Supervised Learning of Behaviors

CS 285

Instructor: Sergey Levine
UC Berkeley




Terminology & notation
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S; — state
0; — observation mg(as|o;) — policy
a; — action mo(a¢|s¢) — policy (fully observed)

0; — observation



Terminology & notation

S; — state
0; — observation mg(as|o;) — policy
a; — action mo(a¢|s¢) — policy (fully observed)

Markov property
independent of s;_1




Aside: notation

S; — state
a; — action

Richard Bellman

X; — State
u; — action  ynpaBneHue

Lev Pontryagin



Imitation Learning

\ s \\ N‘I \ 384 \ \,]: \ g
mo(a/oy)
training Superv.ised o (ay|o;)
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behavioral cloning

Images: Bojarski et al. ‘16, NVIDIA



The original deep imitation learning system

ALVINN: Autonomous Land Vehicle In a Neural Network
1989
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Does it work? No

- = training trajectory
; _ T expected trajectory




Does it work?

Video: Bojarski et al. ‘16, NVIDIA



Why did that work?
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The moral of the story, and a list of ideas

* Imitation learning via behavioral cloning is not
guaranteed to work
 This is different from supervised learning
* The reason: i.i.d. assumption does not hold!

* We can formalize why this is and do a bit of theory

* We can address the problem in a few ways:
* Be smart about how we collect (and augment) our data ==
« Use very powerful models that make very few mistakes guc
e Use multi-task learning P
e Change the algorithm (DAgger) «»°




Why does behavioral cloning fail?
A bit of theory



The distributional shift problem

~ — training trajectory
— T expected trajectory

Wg(at‘ot)

100

we train under pga;a(0y) we test under p,, (o)

HlélX Eot ~Pdata(0t) [log 7o (at |01;):| g " pdata(ot) 7é pﬂ'g (Ot)



Let’s define more precisely what we want

training
data

What makes a learned mg(a;|o;) good or bad?

0 if ay = 7*(s¢)

1 otherwise

c(st,a;) = {

Goal: minimize JE’St,\,p?rtg (sy)lc(se, ag)]

supervised T (at |0t)
learning
maXE ata\Ot at|0t)]

Note: I started mixing up s and o
I warned you about that...

“Minimize the number of mistakes
the policy makes when we run it”
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assume: mg(a #= 1*(s)|s) < €

= training trajectory
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More general analysis c(s,a):{ 0if a=r"(s)

1 otherwise
assume: mp(a # 7 (s)|s) < e

M for s ~ ptrain(s)

actually enough for E, . (s[me(a# 7*(s)|s)] <€

if Ptrain (S) # Po (S):
pQ(St) — (1 — E)tptrain(st) + (1 — (1 — E)t))lpmista,ke(st)'

D —

probability we made no mistakes some other distribution

For more analysis, see Ross et al. “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”



More general analysis
assume: mp(a # 7 (s)|s) < e

for all s € Divain  for s ~ ptrain(s)

p@(st) — (1 — E)tptrain(st) + (1 — (1 — e)t))lpmista,ke(st)'

l_'_l
probability we made no mistakes some other distribution

|p9(St) — ptrain(st)| — (1 — (1 — e)t)‘pmistake(st) — ptrain(st)| < 2(1 — (1 — E)t)
useful identity: (1 —€)* > 1 — et for € € [0, 1] < 2Zet

Z po (st) Ct ZZPQ St Ct St < Zzptram St Ct St) + |p9(St) ptrain(st)|cmax
t
< Z € —|— 2¢€t

O(eT?)

For more analysis, see Ross et al. “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”



Why is this rather pessimistic?

Why does this work?

. But that doesn’t mean
In reality, we can often

hat imitation learni
L L L L[ [ || recoverfrom mistakes that imitation learning

will allow us to learn
how to do that!

~. = training trajectory
= my expected trajectory

A paradox: imitation learning can _ -~
. work better if the data has more
~ mistakes (and recoveries)!




Addressing the problem in practice



Where are we...

* We can address the problem in a few ways:
e Be smart about how we collect (and augment) our data
* Use very powerful models that make very few mistakes
e Use multi-task learning P
e Change the algorithm (DAgger) «»° .

E
2
g8
og

Ps




Where are we...

