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Offline Reinforcement Learning

on-policy RL off-policy RL Formally:
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Where do we suffer from distribution shift?

; , 12 Lal what is the objective?
Q(s,a) ¢ r(s,a) + Bror,., [Q(s', )] t0in Es )~y (s,2) [(Q(S:2) = y(i, a))?]
Y
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Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlIPS ‘19



How do prior methods address this?

Q(s,a) < r(s,a) + Earur,,, [Q(s',a")]

Thew(a|s) = arg max Earr(als)|@(s,a)] s.t. Dgp(m||mg) <€
This solves distribution shift, right?
No more erroneous values?

Issue 1: we usually don’t know the behavior policy 7(als)

* human-provided data

» data from hand-designed controller
* data from many past RL runs

e all of the above

Issue 2: this is both too pessimistic and not pessimistic enough

“policy constraint” method

very old idea (but it had no single name?)

Todorov et al. [passive dynamics in linearly-
solvable MDPs]

Kappen et al. [KL-divergence control, etc.]

trust regions, covariant policy gradients,
natural policy gradients, etc.

used in some form in recent papers:

Fox et al. ‘15 (“Taming the Noise...”)
Fujimoto et al. ‘18 (“Off Policy...”)
Jaques et al. ‘19 (“Way Off Policy...”)
Kumar et al. ‘19 (“Stabilizing...”)

Wu et al. ‘19 (“Behavior Regularized...”)

Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ‘20



Explicit policy constraint methods

What kinds of constraints can we use?

KL-divergence: Dk, (7||73)

- not necessarily what we want

unreliable OOD values
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support constraint: 7(als) > 0 only if mz(als) > €

can approximate with MMD

- significantly more complex to implement

For more information, see:

Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning:
Tutorial, Review, and Perspectives on Open Problems. ‘20

Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via
Bootstrapping Error Reduction. ‘19

Wu, Tucker, Nachum. Behavior Regularized Offline
Reinforcement Learning. 19



Explicit policy constraint methods

Lagrange multiplier
How do we implement constraints? grang P

easy to compute and differentiate
1. Modify the actor objective for Gaussian or categorical policies

_HWQ&*ESND |anﬂ'9(a S) Q(S,&) /

0 < argmax Fsp | Earro(als)[@Q(s,a) + Aog ms(als)] + AH(x(als))]

Dxy(w||mg) = Ex[logm(als) —logms(als)] = —Er[logms(als)] — H ()

2. Modify the reward function

B D simple modification to directly penalize divergence
r(s, a) =r(s, a) B (W’ Wﬁ) also accounts for future divergence

See: Wu, Tucker, Nachum. Behavior Regularized Offline Reinforcement Learning. '19

generally, the best modern offline RL methods do not do either of these things



Implicit policy constraint methods

Wnew(a|s) — arg m?JX anﬂ'(a|s)[Q(Sa a)] s.t. Dy (ﬂ-”ﬂ-ﬁ) < € See also:
Peters et al. (REPS)

1 1 straightforward to Rawlik et al. (“psi-learning”)
* _
T (als) = Z(s) Tg(als) exp (XAW(Sa a)) show via duality ...many follow-ups
w(s, a)
approximate via weighted max likelihood! 1

1 1
Tew(@[8) = arg max Es )~ {bg m(als) Z(5) exp (XA'”C'M (s,a))]

T \

samples from dataset critic can be used

a ~ mg(als) to give us this

Peng*, Kumar*, Levine. Advantage-Weighted Regression. ‘19
Nair, Dalal, Gupta, Levine. Accelerating Online Reinforcement Learning with Offline Datasets. ‘20



Implicit policy constraint methods

EC(Qb) — E(s,a,s’)er [(qu(sa a) - (?"(S, a) + 7Ea’NW9(3’|S’)[Q¢(S,? al)]))z}

La(0) = ~Eisayes, [logmals) 7 exp (147 (5.2) )
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Q(s,a) + r(s,a) + Earur. . [Q(s',a")]

Tew (Q[S) = arg max Earr(als)|Q(s,a)] s.t. Dxr(7||mg) < e

Peng*, Kumar*, Levine. Advantage-Weighted Regression. ‘19

Nair, Dalal, Gupta, Levine. Accelerating Online Reinforcement Learning with Offline Datasets. ‘20



Can we also avoid all OOD actions in the Q update?

