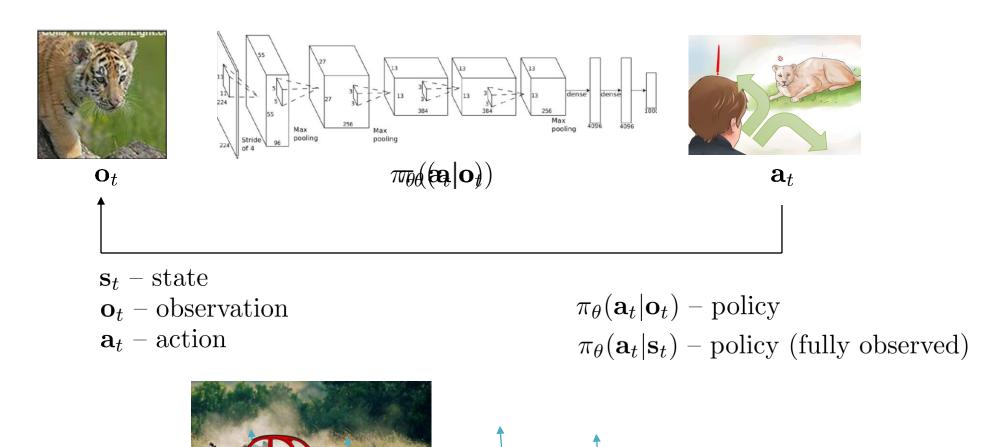
# Supervised Learning of Behaviors

# CS 285

Instructor: Sergey Levine UC Berkeley



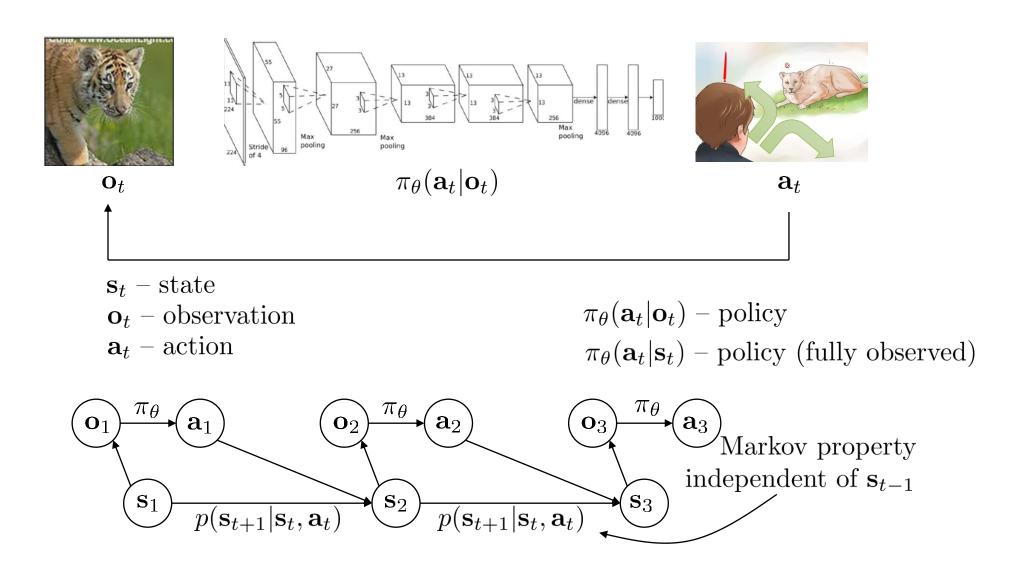
## Terminology & notation



 $\mathbf{o}_t$  – observation

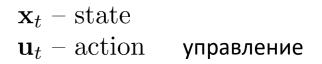
 $\mathbf{s}_t$  – state

## Terminology & notation



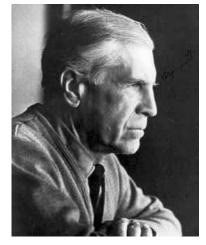
## Aside: notation

 $\mathbf{s}_t - ext{state} \ \mathbf{a}_t - ext{action}$ 



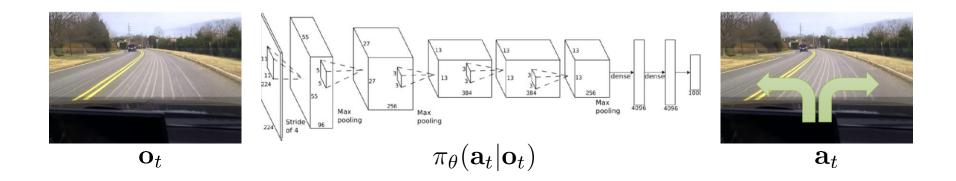


**Richard Bellman** 



Lev Pontryagin

## Imitation Learning

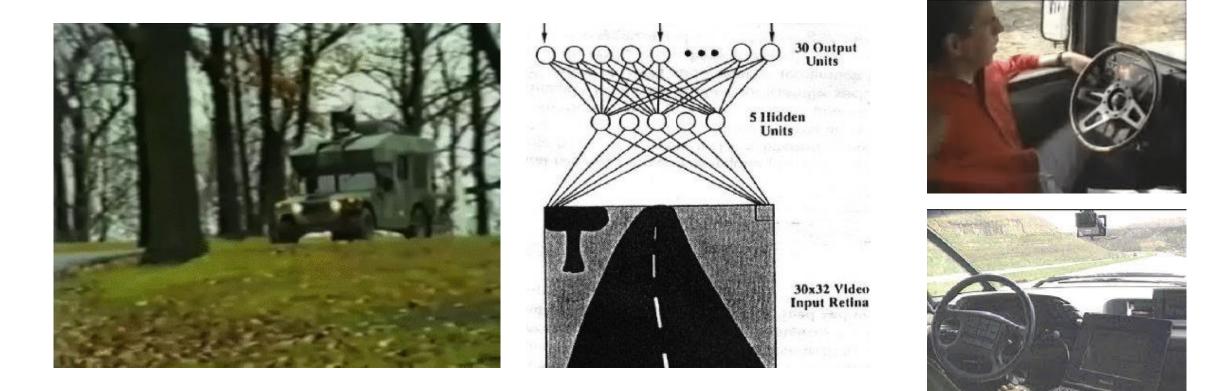




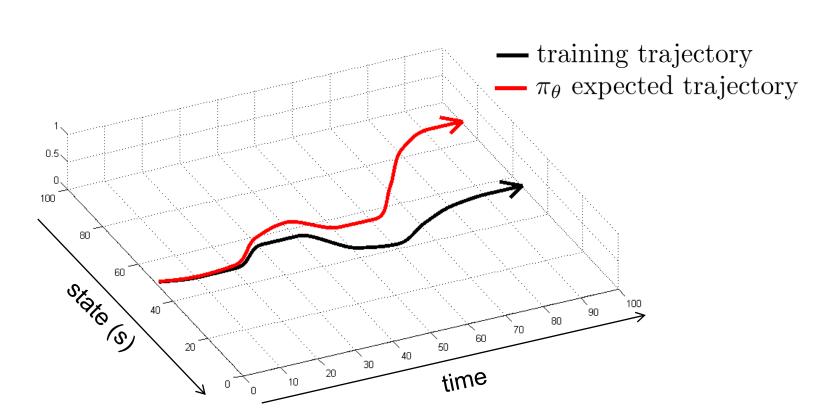
#### behavioral cloning

## The original deep imitation learning system

ALVINN: Autonomous Land Vehicle In a Neural Network 1989

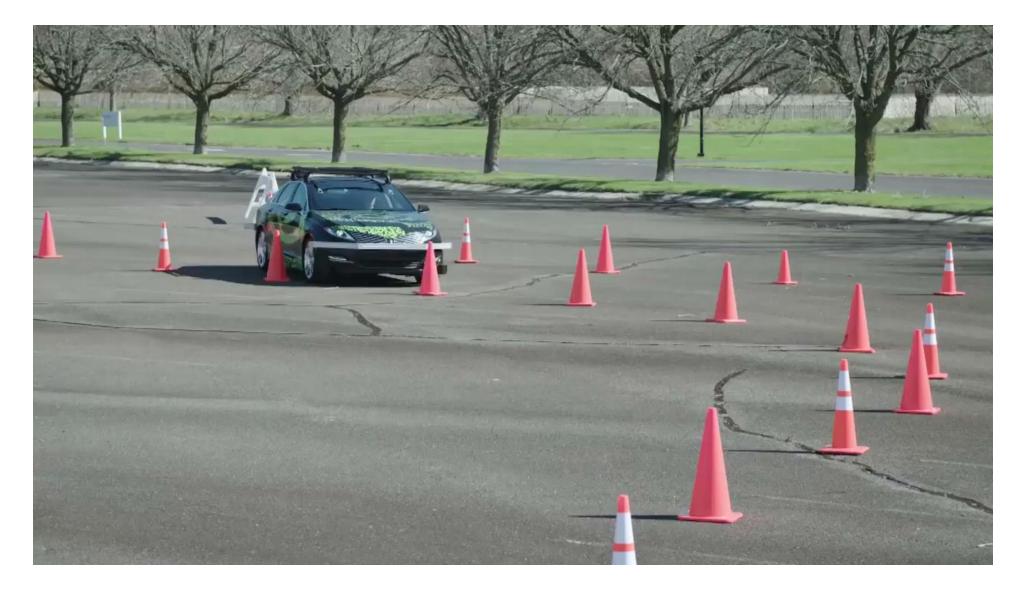


## Does it work?

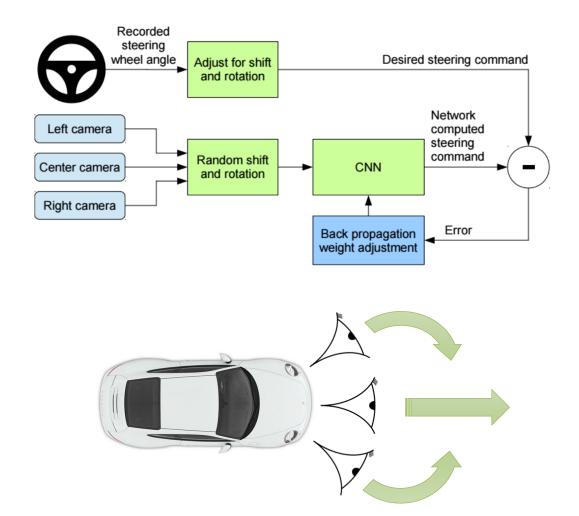


No!

## Does it work? Yes!

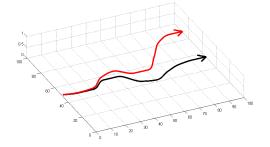


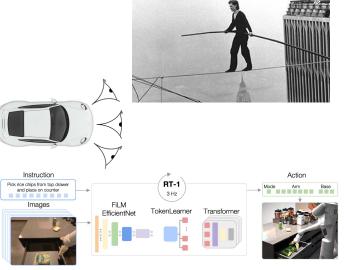
## Why did that work?



## The moral of the story, and a list of ideas

- Imitation learning via behavioral cloning is not guaranteed to work
  - This is different from supervised learning
  - The reason: i.i.d. assumption does not hold!
- We can formalize why this is and do a bit of theory
- We can address the problem in a few ways:
  - Be smart about how we collect (and augment) our data