* We can address the problem in a few ways:
e Be smart about how we collect (and augment) our data




What makes
and what ma

oehavioral cloning easy

<es it hard?

* Intentionally add
mistakes and
corrections

* The mistakes hurt, but
the corrections help,

often more than the
mistakes hurt

~ = training trajectory
. = mp expected trajectory

* Use data augmentation

* Add some “fake” data
that illustrates
corrections (e.g., side-
facing cameras)



Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception
of Forest Trails for Mobile Robots

Alessandro Giusti', Jérome Guzzi', Dan C. Ciresan', Fang-Lin He!, Juan P. Rodriguez'
Flavio Fontana?, Matthias Faessler?, Christian Forster?
Jiirgen Schmidhuber!, Gianni Di Caro!, Davide Scaramuzza2, Luca M. Gambardella’

Deep Network Outputs
Neural
Network

% ; Turn Go Turn

Left Straight Right







Case study 2: imitation with a cheap robot

Vision-Based Multi-Task Manipulation
for Inexpensive Robots
Using End-To-End Learning from Demonstration

Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Boloni, Sergey Levine

Rouhollah Rahmatizadeh et al., Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demonstration. 2017.



Where are we...

* We can address the problem in a few ways:

* Use very powerful models that make very few mistakes

e,
! . .
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Why might we fail to fit the expert?

1. Non-Markovian behavior
2. Multimodal behavior

mo(as| o) mp(at|o1, ..., 0¢)
behavior depends only behavior depends on
on current observation all past observations

If we see the same thing
twice, we do the same thing  Often very unnatural for

twice, regardless of what human demonstrators
happened before



How can we use the whole history?

variable number of frames,
too many weights



How can we use the whole history?
shared weights \

sequence
model

Can be done with Transformers, LSTM cells, etc.



Aside: why might this work poorly?

Scenario A: Full Information Scenario B: Incomplete Information

policy attends to brake indicator policy attends to pedestrian

“causal confusion” see: de Haan et al., “Causal Confusion in Imitation Learning”

Question 1: Does including history mitigate causal confusion?

Question 2: Can DAgger mitigate causal confusion?



Why might we fail to fit the expert?

1. Non-Markovian behavior .
: : . More expressive continuous
2. Multimodal behavior lﬁl distributions

plodplas plas] 2. Discretization with high-
dimensional action spaces

" '\" ]




Expressive continuous distributions

Quite a few options, many ways to make things work:

1. mixture of Gaussians
2. latent variable models

3. diffusion models




Expressive continuous distributions

1. mixture of Gaussians
2. latent variable models

3. diffusion models

m(alo) = Z wiN (s, ;)
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Expressive continuous distributions

1.
2.

mixture of Gaussians
latent variable models

3. diffusion models

The most widely used
type of model of this
sort is the (conditional)

variational autoencoder

We’ll learn about such
models later in the course
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Expressive continuous distributions

1. mixture of Gaussians Xo = true image

. Xij+1 = X; + noise
2. latent variable models T

mw» 3. diffusion models

Learned network: f(x;) = x;_1
(actually use f(x;) = noise)

xi—1 = %; — f(x;)

pr(xr)~N (0,1

Pure

sample noise



Expressive continuous distributions

ag,o = true action

1. mixture of Gaussians Apir1 = A + noise
2. latent variable models Learned network: f(s;,a:,) = a1
3. diffusion models (actually use f(s¢,as;) = noise)

A —1 — A — f(St, at,i)




What about discretization?

. Problem: this is great for 1D actions,
but in higher dimensions, discretizing
the full space is impractical

Solution: discretize one dimension at
a time




Autoregressive discretization

¢
0.1 0 Why does this work?
A = 12 at,1
—0.3 at 2
l first step: p(atolst)
BE ol B .o
a’iao \ a’irl \ a’in third step: p(a¢2|st,at0,a:1)
use LSTM or
sequence ||| sequence | sequence

Transformer model block }' model block model block placalse, aro, ae1)placlse, ato)p(acolse)

— p(at,Oa At 1, At 2 |St)
conv net
encoder — p(at‘st)




Case study 3: imitation with diffusion models

Input: Image Observation Sequence Observation O: s
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Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. 2023