Q(s,a) «+ r(s,a) + Eafwﬁnew Q(s',a )] ’\‘/
V(' ) just another neural network j

N
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Kostrikov, Nair, Levine. Offline Reinforcement Learning with Implicit Q-Learning. ‘21



Implicit Q-learning (1QL)

Q-learning with implicit policy improvement

N
Q(s,a) +r(s,a) + V(s') V «arg min % > 05(V(s), Qlsi, ay))
1=1

V(S) — aleng(};) Q(Sa a) Q(S, a) < T(S, a) + max Q(Sla a,)

a’eQ(s’)
Q(s) = {a: m(als) > €} “implicit” policy

if we use /3 for big 7 Toew(als) = d(a = arg m&x) Q(s,a))
acll(s

Now we can do value function updates without ever risking out-of-distribution actions!

WEe’'ll see results soon, but first let’s talk about Option 2...

Kostrikov, Nair, Levine. Offline Reinforcement Learning with Implicit Q-Learning. ‘21

v



Conservative Q-Learning



Conservative Q-learning (CQL)
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Q" = arg min ml?x aFs p a~pu(als)|@(s, a)] } term to push down big Q-values

Q@

regular objective { +E(s,a,s’)wD [(Q(Sa a) o (T(Sa a) + Eﬂ' [Q(Slv a,)]))z

can show that Q™ < Q™ for large enough «

true Q-function 12



Conservative Q-learning (CQL)

A better bound: always pushes Q-values down  push up on (s, a) samples in data

) } ' _

QT = arg mcén mjtx aEs D a~p(als)[@(s,a)] —aE (s a)~p[Q(s, a)]

1 £ Q"
+E(sas)~D |(Q(s,a) — (r(s,a) + E-[Q(s",a")])) } cqu(@”)

—

no longer guaranteed that Q™ (s,a) < Q™ (s,a) for all (s, a)

but guaranteed that Ew(a|s)[QAW(S, a)| < Erals)|Q™ (s,a)] for all s € D

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. ‘20



Conservative Q-learning (CQL)

1. Update Q™ w.r.t. ECQL(Q”) using D

2. Update policy 7

if actions are discrete:

[ 1ifa=argmaxaQ(s,a)
m(als) = { 0 otherwise

if actions are continuous:

0 0+aVe Y Eamyals[Q(si,a)]

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. ‘20



Conservative Q-learning (CQL)

regu

A /o

Q" = arg mc\%n mfx OfEst,aN,u(a|S) [Q(Sa a)] _aE(S,a)ND [Q(SJ a)] _R(ﬂ)

FE(sasop |(Q(s:2) = (r(s.a) + E[Q( . a))’]

larization

- Loqu(QT)

common choice: R = FEg.p|[H(u(:[s))] maximum entropy regularization
optimal choice: p(als) x exp(Q(s,a))

anp,(a|s) [Q(Sa a)] — log Z eXp(Q(S? a))

for discrete actions: just calculate directly

for continuous actions: use importance sampling to estimate E,.,(als)[@(S, Q)]

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. ‘20



Model-Based Offline RL



How does model-based RL work?

...s0 the model’s predictions are invalid
these states are OOD

P(St+1/8¢,ar) O

m(as)

what goes wrong when we can’t collect more data?