  - Use very powerful models that make very few mistakes
  - Use multi-task learning
  - Change the algorithm (DAgger)

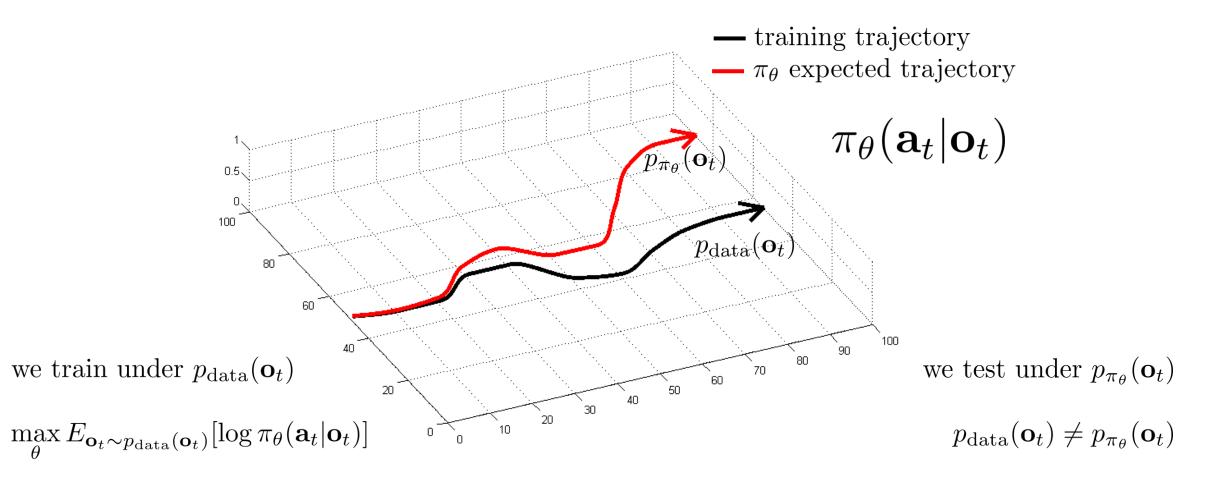






## Why does behavioral cloning fail? A bit of theory

## The distributional shift problem



## Let's define more precisely what we want



What makes a learned  $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$  good or bad?

$$c(\mathbf{s}_t, \mathbf{a}_t) = \begin{cases} 0 \text{ if } \mathbf{a}_t = \pi^*(\mathbf{s}_t) \\ 1 \text{ otherwise} \end{cases}$$

Goal: minimize  $E_{\mathbf{s}_t \sim p_{\pi_{\theta}}(\mathbf{s}_t)}[c(\mathbf{s}_t, \mathbf{a}_t)]$ 

Note: I started mixing up **s** and **o** I warned you about that...

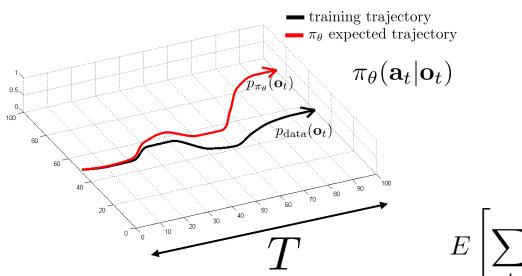
 $\pi_{ ext{data}}(\mathbf{o}_t)$  for  $\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)$ 

"Minimize the number of mistakes the policy makes when we run it"

 $\max_{\rho} E_{\mathbf{0},\sigma,\sigma}$ 

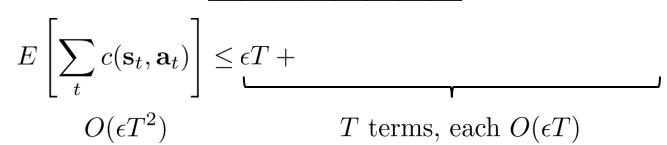
## Some analysis

$$c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^{\star}(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$$



assume:  $\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$ for all  $\mathbf{s} \in \mathcal{D}_{\text{train}}$ 

| > | $\sum$ |
|---|--------|--------|--------|--------|--------|--------|--------|
|   |        |        |        |        |        |        |        |



