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What’s the problem?

this is easy (mostly) this is impossible

Why?



Montezuma’s revenge

• Getting key = reward

• Opening door = reward

• Getting killed by skull = bad



Montezuma’s revenge

• We know what to do because we understand what 
these sprites mean!

• Key: we know it opens doors!

• Ladders: we know we can climb them!

• Skull: we don’t know what it does, but we know it 
can’t be good!

• Prior understanding of problem structure can help 
us solve complex tasks quickly!



Can RL use the same prior knowledge as us?

• If we’ve solved prior tasks, we might acquire useful knowledge for 
solving a new task

• How is the knowledge stored?
• Q-function: tells us which actions or states are good
• Policy: tells us which actions are potentially useful

• some actions are never useful!

• Models: what are the laws of physics that govern the world?
• Features/hidden states: provide us with a good representation

• Don’t underestimate this!



Transfer learning terminology

transfer learning: using experience from one set of tasks for faster 
learning and better performance on a new task

in RL, task = MDP!

source domain target domain

“shot”: number of attempts in the target 
domain

0-shot: just run a policy trained in the source 
domain

1-shot: try the task once

few shot: try the task a few times



How can we frame transfer learning problems?

1. Forward transfer: learn policies that transfer effectively
a) Train on source task, then run on target task (or finetune)

b) Relies on the tasks being quite similar!

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Sharing representations and layers across tasks in multi-task learning

b) New task needs to be similar to the distribution of training tasks

3. Meta-learning: learn to learn on many tasks
a) Accounts for the fact that we’ll be adapting to a new task during training!



Pretraining + Finetuning

The most popular transfer learning method in (supervised) deep learning!



What issues are we likely to face?

➢Domain shift: representations learned in the source 
domain might not work well in the target domain

➢Difference in the MDP: some things that are possible 
to do in the source domain are not possible to do in 
the target domain

➢ Finetuning issues: if pretraining & finetuning, the 
finetuning process may still need to explore, but 
optimal policy during finetuning may be deterministic!



Domain adaptation in computer vision
train here

do well here

(same network)

correct answer

incorrect answer

Invariance assumption: everything that is different between domains is irrelevant

Is this true?

can we force this layer to be invariant to domain?

domain classifier: 
guess domain from z

reversed gradient



Domain adaptation in RL for dynamics?

Why is invariance not enough when the dynamics don’t match?

When might this not work?

Eysenbach et al., “Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers”



What if we can also finetune?

1. RL tasks are generally much less diverse
• Features are less general

• Policies & value functions become overly specialized

2. Optimal policies in fully observed MDPs are 
deterministic
• Loss of exploration at convergence

• Low-entropy policies adapt very slowly to new settings

See “exploration 2” lecture on unsupervised skill discovery and “control as inference” lecture on MaxEnt RL methods!



How to maximize forward transfer?

Basic intuition: the more varied the training domain is, the more likely 
we are to generalize in zero shot to a slightly different domain.

“Randomization” (dynamics/appearance/etc.): widely used for 
simulation to real world transfer (e.g., in robotics)



EPOpt: randomizing physical parameters

train test

adapt

training on single torso mass training on model ensemble

unmodeled effects
ensemble adaptation

Rajeswaran et al., “EPOpt: Learning robust neural network policies…”



More randomization!

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image.” 2016

Xue Bin Peng et al., “Sim-to-Real Transfer of Robotic Control with 
Dynamics Randomization.” 2018

Lee et al., “Learning Quadrupedal Locomotion over Challenging Terrain.” 2020



Some suggested readings
Domain adaptation:

Tzeng, Hoffman, Zhang, Saenko, Darrell. Deep Domain Confusion: Maximizing for Domain Invariance. 2014.

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky. Domain-Adversarial Training of Neural Networks. 2015.

Tzeng*, Devin*, et al., Adapting Visuomotor Representations with Weak Pairwise Constraints. 2016.

Eysenbach et al., Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers. 2020.

Finetuning:

Finetuning via MaxEnt RL: Haarnoja*, Tang*, et al. (2017). Reinforcement Learning with Deep Energy-Based Policies.

Andreas et al. Modular multitask reinforcement learning with policy sketches. 2017.

Florensa et al. Stochastic neural networks for hierarchical reinforcement learning. 2017.

Kumar et al. One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL. 2020

Simulation to real world transfer:

Rajeswaran, et al. (2017). EPOpt: Learning Robust Neural Network Policies Using Model Ensembles.