”

the model answers “what if” questions

v



MOPO: Model-Based Offline Policy Optimization

solution: “punish” the policy for exploiting - O

7(s,a) = r(s,a) — \u(s, a) \

uncertainty penalty

...and then use any existing model-based RL algorithm \ k‘

Yu*, Thomas™*, Yu, Ermon, Zou, Levine, Finn, Ma. MOPO: Model-Based Offline Policy Optimization. ‘20

See also: Kidambi et al., MORel : Model-Based Offline Reinforcement Learning. 20 (concurrent)



MOPO: Theoretical Analysis

7(s,a) =r(s,a) — \u(s, a)

we can represent the value function model error is bounded (above) by u(s, a)

N/

Theorem 4.4. Under Assumption 4.2 and 4.3, the learned policy 7 in MOPO (Algorithm 1) satisfies

true return of policy trained under model —— 7IM (7) = SEP{TFM (m) — Q}LEEQ (11)
In particular, for all § > 6y, €u(T) == {MI]ENP: [u(s, a)]
some implications: Mar (7) 2 e (%) — 209 (12)
e (7) = nar(78) — 2Xe, (7°) 5 T
m° 1= arg max N ()
» improves over behavior policy miew () <8

e (7) = '-T?M{ﬁ*_] — 2}\[:...“ (7*)

» quantifies “optimality gap” in terms of model error

Yu*, Thomas™*, Yu, Ermon, Zou, Levine, Finn, Ma. MOPO: Model-Based Offline Policy Optimization. ‘20



COMBO: Conservative Model-Based RL

Basic idea: just like CQL minimizes Q-value of policy actions, we can minimize Q-value of model state-action tuples

state-action tuples from the model

| l

QHI < arg 11511 B (Es,amf.rl:'._-?-ﬂ:l Q(s,a)] — Es,a~p [Q(s, a)])

'—I.

+ §Es~u.5’-ﬂud_f |i(Q(E“ 3) - gﬂ@k{s‘ a)))2 {4)

Intuition: if the model produces something that looks clearly different \

from real data, it’s easy for the Q-function to make it look bad

—

Yu, Kumar, Rafailov, Rajeswaran, Levine, Finn. COMBO: Conservative Offline Model-Based Policy Optimization. 2021.



Trajectory Transformer

Basic ideas:
1. train a joint state-action model: e
pﬁ(T) :p6(817a27"'78T7aT) L/jgalf
2. use a big expressive model (a Transformer) Trajectory Transformer making accurate predictions to hundreds of steps
The model: How to do control:
S1o| [S1,3| wm|ar 1| |A12| ™| Sg 1 | == | ap g, beam search, but use ), r(s¢, a;) instead of probability
t t 1. given current sequence, sample next tokens from model
. | . . . | . I . - . 2. store top K tokens with highest cumulative reward

3. move on to next token

S1,1| [S1,2| =™ (S1.4, |A1,1| "®| A1 d,| """ |AT,d,—1

b

Why does this work?
generating high-probability trajectories avoids out-of-distribution states & actions

using a really big model works well in offline mode (lots of compute, captures complex behavior policies)

Janner, Li, Levine. Reinforcement Learning as One Big Sequence Modeling Problem. 2021.



Summary, Applications, Open Questions



Which offline RL algorithm do | use?

If you want to only train offline...
Conservative Q-learning

Implicit Q-learning - more hyperparameters

If you want to only train offline and finetune online
Advantage-weighted actor-critic (AWAC)

Implicit Q-learning

If you have a good way to train models in your domain
COMBO

- not always easy to train a good model in your domain!

Trajectory transformer

- extremely computationally expensive to train and evaluate

23



The power of offline RL

standard real-world RL process offline RL process

e

o

-
1]
-

S -

24



Offline RL in robotic manipulation: MT-Opt, AMs

472x472 WIR'" i i Kalashnikov, Irpan, Pastor, Ibarz, Herzong, New hypothesis: could we learn
\eaucantid 7 BRI £dgqohn  Jane Quillen, Holly, Kalakrishnan, these tasks without rewards using
' EEE 28 h Vanhoucke, Levine. QT-Opt: Scalable Deep .
Reinforcement Learning of Vision-Based goal-conditioned RL?