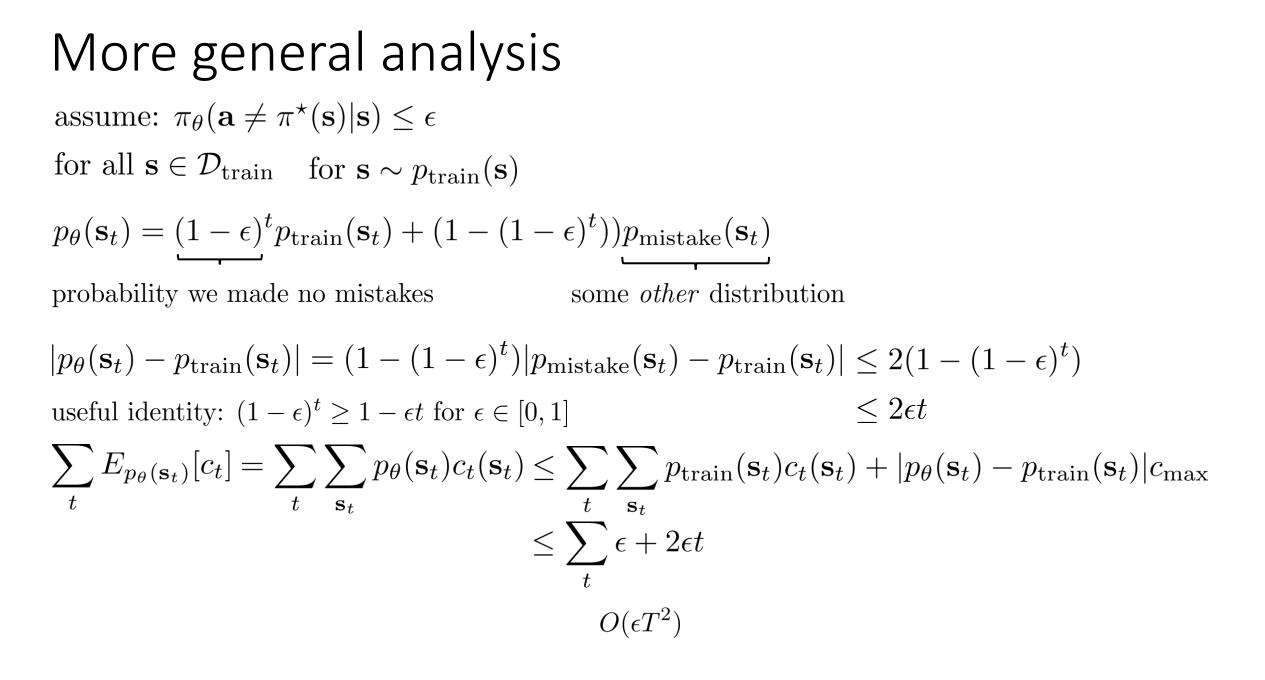


More general analysis assume:  $\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$ for all  $\mathbf{s} \in \mathcal{D}_{\text{train}}$  for  $\mathbf{s} \sim p_{\text{train}}(\mathbf{s})$ actually enough for  $E_{p_{\text{train}}(\mathbf{s})}[\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s})] \leq \epsilon$ if  $p_{\text{train}}(\mathbf{s}) \neq p_{\theta}(\mathbf{s})$ :  $p_{\theta}(\mathbf{s}_t) = (1-\epsilon)^t p_{\text{train}}(\mathbf{s}_t) + (1-(1-\epsilon)^t)) p_{\text{mistake}}(\mathbf{s}_t)$ 

probability we made no mistakes

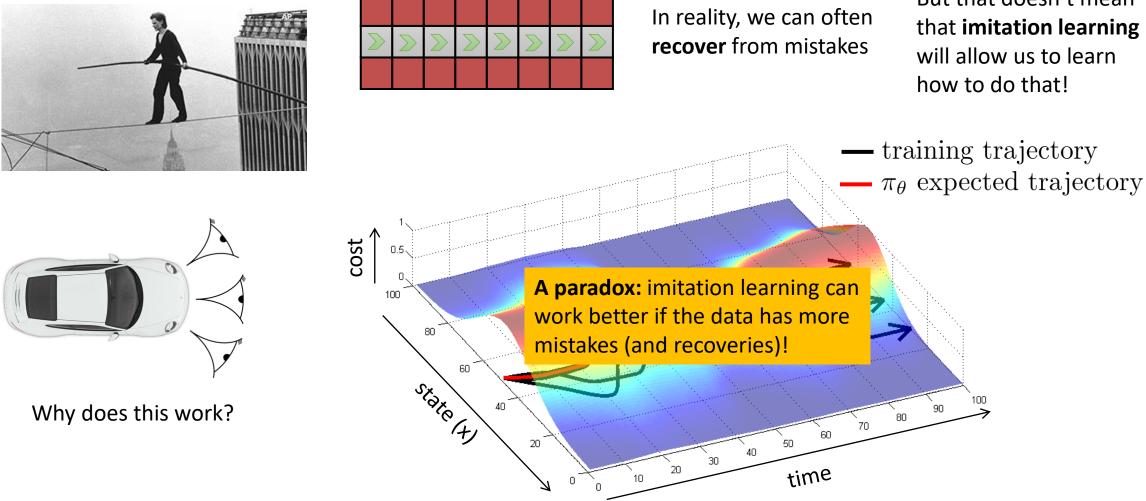
some other distribution

 $c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^*(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$ 



For more analysis, see Ross et al. "A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning"

## Why is this rather **pessimistic**?

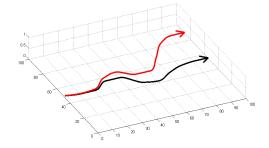


But that doesn't mean that **imitation learning** will allow us to learn how to do that!

## Addressing the problem in practice

## Where are we...

- Imitation learning via behavioral cloning is not guaranteed to work
  - This is different from supervised learning
  - The reason: i.i.d. assumption does not hold!
- We can formalize why this is and do a bit of theory
- We can address the problem in a few ways:
  - Be smart about how we collect (and augment) our data
  - Use very powerful models that make very few mistakes
  - Use multi-task learning
  - Change the algorithm (DAgger)



RT-1

FiLM

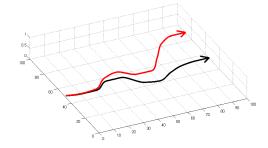
EfficientNet

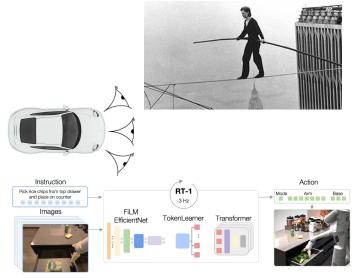
Instruction

Pick rice chips from top drawer

## Where are we...

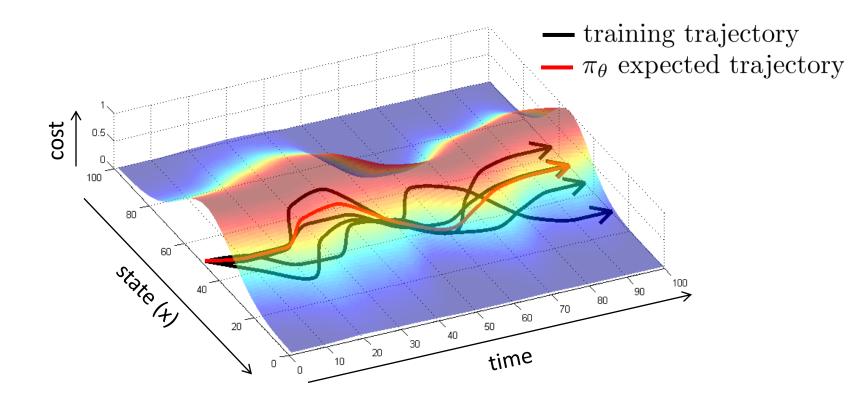
- Imitation learning via behavioral cloning is not guaranteed to work
  - This is **different** from supervised learning
  - The reason: i.i.d. assumption does not hold!
- We can formalize why this is and do a bit of theory
- We can address the problem in a few ways:
  - Be smart about how we collect (and augment) our data
  - Use very powerful models that make very few mistakes
  - Use multi-task learning
  - Change the algorithm (DAgger)







# What makes behavioral cloning **easy** and what makes it **hard**?



- Intentionally add mistakes and corrections
  - The mistakes hurt, but the corrections help, often more than the mistakes hurt

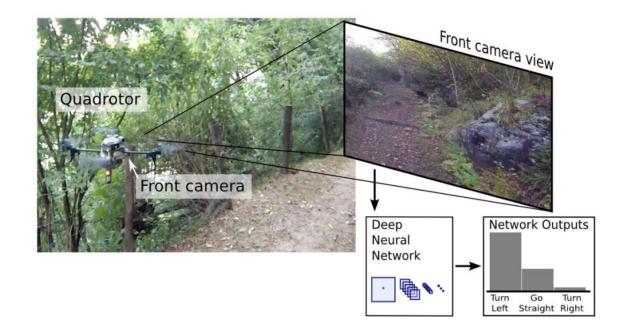
#### • Use data augmentation

 Add some "fake" data that illustrates corrections (e.g., sidefacing cameras)