Case study 4: imitation with latent variables

,? Z style variable

transformer
encoder

action sequence
B

transformer transformer
encoder decoder

&b EDll bbbl

cam 1 cam4 joints 2 position embeddings (fixed)

&&[ﬁém& Eu]

[CLS] joints action sequel

Zhao et al. Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware. 2023



Case study 5: imitation with Transformers

Instruction /' Action
Pick :1?1?1 chips from top drawer [ RT-1 Mode Arm Base
place on counter —> 3 Hz >

FiLM
EfficientNet TokenlLearner Transformer

RT-1: Robotics Transformer
for Real-World Control at Scale

@ Robotics at Google

=— Everyday Robots
Google Research

https://robotics-transformer.github.io/

Brohan et al. RT-1: Robotics Transformer. 2023.



Where are we...

* We can address the problem in a few ways:

FiLM
EfficientNet TokenLearner ~ Transformer

e Use multi-task learning P
(m ) o

Ps




Does learning many tasks become easier?

mo(als)
P1

policy for reaching p;

mo (a\s, p)
P2
policy for reaching any p

P1

P3



Goal-conditioned behavioral cloning

training time:

demo 1: {si,a;,...,S7_1,ar_1,S7} < successful demo for reaching s
demo 2: {s1,ay,...,S7_1,a7_1,ST} learn my(als,g) <«—— goal state
demo 3: {517 Aty ... ST_1,AT 1, ST}

We see distributional shift in two places here!

for each demo {s{,a},...,s% ,,a%_{,s}} . :
Can you figure out what the second place is?

maximize log 7T9(a;€|8%, g = quﬂ)



Learning [.atent Plans Unsupervised Visuomotor Control through
fr()m Play Distributional Planning Networks

Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, Chelsea Finn

COREY LYMCH  MOHI KHAMNSARI  TED XIAD VIKASH KUMAR — JOMATHAN TOMPSOM  SERGEY LEVINE  PIERRE SERMAMET
Google Brain Google X Google Brain  Google Brain Google Brain Google Brain Google Brain
Stanford University
action likelihood single general policy
1) Collect unlabelad 2) Train DPN
T T interaction data o it
“actionat [ Wa:
- . vy IR
action KL divergence « DPN '
decoder minimization ' 1
Acurrent A goal Alatent plan — anaesses
spd : ? ‘\(samp‘l)ed) 4
ot S B <d

<«— latent plan
distribution space

@]
plan plan
proposal recognition

current Agoal entire sequence

goal image

gonl metric

from

human

3) Autonomons reinforcement learning

(I B N

task policy
play data




Learning Latent Plans
from Play

TED XIAQ IKASH KUMAR  JOMATHAN TOMPSOMN  SERGEY LEVIME  PIERRE

Google Brain Google Brain

COREY

action
decoder

Acurrent A goal Alatent plan
I 1 \
== 1 \(sampled)

\/ ()

N =\

S )4— latent plan
o ' distribution space

e
A A

plan
proposal

£~ N(0,I)

plan
recognition

entire sequence

2.5x
speedup

play data




Learning Latent Plans
from Play

COREY LYNCH MOHI KHANSARI  TED XIAQ VIKASH KUMAR  JOMATHAN TOMPSON  SERGEY LEVINE  PIERRE SERMAMNET

3. Reach goals

Single Play-LMP policy



Going beyond just imitation?

Learning to Reach Goals via Iterated Supervised

Learning
» Start with a random policy
Dibya Ghosh* Abhishek Gupta* Ashwin Reddy Justin Fu » Collect data with random goals
UC Berkeley UC Berkeley UC Berkeley UC Berkeley
. " H V4
Coline Devin Benjamin Eysenbach Sergey Levine » Treat this data as “demonstrations” for
UC Berkeley Carnegie Mellon University UC Berkeley the goaIS that were reached
» Use this to improve the policy
Collect policy rollouts ‘ ‘ Behavioral cloning on relabeled data ‘
[(s6. a8, B) ..., (s}, af, B)] » Repeat

