i, a_i) - s'_i||^2$
3. backpropagate through $f(s, a)$ into the policy to optimize $\pi_\theta(a_t|s_t)$
4. run $\pi_\theta(a_t|s_t)$, appending the visited tuples (s, a, s') to D
What’s the problem with backprop into policy?

$a_t = \pi_\theta(s_t)$

$r(s_t, a_t)$

$s_{t+1} = f(s_t, a_t)$

$a_t = \pi_\theta(s_t)$

$s_{t+1} = f(s_t, a_t)$

big gradients here

small gradients here
What’s the problem?

\[a_t = \pi_\theta(s_t) \quad \Rightarrow \quad s_{t+1} = f(s_t, a_t) \quad \Rightarrow \quad a_t = \pi_\theta(s_t) \quad \Rightarrow \quad s_{t+1} = f(s_t, a_t) \]
What’s the problem?

• Similar parameter sensitivity problems as shooting methods
 • But no longer have convenient second order LQR-like method, because policy parameters couple all the time steps, so no dynamic programming

• Similar problems to training long RNNs with BPTT
 • Vanishing and exploding gradients
 • Unlike LSTM, we can’t just “choose” a simple dynamics, dynamics are chosen by nature
What’s the solution?

• Use derivative-free (“model-free”) RL algorithms, with the model used to generate synthetic samples
 • Seems weirdly backwards
 • Actually works very well
 • Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
 • LQR with learned models (LQR-FLM – Fitted Local Models)
 • Train local policies to solve simple tasks
 • Combine them into global policies via supervised learning
What’s the solution?

• Use derivative-free (“model-free”) RL algorithms, with the model used to generate synthetic samples
 • Seems weirdly backwards
 • Actually works very well
 • Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
 • LQR with learned models (LQR-FLM – Fitted Local Models)
 • Train local policies to solve simple tasks
 • Combine them into global policies via supervised learning
Model-free optimization with a model

Policy gradient:

\[\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t})\hat{Q}_{i,t}^{\pi} \]

Backprop (pathwise) gradient:

\[\nabla_{\theta} J(\theta) = \sum_{t=1}^{T} \frac{dr_{t}}{ds_{t}} \prod_{t'=2}^{t} \frac{ds_{t'}}{da_{t'-1}} \frac{da_{t'}-1}{ds_{t'-1}} \]

- Policy gradient might be more stable (if enough samples are used) because it does not require multiplying many Jacobians

- See a recent analysis here:
 - Parmas et al. ‘18: PIPP: Flexible Model-Based Policy Search Robust to the Curse of Chaos
Model-free optimization with a model

Dyna

online Q-learning algorithm that performs model-free RL with a model

1. given state s, pick action a using exploration policy
2. observe s' and r, to get transition (s, a, s', r)
3. update model $\hat{p}(s'|s, a)$ and $\hat{r}(s, a)$ using (s, a, s')
4. Q-update: $Q(s, a) \leftarrow Q(s, a) + \alpha E_{s', r}[r + \max_{a'} Q(s', a') - Q(s, a)]$
5. repeat K times:
 6. sample $(s, a) \sim \mathcal{B}$ from buffer of past states and actions
 7. Q-update: $Q(s, a) \leftarrow Q(s, a) + \alpha E_{s', r}[r + \max_{a'} Q(s', a') - Q(s, a)]$

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating dynamic programming.
General “Dyna-style” model-based RL recipe

1. collect some data, consisting of transitions \((s, a, s', r)\)
2. learn model \(\hat{p}(s'|s, a)\) (and optionally, \(\hat{r}(s, a)\))
3. repeat K times:
 4. sample \(s \sim \mathcal{B}\) from buffer
 5. choose action \(a\) (from \(\mathcal{B}\), from \(\pi\), or random)
 6. simulate \(s' \sim \hat{p}(s'|s, a)\) (and \(r = \hat{r}(s, a)\))
 7. train on \((s, a, s', r)\) with model-free RL
 8. (optional) take \(N\) more model-based steps

+ only requires short (as few as one step) rollouts from model
+ still sees diverse states
Model-Based Acceleration (MBA)
Model-Based Value Expansion (MVE)
Model-Based Policy Optimization (MBPO)