## Case study 1: trail following as classification

#### A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

Alessandro Giusti<sup>1</sup>, Jérôme Guzzi<sup>1</sup>, Dan C. Cireşan<sup>1</sup>, Fang-Lin He<sup>1</sup>, Juan P. Rodríguez<sup>1</sup> Flavio Fontana<sup>2</sup>, Matthias Faessler<sup>2</sup>, Christian Forster<sup>2</sup> Jürgen Schmidhuber<sup>1</sup>, Gianni Di Caro<sup>1</sup>, Davide Scaramuzza<sup>2</sup>, Luca M. Gambardella<sup>1</sup>



## Case study 2: imitation with a cheap robot

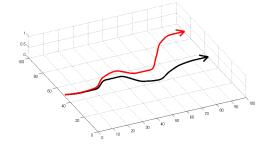
#### Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demonstration

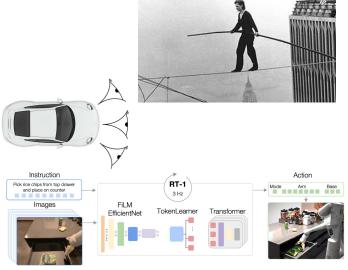
Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Boloni, Sergey Levine

Rouhollah Rahmatizadeh et al., Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demonstration. 2017.

## Where are we...

- Imitation learning via behavioral cloning is not guaranteed to work
  - This is **different** from supervised learning
  - The reason: i.i.d. assumption does not hold!
- We can formalize why this is and do a bit of theory
- We can address the problem in a few ways:
  - Be smart about how we collect (and augment) our data
  - Use very powerful models that make very few mistakes
  - Use multi-task learning
  - Change the algorithm (DAgger)

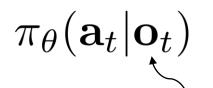






## Why might we fail to fit the expert?

- 1. Non-Markovian behavior
- 2. Multimodal behavior



behavior depends only on current observation

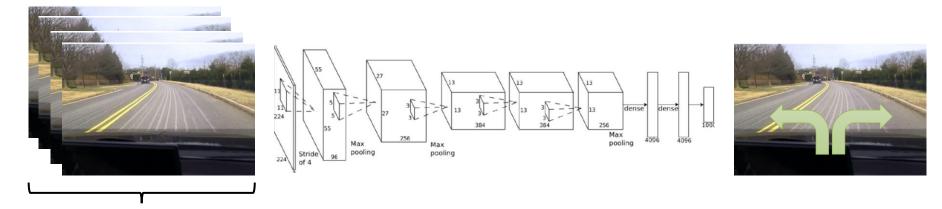
 $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_1, ..., \mathbf{o}_t)$ 

behavior depends on all past observations

If we see the same thing twice, we do the same thing twice, regardless of what happened before

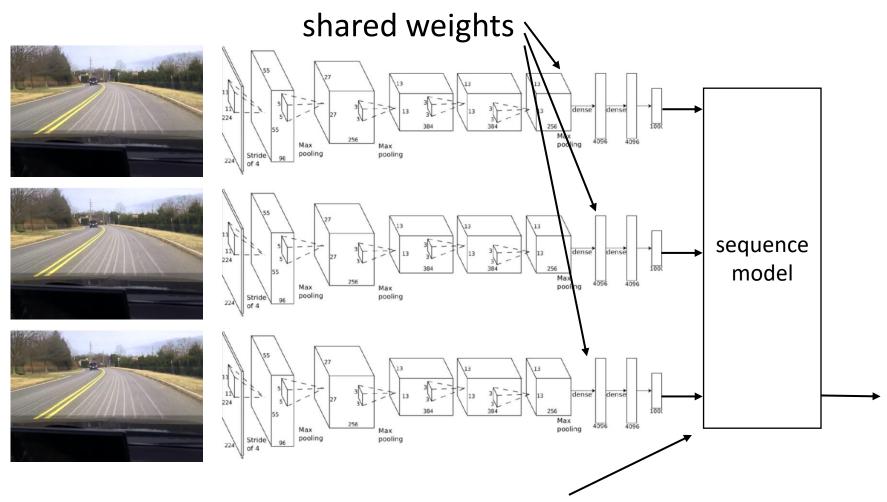
Often very unnatural for human demonstrators

## How can we use the whole history?



variable number of frames, too many weights

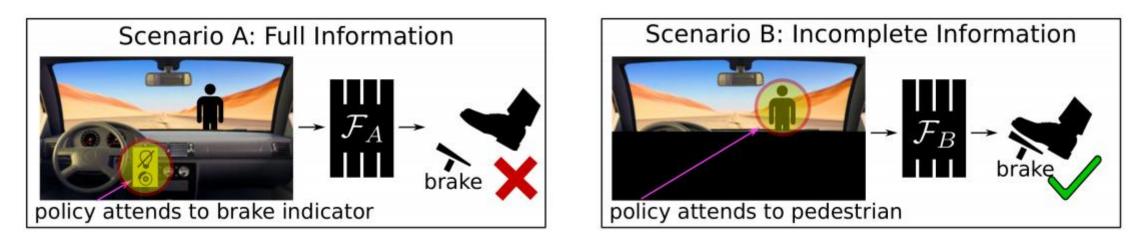
## How can we use the whole history?



P. .....

Can be done with Transformers, LSTM cells, etc.

## Aside: why might this work **poorly**?



"causal confusion"

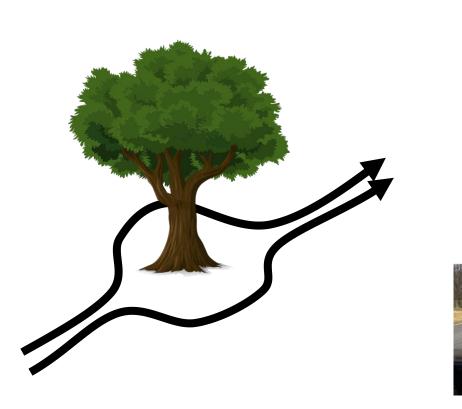
see: de Haan et al., "Causal Confusion in Imitation Learning"

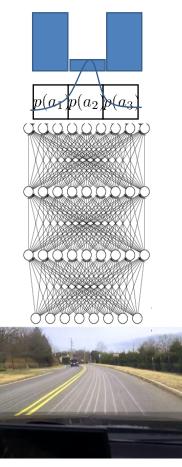
#### **Question 1:** Does including history mitigate causal confusion?

**Question 2:** Can DAgger mitigate causal confusion?

## Why might we fail to fit the expert?

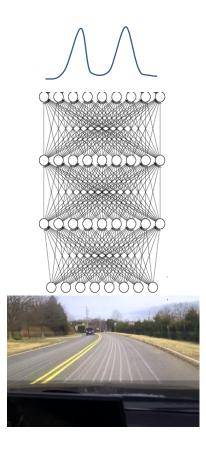
- 1. Non-Markovian behavior
- 2. Multimodal behavior





- 1. More expressive continuous distributions
- 2. Discretization with highdimensional action spaces

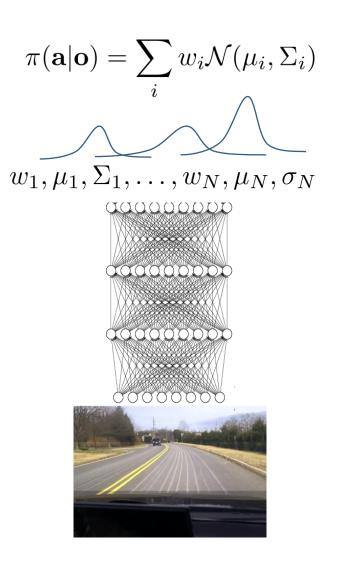




Quite a few options, many ways to make things work:

- 1. mixture of Gaussians
- 2. latent variable models
- 3. diffusion models

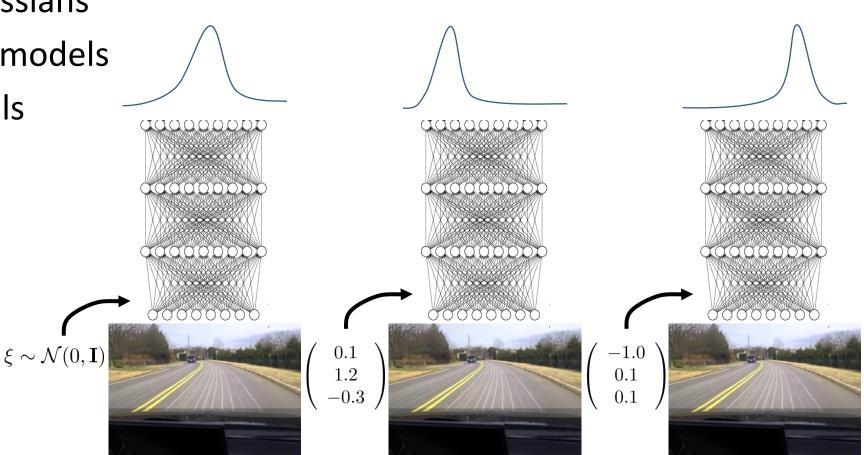
- 1. mixture of Gaussians
- 2. latent variable models
- 3. diffusion models



- 1. mixture of Gaussians
- 2. latent variable models
- 3. diffusion models

The most widely used type of model of this sort is the (conditional) variational autoencoder

We'll learn about such models later in the course



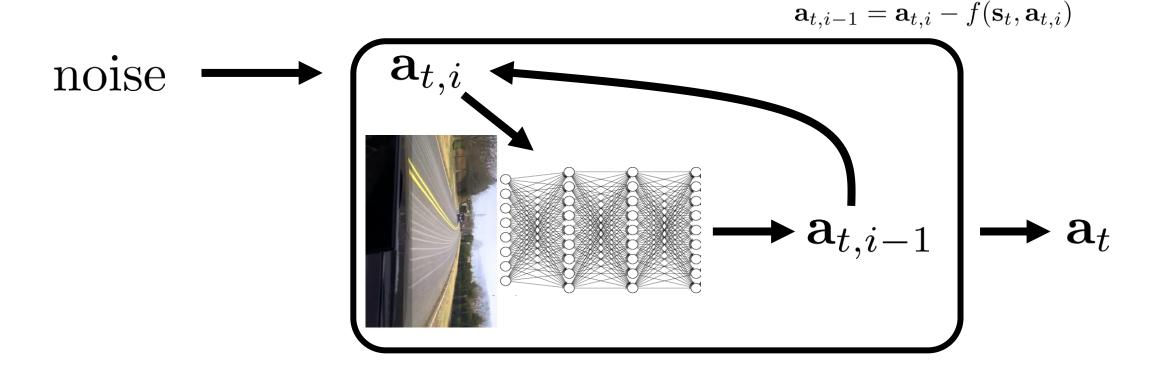
- 1. mixture of Gaussians
- 2. latent variable models
- 3. diffusion models

 $\begin{aligned} \mathbf{x_0} &= \text{true image} \\ \mathbf{x_{i+1}} &= \mathbf{x}_i + \text{noise} \\ \text{Learned network: } f(\mathbf{x}_i) &= \mathbf{x}_{i-1} \\ & (\text{actually use } f(\mathbf{x}_i) = \text{noise}) \\ & \mathbf{x}_{i-1} &= \mathbf{x}_i - f(\mathbf{x}_i) \end{aligned}$ 

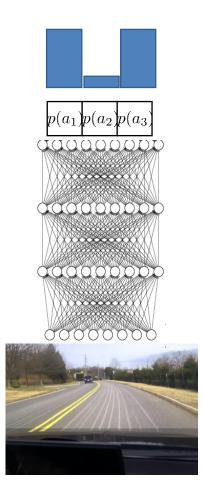


- 1. mixture of Gaussians
- 2. latent variable models
- 3. diffusion models

 $\begin{aligned} \mathbf{a_{t,0}} &= \text{true action} \\ \mathbf{a_{t,i+1}} &= \mathbf{a}_{t,i} + \text{noise} \\ \text{Learned network: } f(\mathbf{s}_t, \mathbf{a}_{t,i}) &= \mathbf{a}_{t,i-1} \\ &\quad (\text{actually use } f(\mathbf{s}_t, \mathbf{a}_{t,i}) = \text{noise}) \end{aligned}$ 



## What about **discretization**?



**Problem:** this is great for 1D actions, but in higher dimensions, discretizing the full space is impractical

**Solution:** discretize one dimension at a time

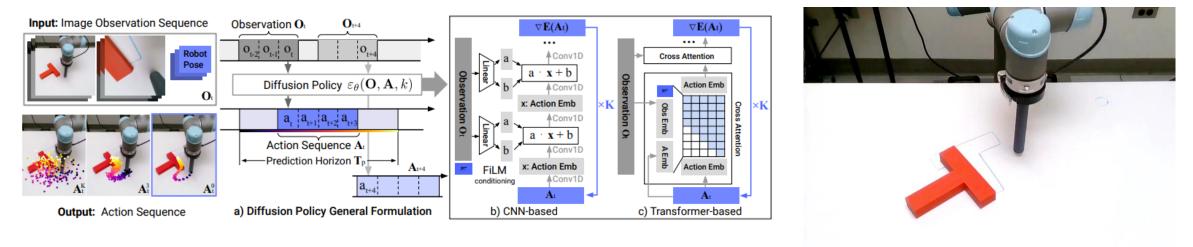
#### Autoregressive discretization

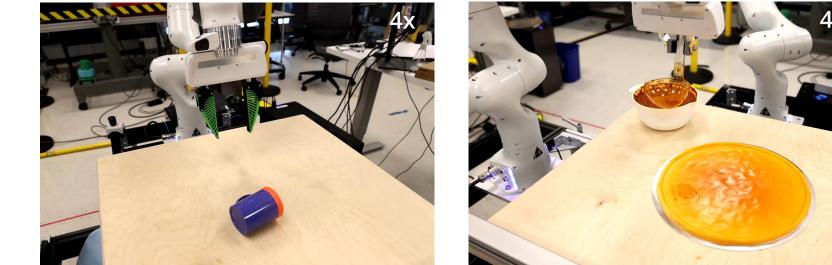


Why does this work? first step:  $p(a_{t,0}|\mathbf{s}_t)$ second step:  $p(a_{t,1}|\mathbf{s}_t, a_{t,0})$ third step:  $p(a_{t,2}|\mathbf{s}_t, a_{t,0}, a_{t,1})$  $p(a_{t,2}|\mathbf{s}_t, a_{t,0}, a_{t,1})p(a_{t,1}|\mathbf{s}_t, a_{t,0})p(a_{t,0}|\mathbf{s}_t)$ 

$$= p(a_{t,0}, a_{t,1}, a_{t,2} | \mathbf{s}_t)$$
$$= p(\mathbf{a}_t | \mathbf{s}_t)$$

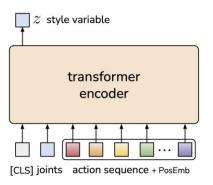
### Case study 3: imitation with diffusion models

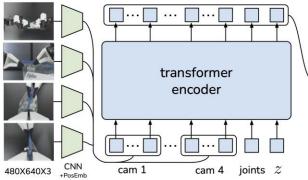


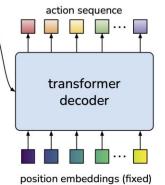


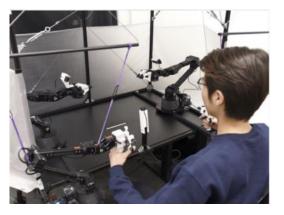
Chi et al. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. 2023