Yu et al. (2017). Preparing for the Unknown: Learning a Universal Policy with Online System Identification.

Sadeghi & Levine. (2017). CAD2RL: Real Single Image Flight without a Single Real Image.

Tobin et al. (2017). Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World.

Tan et al. (2018). Sim-to-Real: Learning Agile Locomotion For Quadruped Robots.

…and many many others!



How can we frame transfer learning problems?

1. Forward transfer: learn policies that transfer effectively
a) Train on source task, then run on target task (or finetune)

b) Relies on the tasks being quite similar!

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Sharing representations and layers across tasks in multi-task learning

b) New task needs to be similar to the distribution of training tasks

3. Meta-learning: learn to learn on many tasks
a) Accounts for the fact that we’ll be adapting to a new task during training!



Can we learn faster by learning multiple tasks?

learn learn learn learn learn

learn
Multi-task learning can:
- Accelerate learning of all tasks 

that are learned together
- Provide better pre-training for 

down-stream tasks



Can we solve multiple tasks at once?

Multi-task RL corresponds to single-task RL in a joint MDP

etc.
sample

etc.

etc.

MDP 0

MDP 1

MDP 2

pick MDP randomly
in first state



How does the model know what to do?

• What if the policy can do multiple things in the same environment?



Contextual policies

e.g., do dishes or laundry

images: Peng, van de Panne, Peters



Goal-conditioned policies

another state

➢ Convenient: no need to manually define rewards for each task
➢ Can transfer in zero shot to a new task if it’s another goal!

➢ Often hard to train in practice (see references)
➢ Not all tasks are goal reaching tasks!

A few relevant papers:
• Kaelbling. Learning to achieve goals.

• Schaul et al. Universal value function 
approximators.

• Andrychowicz et al. Hindsight experience 
replay.

• Eysenbach et al. C-learning: Learning to 
achieve goals via recursive classification.



Meta-Learning



What is meta-learning?

• If you’ve learned 100 tasks already, can you 
figure out how to learn more efficiently?
• Now having multiple tasks is a huge advantage!

• Meta-learning = learning to learn

• In practice, very closely related to multi-task 
learning

• Many formulations
• Learning an optimizer

• Learning an RNN that ingests experience

• Learning a representation

image credit: Ke Li 



Why is meta-learning a good idea?

• Deep reinforcement learning, especially model-free, requires a 
huge number of samples

• If we can meta-learn a faster reinforcement learner, we can learn 
new tasks efficiently!

• What can a meta-learned learner do differently?
• Explore more intelligently

• Avoid trying actions that are know to be useless

• Acquire the right features more quickly



Meta-learning with supervised learning

image credit: Ravi & Larochelle ‘17



Meta-learning with supervised learning

(few shot) training set

input (e.g., image) output (e.g., label)

training set

• How to read in training set?
• Many options, RNNs can work

• More on this later 

test input

test label



What is being “learned”?

(few shot) training set
test input

test label



What is being “learned”?

meta-learned 
weights

RNN hidden 
state



Meta Reinforcement Learning



The meta reinforcement learning problem



The meta reinforcement learning problem

0.5 m/s 0.7 m/s -0.2 m/s -0.7 m/s



Contextual policies and meta-learning

“context”



Meta-RL with recurrent policies

meta-learned 
weights

RNN hidden 
state



Meta-RL with recurrent policies

+0 +0
+0

+1
+0

+1

crucially, RNN hidden state is not reset between episodes!



Why recurrent policies learn to explore

episode

meta-episode

optimizing total reward over 
the entire meta-episode with 
RNN policy automatically 
learns to explore!



Meta-RL with recurrent policies

Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, 
Blundell, Kumaran, Botvinick. Learning to Reinforcement 
Learning. 2016.

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2: 
Fast Reinforcement Learning via Slow Reinforcement 
Learning. 2016.

Heess, Hunt, Lillicrap, Silver. Memory-based control with 
recurrent neural networks. 2015.



Architectures for meta-RL

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2: 
Fast Reinforcement Learning via Slow Reinforcement 
Learning. 2016.

standard RNN (LSTM) architecture

attention + temporal convolution

Mishra, Rohaninejad, Chen, Abbeel. A Simple 
Neural Attentive Meta-Learner.

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-
Reinforcement learning via Probabilistic Context Variables.

parallel permutation-invariant context encoder



Gradient-Based Meta-Learning



Back to representations…

is pretraining a type of meta-learning?

better features = faster learning of new task!