1. take some action a_i and observe (s_i, a_i, s'_i, r_i), add it to B
2. sample mini-batch $\{s_j, a_j, s'_j, r_j\}$ from B uniformly
3. use $\{s_j, a_j, s'_j\}$ to update model $\hat{p}(s'|s, a)$
4. sample $\{s_j\}$ from B
5. for each s_j, perform model-based rollout with $a = \pi(s)$
6. use all transitions (s, a, s', r) along rollout to update Q-function

Gu et al. Continuous deep Q-learning with model-based acceleration. ‘16
Feinberg et al. Model-based value expansion. ’18
Janner et al. When to trust your model: model-based policy optimization. ‘19
Break
What’s the solution?

• Use derivative-free ("model-free") RL algorithms, with the model used to generate synthetic samples
 • Seems weirdly backwards
 • Actually works very well
 • Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
 • LQR with learned models (LQR-FLM – Fitted Local Models)
 • Train local policies to solve simple tasks
 • Combine them into global policies via supervised learning
What’s the solution?

• Use derivative-free (“model-free”) RL algorithms, with the model used to generate synthetic samples
 • Seems weirdly backwards
 • Actually works very well
 • Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
 • LQR with learned models (LQR-FLM – Fitted Local Models)
 • Train local policies to solve simple tasks
 • Combine them into global policies via supervised learning
Local models

$$\min_{u_1,\ldots,u_T} \sum_{t=1}^{T} c(x_t, u_t) \text{ s.t. } x_t = f(x_{t-1}, u_{t-1})$$

$$\min_{u_1,\ldots,u_T} c(x_1, u_1) + c(f(x_1, u_1), u_2) + \cdots + c(f(f(\ldots), \ldots), u_T)$$

usual story: differentiate via backpropagation and optimize!

need $$\frac{df}{dx_t}, \frac{df}{du_t}, \frac{dc}{dx_t}, \frac{dc}{du_t}$$
Local models

We need \(\frac{df}{dx_t}, \frac{df}{du_t}, \frac{dc}{dx_t}, \frac{dc}{du_t} \).

Idea: just fit \(\frac{df}{dx_t}, \frac{df}{du_t} \) around current trajectory or policy.

LQR gives us a linear feedback controller that can \textbf{execute} in the real world!
Local models

\[p(x_{t+1}|x_t, u_t) = \mathcal{N}(f(x_t, u_t), \Sigma) \]

\[f(x_t, u_t) \approx A_t x_t + B_t u_t \]

\[A_t = \frac{df}{dx_t} \quad B_t = \frac{df}{du_t} \]
What controller to execute?

iLQR produces: \(\hat{x}_t, \hat{u}_t, K_t, k_t \)

\[u_t = K_t(x_t - \hat{x}_t) + k_t + \hat{u}_t \]

Version 0.5: \(p(u_t|x_t) = \delta(u_t = \hat{u}_t) \)

Doesn’t correct deviations or drift

Version 1.0: \(p(u_t|x_t) = \delta(u_t = K_t(x_t - \hat{x}_t) + k_t + \hat{u}_t) \)

Better, but maybe a little too good?

Version 2.0: \(p(u_t|x_t) = \mathcal{N}(K_t(x_t - \hat{x}_t) + k_t + \hat{u}_t, \Sigma_t) \)

Add noise so that all samples don’t look the same!
Set \(\Sigma_t = Q_{u_t,u_t}^{-1} \)
Local models

\[p(x_{t+1}|x_t, u_t) = \mathcal{N}(f(x_t, u_t), \Sigma) \]

\[f(x_t, u_t) \approx A_t x_t + B_t u_t \]

\[A_t = \frac{df}{dx_t} \quad B_t = \frac{df}{du_t} \]
How to fit the dynamics?

\[
\{ (x_t, u_t, x_{t+1}) \}_{i}
\]

Version 1.0: fit \(p(x_{t+1}|x_t, u_t) \) at each time step using linear regression

\[
p(x_{t+1}|x_t, u_t) = \mathcal{N}(A_t x_t + B_t u_t + c, N_t)
\]

\[
A_t \approx \frac{df}{dx_t}, \quad B_t \approx \frac{df}{du_t}
\]

Can we do better?