max E, , ,»~plog m(als, g)
[id o

[ U= T I Nl i Bl i
QR I % " k| LN SR B

i, a0, 4) -7, (s¥ b, A}]”” }D

| Iterate process




Goal-conditioned BC at a huge scale

Embodiment Context

Dataset Platform Speed Amt. Environment
1  GoStanford [26]  TurtleBot2  0.5m/s 14h  office ~ i
2 RECON [32] Jackal Im/s  25h  off-road NNE Rk = Sharea AlistRchon
3 CoryHall [35] RC Car 1.2m/s 2h hallways (MobileNetv2) §
4  Berkeley [33] Jackal 2m/s 4h suburban -
5 SCAND-S [36] Spot 1.5m/s 8h sidewalks
6 SCAND-J [36] Jackal 2m/s 1h sidewalks
7 Seattle [37] Warthog Sm/s lh  off-road e CNN Encoder
8  TartanDrive [38] ATV 10m/s  Sh  off-road o = Mbiichiene)
Ours 60h

RC-Car TurtleBot Jackal
(Hirose et al. 2019) (Shah et al. 2021, 2022)

Warthog o

Spot ATV
(Karnan et al. 2022) (Shaban et al. 2021) (Triest et al. 2022)

Shah*, Sridhar*, Bhorkar, Hirose, Levine. GNM: A General Navigation Model to Drive Any Robot. 2022.



Also related (for later...)

Hindsight Experience Replay

Marcin Andrychowicz®, Filip Wolski, Alex Ray, Jonas Sghneiden Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel’, Wojciech Zaremba/
OpenAl

» Similar principle but with reinforcement
learning

» This will make more sense later once we
cover off-policy value-based RL algorithms

» Worth mentioning because this idea has
been used widely outside of imitation
(and was arguably first proposed there)



Where are we...

* We can address the problem in a few ways: LE B

Instruction
71

AN
[ RT-1 ) Mode Am Base
3/

FiLM
EfficientNet TokenLearner  Transformer

* Change the algorithm (DAgger) «»° 2

Ps




Can we make it work more often?

~ — training trajectory
— T expected trajectory

W@(at‘ot)

100

40
3a
20

can we make Paata(0t) = Pr,(0¢)7



Can we make it work more often?

can we make Pgata(0t) = pr, (0¢)7

idea: instead of being clever about p;,(0¢), be clever about pgata(0¢)!

DAgger: Dataset Aggregation

goal: collect training data from p,,(0;) instead of pgata(0¢)
how? just run mg(a;|o;)

but need labels a;!

1. train my(as|os) from human data D = {o1,a;,...,0n,an}
2. run mg(a;|oy) to get dataset D = {01,...,05}

3. Ask human to label D, with actions a;

4. Aggregate: D < DU D,

Ross et al. ‘11



DAgger Example

L]
-
-

Ross et al. ‘11



What’s the problem?

1. train my(as|os) from human data D = {o1,a;,...,0n,an}
2. run mg(a;|oy) to get dataset D = {01,...,05}

[3. Ask human to label D, with actions a; ]

4. Aggregate: D < DU D,

Ross et al. ‘11



Recap

* We can address the problem in a few ways:
e Be smart about how we collect (and augment) our data
* Use very powerful models that make very few mistakes
e Use multi-task learning P
e Change the algorithm (DAgger) «»° .

Ps




Cost functions and reward functions,
a preview of what comes next



Imitation learning: what's the problem?

* Humans need to provide data, which is typically finite
* Deep learning works best when data is plentiful

* Humans are not good at providing some kinds of actions

P(TL) P(GS) P(TR)

* Humans can learn autonomously; can our machines do the same?
* Unlimited data from own experience
e Continuous self-improvement



Terminology & notation

S; — state
0; — observation
a; — action

mein B rrartats

—
~p

c(st, a;) — cost function

r(s¢, a¢) — reward function

A dafgn =

byeaigar )t

)y tiger)]




Aside: notation

S; — state
a; — action
r(s,a) — reward function

Richard Bellman

r(s,a) = —c(x,u)

X; — State
u; — action
¢(x,u) — cost function

Lev Pontryagin



A cost function for imitation?

training
data

Goal: minimize Est,\,p?rtg (sy)lc(se, ag)]

Goal: maximize Eg,~p. (s,)[7(St,at)]

supervised

learning o (at‘ot)

| 0ifa=7n"(s)
c(s,a) = { 1 otherwise

Imitation learning algorithms do maximize
reward when they work well!

For a very particular choice of reward
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