Robotic Manipulation Skills Goal image s bok sreiiion

» 12 different tasks
» Thousands of objects
» Months of data

A) Task Definition M
collection
success / L ’
d;jctor :‘ episode ;, g ; i,
B B) Data Collection - yo N ; -4 ; X
P 3, J reuse the same j\> g § E g § g g g P
: £-2-2-2-3>@>2-7-2-¢-%
: & exact data fgszs 21l "1
episode - & 4
E Goal-conditioned Value Function
C) Data Sharing and RL Training A:’,T,o‘;t Kalashnikov Varle Ch b t S Qo(S,(l,g)
e oy, , y, Chebotar, Swanson, .
é - Qei Jonschkowski, Finn, Levine, Hausman. N H i
\T/ ‘? \TV MT-Opt: Continuous Multi-Task gy §-1-3-2 S QA(s’ &g
i . . . Terminate Episode o = gls,a,
— ‘ Robotic Reinforcement Learning at : 2 o Y0 9
Q Target Goal-conditioned Value Function
Scale. 2021. -




Actionable Models: Offline RL with Goals

» No reward function at all, task is defined
entirely using a goal image!

» Uses a conservative offline RL method
designed for goal-reaching, based on CQL

» Works very well as an unsupervised
pretraining objective!

1. Train goal-conditioned Q- 2. Finetune with a task reward
function with offline RL and limited data
é'?é'@'i‘l
G
\]
W a5 =
. - y - » ; Y : / Ln Mg:]qu(S’.(I,.g)
x < - : ; Target Goal-conditioned Value Function
Semanticlg asplng fgras I
: s e With A lliary objactive Mo ausiliany objective
Chebotar, Hausman, Lu, Xiao, Kalashnikov, Varley, Irpan, Eysenbach, Julian, Finn, Levine. (c) Bottle grasping (d) Banana grasping

Actionable Models: Unsupervised Offline Reinforcement Learning of Robotic Skills. 2021.



More examples

Late 2020: Dhruv Shah uses it to build Early 2021: Dhruv Shah uses the same
goal-conditioned navigation system dataset to train an exploration system

Early 2020: Greg Kahn collects 40 hours of robot navigation data

Demo: Contactless Pizza Deliver, y 5
4 When deployed in a previously unseen environment, RECON

explores the environment using a latent goal model
in search of the target image.

Target Image

_L:—_J%
Delivery Location B inprogress
(Image)
B successful

(& Goal ocation)
Kahn, Abbeel, Levine. BADGR: An Autonomous Self-Supervised Learning-
Based Navigation System. 2020. Shah, Eysenbach, Kahn, Rhinehart, Levine. Shah, Eysenbach, Rhinehart, Levine. RECON:
ViNG: Learning Open-World Navigation Rapid Exploration for Open-World Navigation
with Visual Goals. 2020. with Latent Goal Models. 2020.

27



akeaways, conclusions, future directions

/ “the dream” o

“ ” 1. Collect a dataset using any policy or
th e ga p mixture of policies

current offline RL
algorithms

2. Run offline RL on this dataset to learn a
policy

3. Deploy the policy in the real world

N Y N T

e An offline RL workflow ] ] . , , ,
. . _ . . A starting point: Kumar, Singh, Tian, Finn, Levine. A Workflow for
» Supervised learning workflow: train/test split ) N .
, Offline Model-Free Robotic Reinforcement Learning. CoRL 2021
e Offline RL workflow: ??? 4_ |

 Statistical guarantees
* Biggest challenge: distributional
shift/counterfactuals
e Can we make any guarantees?
* Scalable methods, large-scale applications
e Dialogue systems

* Data-driven navigation and driving 28




