
CS294-112 Deep Reinforcement Learning HW3:

Q-Learning and Actor-Critic

Due October 10th, 11:59 pm

1 Part 1: Q-Learning

1.1 Introduction

Part 1 of this assignment requires you to implement and evaluate Q-learning
with convolutional neural networks for playing Atari games. The Q-learning
algorithm was covered in lecture, and you will be provided with starter code.
You may modify the code to use any automatic differentiation package you want,
though the default code uses TensorFlow, and you may find it easier to use that.
You may run the code either on GPU or CPU. A GPU machine will be faster,
but you should be able to get good results with about 20 hours of compute on
a modern CPU.

Please start early! The questions will require you to perform multiple runs of Q-
learning, each of which can take quite a long time. Furthermore, depending on
your implementation, you may find it necessary to tweak some of the parameters,
such as learning rates or exploration schedules, which can also be very time
consuming. The actual coding for this assignment will involve about 50 lines of
code, but the evaluation may take a very long time.

1.2 Installation

Obtain the code from https://github.com/berkeleydeeprlcourse/homework/

tree/master/hw3. To run the code, go into the hw3 directory and simply ex-
ecute python run_dqn_atari.py. It will not work however until you finish
implementing the algorithm in dqn.py.

You will also need to install the dependencies, which are OpenAI Gym, Ten-
sorFlow, and OpenCV (which is used to resize the images). Remember to also
follow the instructions for installing the Atari environments for OpenAI gym,
which can be found on the Github page for OpenAI Gym. To install OpenCV,

1

https://github.com/berkeleydeeprlcourse/homework/tree/master/hw3
https://github.com/berkeleydeeprlcourse/homework/tree/master/hw3


run pip install opencv-python. If you have trouble with ffmpeg you can
install it via homebrew or apt-get depending on your system.

There are also some slight differences between different versions of TensorFlow in
regard to initialization. If you get an error inside dqn_utils.py related to vari-
able initialization, check the comment inside initialize_interdependent_variables,
it explains how to modify the code to be compatible with older versions of Ten-
sorFlow.

You may want to look at run_dqn_atari.py before starting the implementation.
This file defines the convolutional network you will be using for image-based
Atari playing, defines which Atari game will be used (Pong is the default), and
specifies the hyperparameters.

1.3 Implementation

The first phase of the assignment is to implement a working version of Q-
learning. The default code will run the Pong game with reasonable hyperparam-
eter settings. The starter code already provides you with a working replay buffer,
all you have to do is fill in parts of dqn.py, by searching for YOUR CODE HERE.
The comments in the code describe what should be implemented in each sec-
tion. You may find it useful to look inside dqn_utils.py to understand how
the replay buffer works, but you should not need to modify it. You may also
look inside run_dqn_atari.py to change the hyperparameters or the particular
choice of Atari game. Once you implement Q-learning, answering some of the
questions may require changing hyperparameters, neural network architectures,
and the game, which should be done by editing run_dqn_atari.py.

To determine if your implementation of Q-learning is performing well, you
should run it with the default hyperparameters on the Pong game. Our ref-
erence solution gets a reward of around -20 to -15 after 500k steps, -15 to -10
after 1m steps, -10 to -5 after 1.5m steps, and around +10 after 2m steps on
Pong. The maximum score of around +20 is reached after about 4-5m steps.
However, there is considerable variation between runs.

To accelerate debugging, you may also check out run_dqn_ram.py, which runs
the game Pong but using the state of the emulator RAM instead of images
as observations. This version will run faster, especially if you’re not using a
GPU, but takes more iterations and probably won’t converge to as good of a
solution. You may use this version for debugging your algorithm, though you
are not required to report results for it. Our reference solutions with the default
hyperparameters gets around -19.9 after 500k steps, -19.2 after 1m steps, -15.0
after 1.5m steps, and -13.2 after 2m steps.

Another debugging option is provided in run_dqn_lander.py, which trains your
agent to play Lunar Lander, a 1979 arcade game (also made by Atari) that has
been implemented in OpenAI Gym. Our reference solution with the default

2



hyperparameters achieves around 150 reward after 400k timesteps. We recom-
mend using Lunar Lander to check the correctness of your code before running
longer experiments with run_dqn_ram.py and run_dqn_atari.py.

1.4 Evaluation

Once you have a working implementation of Q-learning, you should prepare a
report. The report should consist of one figure for each question below. You
should turn in the report as one PDF and a zip file with your code. If your
code requires special instructions or dependencies to run, please include these
in a file called README inside the zip file. For all the questions below, it is your
choice how long to run for. Although running for 2-4m steps is ideal for a solid
evaluation, especially when running on CPU, this may be difficult. We strongly
recommend running at least 1m steps, and including at least one run of 4m
steps for Question 1. If you have severe computational constraints and find that
you are unable to run image-based Atari fast enough to complete Q2 or Q3, you
may use Lunar Lander or the RAM version of Pong for Q2 or Q3 only, but Q1
results must use images. If you use Lunar Lander or the RAM version of Pong
for Q2 or Q3, please specify this in the caption.