## Case study 4: imitation with latent variables

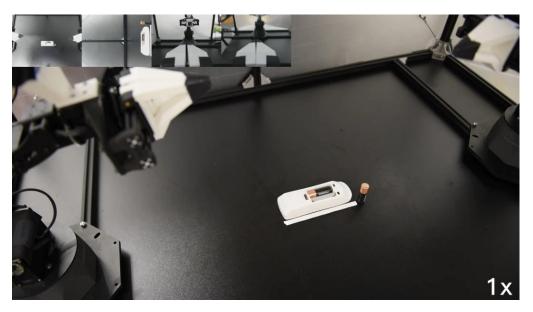






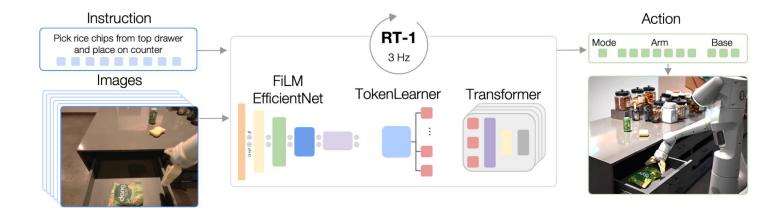






#### Zhao et al. Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware. 2023

### Case study 5: imitation with Transformers





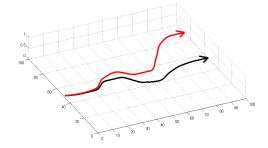
RT-1: Robotics Transformer for Real-World Control at Scale

Robotics at Google
 Everyday Robots
 Google Research

https://robotics-transformer.github.io/

## Where are we...

- Imitation learning via behavioral cloning is not guaranteed to work
  - This is **different** from supervised learning
  - The reason: i.i.d. assumption does not hold!
- We can formalize why this is and do a bit of theory
- We can address the problem in a few ways:
  - Be smart about how we collect (and augment) our data
  - Use very powerful models that make very few mistakes
  - Use multi-task learning
  - Change the algorithm (DAgger)



RT-1

TokenLearner

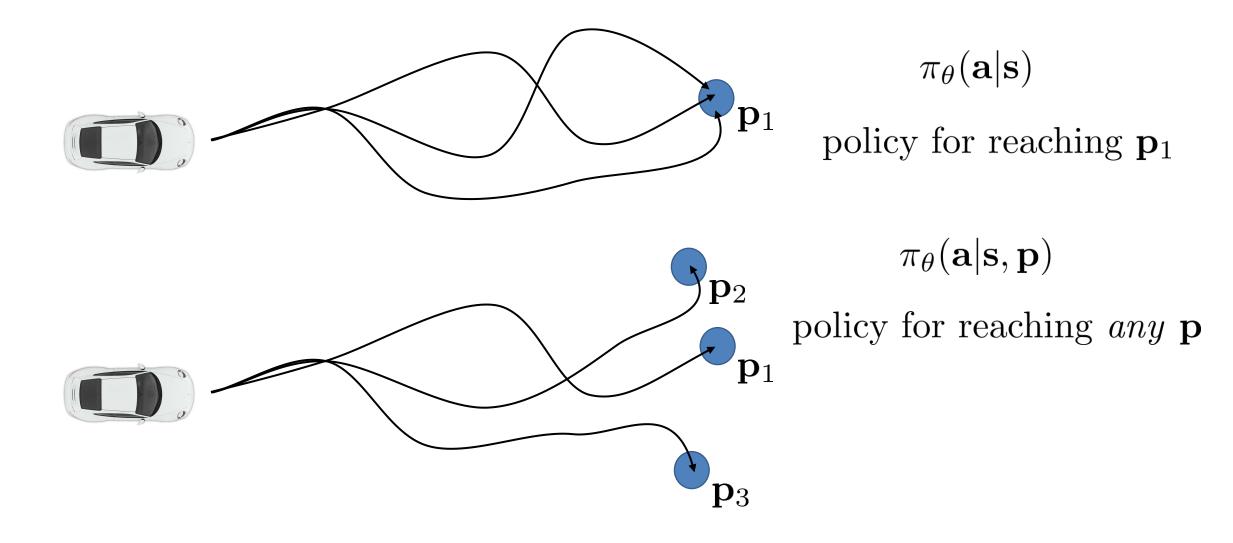
FiLM

EfficientNet

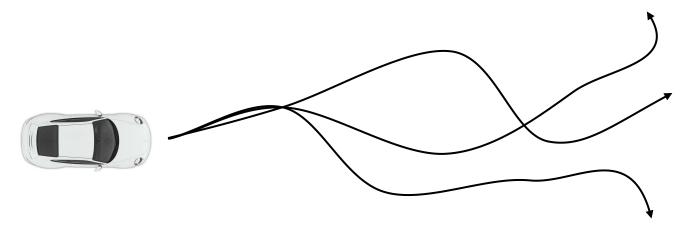
Instruction Pick rice chips from top drawer

and place on counter

#### Does learning **many** tasks become easier?



#### Goal-conditioned behavioral cloning



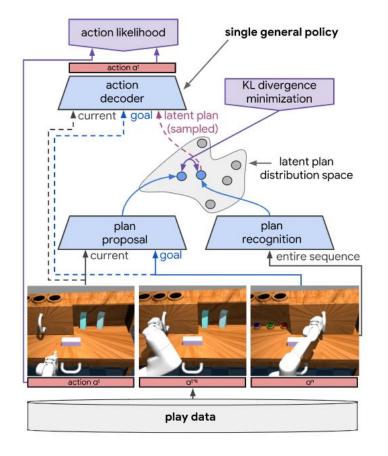
training time:

demo 1:  $\{\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}, \mathbf{s}_T\}$  successful demo for reaching  $\mathbf{s}_T$ demo 2:  $\{\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}, \mathbf{s}_T\}$  learn  $\pi_{\theta}(\mathbf{a}|\mathbf{s}, \mathbf{g})$   $\leftarrow$  goal state demo 3:  $\{\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}, \mathbf{s}_T\}$ for each demo  $\{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_{T-1}^i, \mathbf{a}_{T-1}^i, \mathbf{s}_T^i\}$  We see distributional shift in **two** places here! maximize  $\log \pi_{\theta}(\mathbf{a}_t^i | \mathbf{s}_t^i, \mathbf{g} = \mathbf{s}_T^i)$ 

#### Learning Latent Plans from Play

 COREY LYNCH
 MOHI KHANSARI
 TED XIAO
 VIKASH KUMAR
 JONATHAN TOMPSON
 SERGEY LEVINE
 PIERRE SERMANET

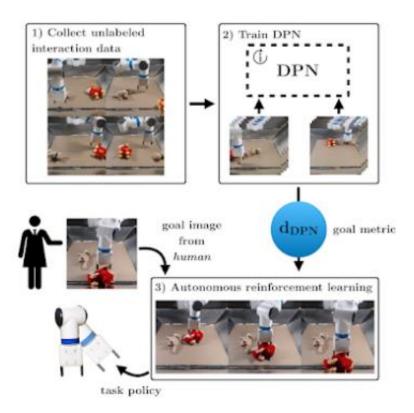
 Google Brain
 Google Brain



#### Unsupervised Visuomotor Control through Distributional Planning Networks

Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, Chelsea Finn

Stanford University

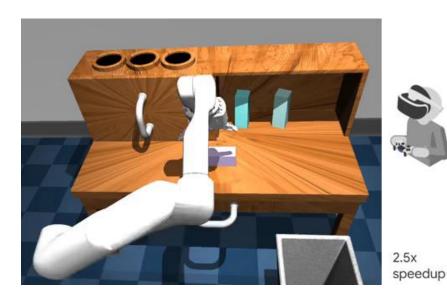


#### Learning Latent Plans from Play

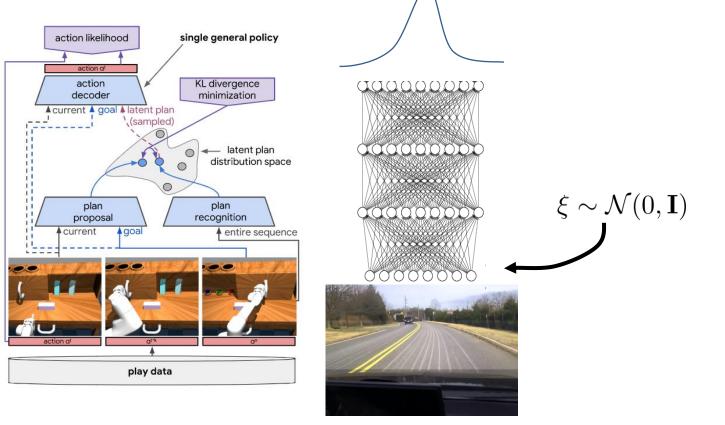
 COREY LYNCH
 MOHI KHANSARI
 TED XIAO
 VIKASH KUMAR
 JONATHAN TOMPSON
 SERGEY LEVINE
 PIERRE SERMANET