Version 2.0: fit \(p(x_{t+1}|x_t, u_t) \) using Bayesian linear regression

Use your favorite \textit{global} model as prior (GP, deep net, GMM)
What if we go too far?
How to stay close to old controller?

For details, see: “Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics”

\[
p(u_t|x_t) = \mathcal{N}(K_t(x_t - \hat{x}_t) + k_t + \hat{u}_t, \Sigma_t)
\]

\[
p(\tau) = p(x_1) \prod_{t=1}^{T} p(u_t|x_t)p(x_{t+1}|x_t, u_t)
\]

What if the new \(p(\tau)\) is “close” to the old one \(\bar{p}(\tau)\)?

If trajectory distribution is close, then dynamics will be close too!

What does “close” mean? \(D_{KL}(p(\tau)\|\bar{p}(\tau)) \leq \epsilon\)

This is easy to do if \(\bar{p}(\tau)\) also came from linear controller!
Example: local models & iterative LQR

Learning Contact-Rich Manipulation Skills with Guided Policy Search

- Run $p(u_t|x_t)$ on robot
- Collect $D = \{\tau_i\}$
- Next iteration
- Fit dynamics $p(x_{t+1}|x_t, u_t)$
- Improve $p(u_t|x_t)$
What’s the solution?

• Use derivative-free ("model-free") RL algorithms, with the model used to generate synthetic samples
 • Seems weirdly backwards
 • Actually works very well
 • Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
 • LQR with learned models (LQR-FLM – Fitted Local Models)
 • Train local policies to solve simple tasks
 • Combine them into global policies via supervised learning
What’s the solution?

• Use derivative-free (“model-free”) RL algorithms, with the model used to generate synthetic samples
 • Seems weirdly backwards
 • Actually works very well
 • Essentially “model-based acceleration” for model-free RL

• Use simpler policies than neural nets
 • LQR with learned models (LQR-FLM – Fitted Local Models)
 • Train local policies to solve simple tasks
 • Combine them into global policies via supervised learning
Guided policy search: high-level idea
Guided policy search: algorithm sketch

1. optimize each local policy $\pi_{\text{LQR},i}(u_t|x_t)$ on initial state $x_{0,i}$ w.r.t. $c_{k,i}(x_t, u_t)$
2. use samples from step (1) to train $\pi_\theta(u_t|x_t)$ to mimic each $\pi_{\text{LQR},i}(u_t|x_t)$
3. update cost function $\tilde{c}_{k+1,i}(x_t, u_t) = c(x_t, u_t) + \lambda_{k+1,i} \log \pi_\theta(u_t|x_t)$

For details, see: “End-to-End Training of Deep Visuomotor Policies” Lagrange multiplier
Underlying principle: distillation

Ensemble models: single models are often not the most robust – instead train many models and average their predictions
 this is how most ML competitions (e.g., Kaggle) are won
 this is very expensive at test time

Can we make a single model that is as good as an ensemble?

Distillation: train on the ensemble’s predictions as “soft” targets

\[
p_i = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}
\]

Intuition: more knowledge in soft targets than hard labels!

Slide adapted from G. Hinton, see also Hinton et al. “Distilling the Knowledge in a Neural Network”
Distillation for Multi-Task Transfer

\[\mathcal{L} = \sum_{a} \pi_{E_i}(a|s) \log \pi_{AMN}(a|s) \]

(just supervised learning/distillation)

analogous to guided policy search, but for multi-task learning

some other details
(e.g., feature regression objective)
– see paper

Combining weak policies into a strong policy

Divide and Conquer Reinforcement Learning

Divide and conquer reinforcement learning algorithm sketch:

1. optimize each local policy $\pi_{\theta_i}(a_t|s_t)$ on initial state $s_{0,i}$ w.r.t. $\tilde{r}_{k,i}(s_t,a_t)$
2. use samples from step (1) to train $\pi_{\theta}(u_t|x_t)$ to mimic each $\pi_{\theta_i}(u_t|x_t)$
3. update reward function $\tilde{r}_{k+1,i}(x_t,u_t) = c(x_t,u_t) + \lambda_{k+1,i} \log \pi_{\theta}(u_t|x_t)$

For details, see: “Divide and Conquer Reinforcement Learning”
Readings: guided policy search & distillation

• Rusu et al. Policy Distillation. 2015.