Question 1: basic Q-learning performance. Include a learning curve plot
showing the performance of your implementation on the game Pong. The x-axis
should correspond to number of time steps (consider using scientific notation)
and the y-axis should show the mean 100-episode reward as well as the best
mean reward. These quantities are already computed and printed in the starter
code. Be sure to label the y-axis, since we need to verify that your implemen-
tation achieves similar reward as ours. If you needed to modify the default
hyperparameters to obtain good performance, include the hyperparameters in
the caption. You only need to list hyperparameters that were modified from the
defaults.

Question 2: double Q-learning. Use the double estimator [1] to improve
the accuracy of your learned Q values. This amounts to using the online Q net-
work (instead of the target Q network) to select the best action when computing
target values. Compare the performance of double DQN to vanilla DQN.

Question 3: experimenting with hyperparameters. Now let’s analyze
the sensitivity of Q-learning to hyperparameters. Choose one hyperparameter
of your choice and run at least three other settings of this hyperparameter, in
addition to the one used in Question 1, and plot all four values on the same
graph. Your choice what you experiment with, but you should explain why you
chose this hyperparameter in the caption. Examples include: learning rates,
neural network architecture, exploration schedule or exploration rule (e.g. you

3



may implement an alternative to ε-greedy), etc. Discuss the effect of this hyper-
parameter on performance in the caption. You should find a hyperparameter
that makes a nontrivial difference on performance. Note: you might consider
performing a hyperparameter sweep for getting good results in Question 1, in
which case it’s fine to just include the results of this sweep for Question 3 as
well, while plotting only the best hyperparameter setting in Question 1.

Note: for Questions 2 and 3, you may run on other games or multiple games,
but please submit results for Question 1 using only the game Pong. Running
on multiple games may require considerable time or computing power, so it is
not required, but encouraged. If you have any other interesting experiments
you wish to report on, you may include those after your answer to Question
2. Interesting additional experiments or extensions will be considered for bonus
points.

2 Part 2: Actor-Critic

2.1 Introduction

Part 2 of this assignment requires you to modify policy gradients (from hw2) to
an actor-critic formulation. Part 2 is relatively shorter than part 1. The actual
coding for this assignment will involve less than 20 lines of code. Note however
that evaluation may take longer for actor-critic than policy gradient due to the
significantly larger number of training steps for the value function.

Recall the policy gradient from hw2:

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ait|sit)

((
T∑
t′=t

γt
′−tr(sit′ , ait′)

)
− V πφ (sit)

)
.

In this formulation, we estimate the reward to go by taking the sum of rewards
to go over each trajectory to estimate the Q function, and subtracting the value
function baseline to obtain the advantage

Aπ(st, at) ≈

(
T∑
t′=t

γt
′−tr(st′ , at′)

)
− V πφ (st)

In practice, the estimated advantage value suffers from high variance. Actor-
critic addresses this issue by using a critic network to estimate the sum of
rewards to go. The most common type of critic network used is a value function,
in which case our estimated advantage becomes

Aπ(st, at) ≈ r(st, at) + γV πφ (st+1)− V πφ (st)

4



In this assignment we will use the same value function network from hw2 as
the basis for our critic network. One additional consideration in actor-critic is
updating the critic network itself. While we can use Monte Carlo rollouts to
estimate the sum of rewards to go for updating the value function network, in
practice we fit our value function to the following target values:

yt = r(st, at) + γV π(st+1)

we then regress onto these target values via the following regression objective
which we can optimize with gradient descent:

min
φ

∑
i,t

(V πφ (sit)− yit)2

In theory, we need to perform this minimization everytime we update our policy,
so that our value function matches the behavior of the new policy. In practice
however, this operation can be costly, so we may instead just take a few gradient
steps at each iteration. Also note that since our target values are based on the
old value function, we may need to recompute the targets with the updated
value function, in the following fashion:

1. Update targets with current value function

2. Regress onto targets to update value function by taking a few gradient
steps

3. Redo steps 1 and 2 several times

In all, the process of fitting the value function critic is an iterative process in
which we go back and forth between computing target values and updating the
value function to match the target values. Through experimentation, you will
see that this iterative process is crucial for training the critic network.

2.2 Installation

Obtain the code from https://github.com/berkeleydeeprlcourse/homework/

tree/master/hw3. To run the code, go into the hw3 directory and simply exe-
cute python train_ac_f18.py.

You should have already installed all the required dependencies in hw2. Refer
to that assignment for installation instructions if you have issues.