 Google Brain
 Google Brain

#### 1. Collect data



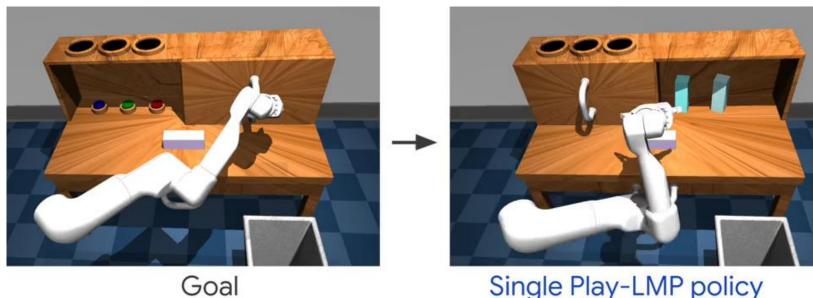
#### 2. Train goal conditioned policy



#### Learning Latent Plans from Play

TED XIAO VIKASH KUMAR COREY LYNCH MOHI KHANSARI JONATHAN TOMPSON SERGEY LEVINE PIERRE SERMANET Google Brain Google Brain Google Brain Google Brain Google Brain Google X Google Brain

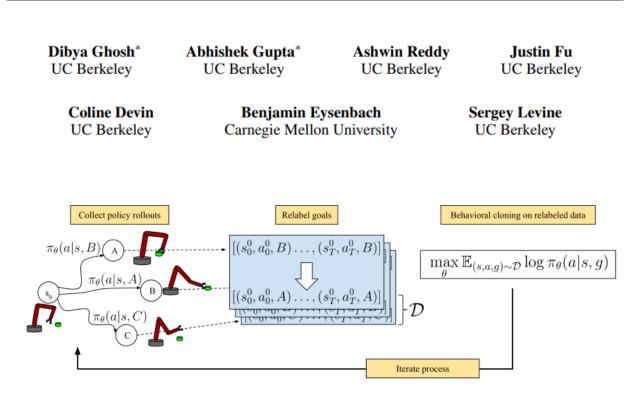
#### 3. Reach goals



Single Play-LMP policy

# Going **beyond** just imitation?

#### Learning to Reach Goals via Iterated Supervised Learning



- Start with a **random** policy
- Collect data with random goals
- Treat this data as "demonstrations" for the goals that were reached
- > Use this to improve the policy
- ➢ Repeat

## Goal-conditioned BC at a huge scale

|   | Dataset          | Platform   | Speed  | Amt. | Environment |
|---|------------------|------------|--------|------|-------------|
| 1 | GoStanford [26]  | TurtleBot2 | 0.5m/s | 14h  | office      |
| 2 | RECON [32]       | Jackal     | 1m/s   | 25h  | off-road    |
| 3 | CoryHall [35]    | RC Car     | 1.2m/s | 2h   | hallways    |
| 4 | Berkeley [33]    | Jackal     | 2m/s   | 4h   | suburban    |
| 5 | SCAND-S [36]     | Spot       | 1.5m/s | 8h   | sidewalks   |
| 6 | SCAND-J [36]     | Jackal     | 2m/s   | 1h   | sidewalks   |
| 7 | Seattle [37]     | Warthog    | 5m/s   | 1h   | off-road    |
| 8 | TartanDrive [38] | ATV        | 10m/s  | 5h   | off-road    |
|   | Ours             |            | 60h    |      |             |



RC-Car (Kahn et al. 2018)



Spot (Karnan et al. 2022)



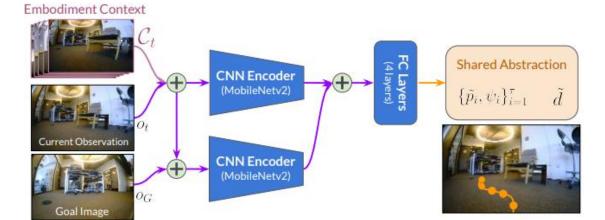
TurtleBot (Hirose et al. 2019)

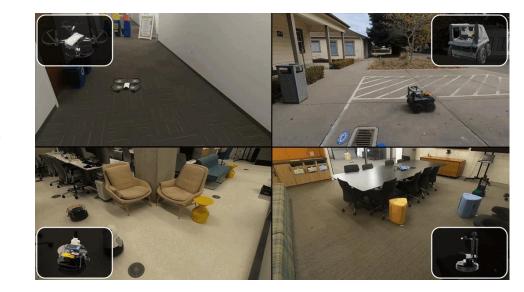
Warthog

(Shaban et al. 2021)



Jackal





Shah\*, Sridhar\*, Bhorkar, Hirose, Levine. GNM: A General Navigation Model to Drive Any Robot. 2022.

### Also related (for later...)

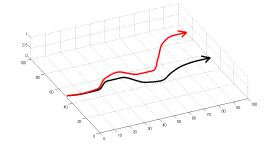
#### **Hindsight Experience Replay**

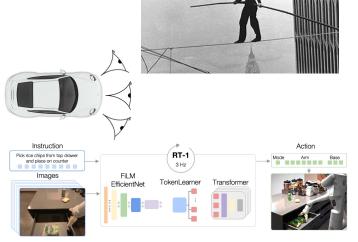
Marcin Andrychowicz\*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel<sup>†</sup>, Wojciech Zaremba<sup>†</sup> OpenAI

- Similar principle but with reinforcement learning
- This will make more sense later once we cover off-policy value-based RL algorithms
- Worth mentioning because this idea has been used widely outside of imitation (and was arguably first proposed there)

## Where are we...

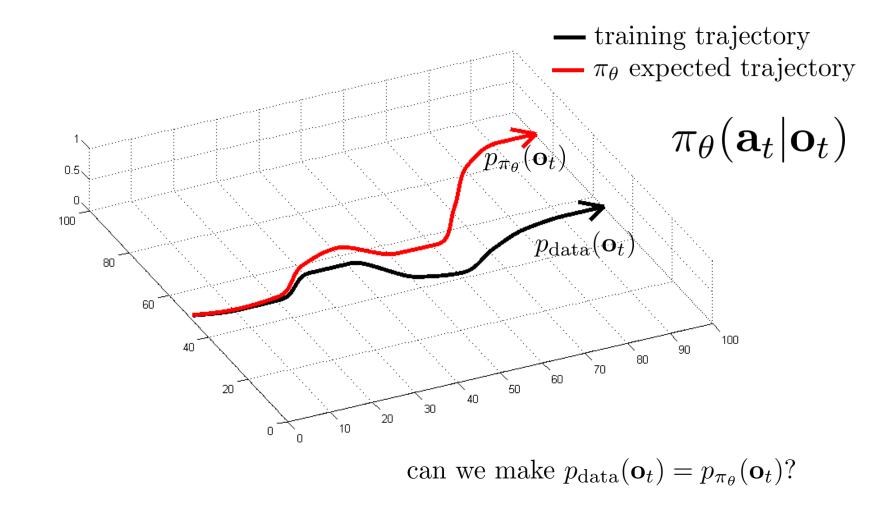
- Imitation learning via behavioral cloning is not guaranteed to work
  - This is **different** from supervised learning
  - The reason: i.i.d. assumption does not hold!
- We can formalize why this is and do a bit of theory
- We can address the problem in a few ways:
  - Be smart about how we collect (and augment) our data
  - Use very powerful models that make very few mistakes
  - Use multi-task learning
  - Change the algorithm (DAgger)







#### Can we make it work more often?



## Can we make it work more often?

can we make  $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$ ?