Meta-RL as an optimization problem

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.



MAML for RL in pictures



What did we just do??

Just another computation graph…

Can implement with any autodiff
package (e.g., TensorFlow)

But has favorable inductive bias…



MAML for RL in videos

after MAML training
after 1 gradient step

(forward reward)

after 1 gradient step

(backward reward)



More on MAML/gradient-based meta-learning 
for RL

MAML meta-policy gradient estimators:

• Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.

• Foerster, Farquhar, Al-Shedivat, Rocktaschel, Xing, Whiteson. DiCE: The Infinitely 
Differentiable Monte Carlo Estimator.

• Rothfuss, Lee, Clavera, Asfour, Abbeel. ProMP: Proximal Meta-Policy Search.

Improving exploration:

• Gupta, Mendonca, Liu, Abbeel, Levine. Meta-Reinforcement Learning of Structured 
Exploration Strategies.

• Stadie*, Yang*, Houthooft, Chen, Duan, Wu, Abbeel, Sutskever. Some Considerations on 
Learning to Explore via Meta-Reinforcement Learning.

Hybrid algorithms (not necessarily gradient-based):

• Houthooft, Chen, Isola, Stadie, Wolski, Ho, Abbeel. Evolved Policy Gradients.

• Fernando, Sygnowski, Osindero, Wang, Schaul, Teplyashin, Sprechmann, Pirtzel, Rusu. Meta-
Learning by the Baldwin Effect.



Meta-RL as a POMDP



Meta-RL as… partially observed RL?



Meta-RL as… partially observed RL?

encapsulates information policy
needs to solve current task



Meta-RL as… partially observed RL?

encapsulates information policy
needs to solve current task

some approximate posterior 
(e.g., variational)

act as though z was correct!

this is not optimal!

why?

but it’s pretty good, 
both in theory and in 
practice!

See, e.g. Russo, Roy. Learning to Optimize via Posterior Sampling.



Variational inference for meta-RL

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via 
Probabilistic Context Variables. ICML 2019.

maximize post-update reward
(same as standard meta-RL)

stay close to prior



Specific instantiation: PEARL

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via 
Probabilistic Context Variables. ICML 2019.

perform maximization using soft actor-critic (SAC),
state-of-the-art off-policy RL algorithm



• Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy 
Meta-Reinforcement learning via Probabilistic Context 
Variables. ICML 2019.

• Zintgraf, Igl, Shiarlis, Mahajan, Hofmann, Whiteson. 
Variational Task Embeddings for Fast Adaptation in Deep 
Reinforcement Learning.

• Humplik, Galashov, Hasenclever, Ortega, Teh, Heess. Meta 
reinforcement learning as task inference.

References on meta-RL, inference, and POMDPs



The three perspectives on meta-RL

everything needed to solve task



The three perspectives on meta-RL

everything needed to solve task

+ conceptually simple

+ relatively easy to apply

- vulnerable to meta-overfitting

- challenging to optimize in practice

+ good extrapolation (“consistent”)

+ conceptually elegant

- complex, requires many samples

+ simple, effective exploration via posterior sampling

+ elegant reduction to solving a special POMDP

- vulnerable to meta-overfitting

- challenging to optimize in practice



But they’re not that different!

everything needed to solve task

just perspective 1,
but with stochastic

hidden variables!

just a particular
architecture choice
for these



Meta-RL and emergent phenomena

Humans and animals seemingly learn behaviors in a variety of ways:
➢ Highly efficient but (apparently) model-free RL
➢ Episodic recall
➢ Model-based RL
➢ Causal inference
➢ etc.

Perhaps each of these is a separate “algorithm” in the brain

But maybe these are all emergent phenomena resulting from meta-RL?

meta-RL gives rise to 
episodic learning

model-free meta-RL gives rise to 
model-based adaptation

meta-RL gives rise to 
causal reasoning (!)

Dasgupta, Wang, Chiappa, Mitrovic, Ortega, Raposo, 
Hughes, Battaglia, Botvinick, Kurth-Nelson. Causal 
Reasoning from Meta-Reinforcement Learning.

Wang, Kurth-Nelson, Kumaran, Tirumala, Soyer, Leibo, 
Hassabis, Botvinick. Prefrontal Cortex as a Meta-
Reinforcement Learning System.

Ritter, Wang, Kurth-Nelson, Jayakumar, Blundell, Pascanu, 
Botvinick. Been There, Done That: Meta-Learning with 
Episodic Recall.