2.3 Implementation

We have taken the python train_pg_f18.py starter code from hw2 and mod-
ified it slightly to fit the framework of actor-critic. Core functions, such as
Agent.build_mlp, Agent.define_placeholders, Agent.policy_forward_pass,

5

https://github.com/berkeleydeeprlcourse/homework/tree/master/hw3
https://github.com/berkeleydeeprlcourse/homework/tree/master/hw3


and Agent.get_log_prob remain unchanged from last time. This assignment
requires that you use your solution code from hw2. Before you begin, go through
python train_ac_f18.py and in all places marked YOUR HW2 CODE HERE, paste
in your corresponding hw2 solution code.

In order to accommodate actor-critic, the following functions have been modified
or added:

• Agent.build_computation_graph: we now have actor_update_op for
updating the actor network, and critic_update_op for updating the
critic network.

• Agent.sample_trajectory: in addition to logging the observations, ac-
tions, and rewards, we now need to log the next observation and terminal
values in order to compute the advantage function and update the critic
network. Please implement these features.

• Agent.estimate_advantage: this function uses the critic network to esti-
mate the advantage values. The advantage values are computed according
to

Aπ(st, at) ≈ r(st, at) + γV πφ (st+1)− V πφ (st)

Note: for terminal timesteps, you must make sure to cut off the reward to
go, in which case we have

Aπ(st, at) ≈ r(st, at)− V πφ (st)

• Agent.update_critic: Perform the critic update according to process
outlined in the introduction. You must perform

self.num_grad_steps_per_target_update * self.num_target_updates

number of updates, and recompute the target values every
self.num_grad_steps_per_target_update number of steps.

Go through the code and note the changes from policy gradient in detail. Then
implement all requested features, which we have marked with YOUR CODE HERE.

2.4 Evaluation

Once you have a working implementation of actor-critic, you should prepare a
report. The report should consist of one figure for each question below. You
should turn in the report as one PDF (same PDF as part 1) and a zip file with
your code (same zip file as part 1). If your code requires special instructions or
dependencies to run, please include these in a file called README inside the zip
file.

6



Question 1: Sanity check with Cartpole Now that you have implemented
actor-critic, check that your solution works by running Cartpole-v0. Using the
same parameters as we did in hw2, run the following:

python train_ac_f18.py CartPole-v0 -n 100 -b 1000 -e 3

--exp_name 1_1 -ntu 1 -ngsptu 1↪→

In the example above, we alternate between performing one target update and
one gradient update step for the critic. As you will see, this probably doesn’t
work, and you need to increase both the number of target updates and number
of gradient updates. Compare the results for the following settings and report
which worked best. Provide a short explanation for your results.

python train_ac_f18.py CartPole-v0 -n 100 -b 1000 -e 3

--exp_name 100_1 -ntu 100 -ngsptu 1↪→

python train_ac_f18.py CartPole-v0 -n 100 -b 1000 -e 3

--exp_name 1_100 -ntu 1 -ngsptu 100↪→

python train_ac_f18.py CartPole-v0 -n 100 -b 1000 -e 3

--exp_name 10_10 -ntu 10 -ngsptu 10↪→

At the end, the best setting from above should match the policy gradient results
from Cartpole in hw2.

Question 2: Run actor-critic with more difficult tasks Use the best
setting from the previous question to run InvertedPendulum and HalfChee-
tah:

python train_ac_f18.py InvertedPendulum-v2 -ep 1000 --discount

0.95 -n 100 -e 3 -l 2 -s 64 -b 5000 -lr 0.01 --exp_name

<>_<> -ntu <> -ngsptu <>

↪→

↪→

python train_ac_f18.py HalfCheetah-v2 -ep 150 --discount 0.90 -n

100 -e 3 -l 2 -s 32 -b 30000 -lr 0.02 --exp_name <>_<> -ntu

<> -ngsptu <>

↪→

↪→

Your results should roughly match those of policy gradient, perhaps a little bit
worse in performance.

Bonus: You may have noticed that actor-critic does not perform as well as
policy gradient in some instances. This is because the critic network may need
to be more expressive and have a different learning rate than the one used to
train the actor network. Try implementing a more expressive value function

7



network (more hidden units, more layers) and adopting a separate learning rate
for training the critic network than the actor network. Also experiment with
increasing the number of target updates or gradient steps for updating the critic
network.

3 Submission

Turn in both parts of the assignment on Gradescope as one submission. Upload
the zip file with your code to HW3 Code, and upload the PDF of your report
to HW3.

References

[1] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. In AAAI, volume 2, page 5. Phoenix, AZ,
2016.

8


	Part 1: Q-Learning
	Introduction
	Installation
	Implementation
	Evaluation

	Part 2: Actor-Critic
	Introduction
	Installation
	Implementation
	Evaluation

	Submission