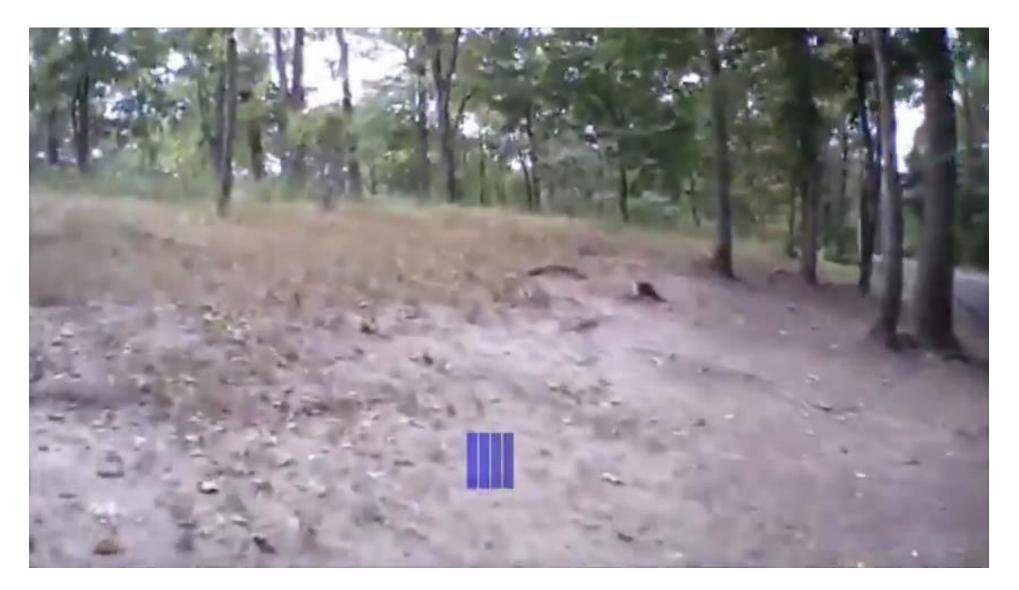
idea: instead of being clever about  $p_{\pi_{\theta}}(\mathbf{o}_t)$ , be clever about  $p_{\text{data}}(\mathbf{o}_t)$ !

#### **DAgger:** Dataset Aggregation

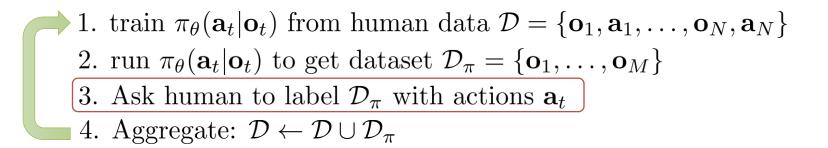
goal: collect training data from  $p_{\pi_{\theta}}(\mathbf{o}_t)$  instead of  $p_{\text{data}}(\mathbf{o}_t)$ how? just run  $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ but need labels  $\mathbf{a}_t$ !

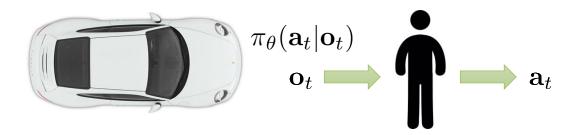
1. train  $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$  from human data  $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run  $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$  to get dataset  $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label  $\mathcal{D}_{\pi}$  with actions  $\mathbf{a}_t$ 4. Aggregate:  $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$ 

## DAgger Example



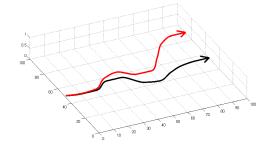
### What's the problem?

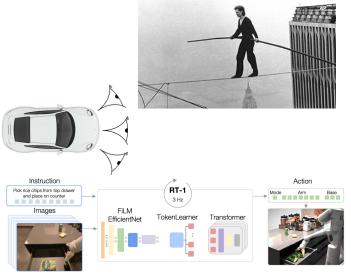




# Recap

- Imitation learning via behavioral cloning is not guaranteed to work
  - This is **different** from supervised learning
  - The reason: i.i.d. assumption does not hold!
- We can formalize why this is and do a bit of theory
- We can address the problem in a few ways:
  - Be smart about how we collect (and augment) our data
  - Use very powerful models that make very few mistakes
  - Use multi-task learning
  - Change the algorithm (DAgger)







Cost functions and reward functions, a preview of what comes next

# Imitation learning: what's the problem?

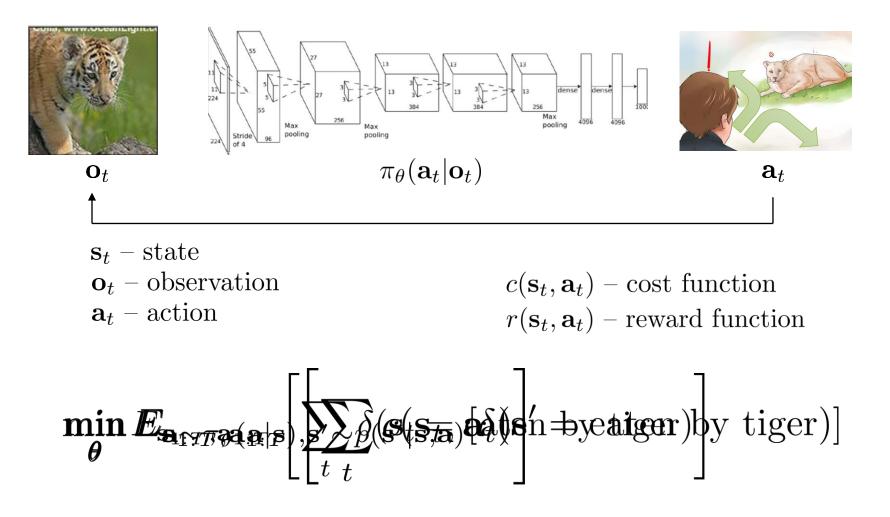
- Humans need to provide data, which is typically finite
  - Deep learning works best when data is plentiful
- Humans are not good at providing some kinds of actions





- Unlimited data from own experience
- Continuous self-improvement

### Terminology & notation



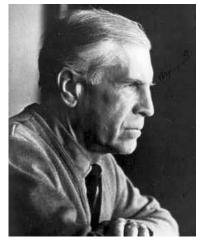
### Aside: notation

$$\mathbf{s}_t$$
 - state  
 $\mathbf{a}_t$  - action  
 $r(\mathbf{s}, \mathbf{a})$  - reward function

 $\mathbf{x}_t - ext{state}$  $\mathbf{u}_t - ext{action}$  $c(\mathbf{x}, \mathbf{u}) - ext{cost function}$ 



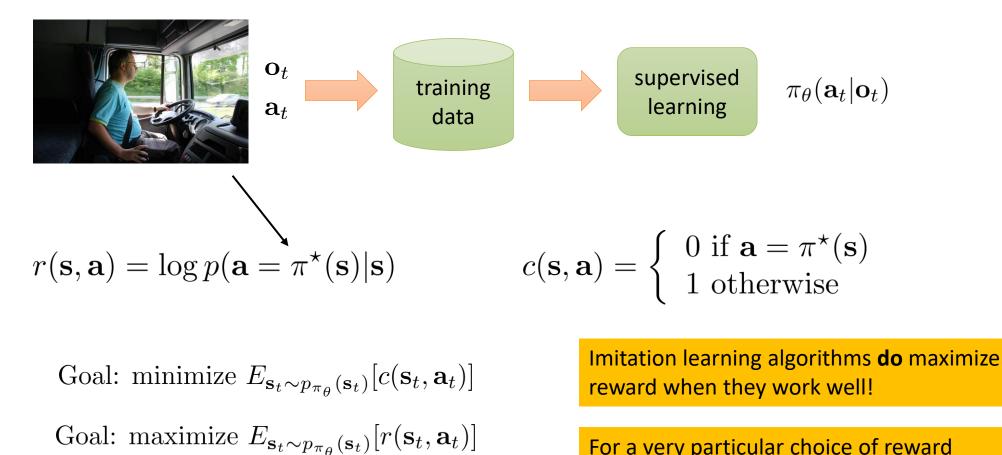
 $r(\mathbf{s}, \mathbf{a}) = -c(\mathbf{x}, \mathbf{u})$ 



Lev Pontryagin

**Richard Bellman** 

### A cost function for imitation?



For a very particular choice of reward