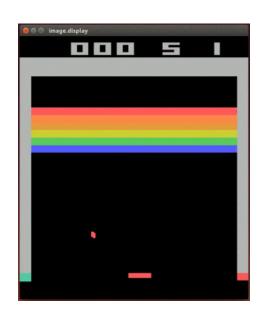
Exploration (Part 2)

CS 285

Instructor: Sergey Levine UC Berkeley

Recap: what's the problem?

this is easy (mostly)



this is impossible

Why?

Unsupervised learning of diverse behaviors

What if we want to recover diverse behavior without any reward function at all?

Why?

- Learn skills without supervision, then use them to accomplish goals
- Learn sub-skills to use with hierarchical reinforcement learning
- Explore the space of possible behaviors

An Example Scenario

training time: unsupervised

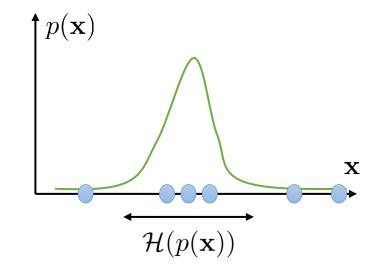
- Definitions & concepts from information theory
- > Learning without a reward function by reaching goals
- > A *state distribution-matching* formulation of reinforcement learning
- > Is coverage of valid states a *good* exploration objective?
- > Beyond state covering: covering the *space of skills*

Definitions & concepts from information theory

- > Learning without a reward function by reaching goals
- > A *state distribution-matching* formulation of reinforcement learning
- > Is coverage of valid states a *good* exploration objective?
- > Beyond state covering: covering the *space of skills*

Some useful identities

 $p(\mathbf{x})$ distribution (e.g., over observations \mathbf{x}) $\mathcal{H}(p(\mathbf{x})) = -E_{\mathbf{x} \sim p(\mathbf{x})}[\log p(\mathbf{x})]$ entropy – how "broad" $p(\mathbf{x})$ is



Some useful identities

$$\begin{aligned} & \text{entropy - how "broad" } p(\mathbf{x}) \text{ is} \\ \mathcal{H}(p(\mathbf{x})) &= -E_{\mathbf{x} \sim p(\mathbf{x})}[\log p(\mathbf{x})] \\ \mathcal{I}(\mathbf{x}; \mathbf{y}) &= D_{\text{KL}}(p(\mathbf{x}, \mathbf{y}) || p(\mathbf{x}) p(\mathbf{y})) \\ &= E_{(\mathbf{x}, \mathbf{y}) \sim p(\mathbf{x}, \mathbf{y})} \left[\log \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x}) p(\mathbf{y})} \right] \underbrace{\int_{\text{high MI: x and y are dependent}}^{\mathbf{y}} \mathbf{x}}_{\text{high MI: x and y are independent}} \\ &= \mathcal{H}(p(\mathbf{y})) - \mathcal{H}(p(\mathbf{y}|\mathbf{x})) \end{aligned}$$

Information theoretic quantities in RL

 $\pi(\mathbf{s})$ state marginal distribution of policy π

 $\mathcal{H}(\pi(\mathbf{s}))$ state marginal entropy of policy π

example of mutual information: "empowerment" (Polani et al.)

quantifies coverage

$$\mathcal{I}(\mathbf{s}_{t+1};\mathbf{a}_t) = \mathcal{H}(\mathbf{s}_{t+1}) - \mathcal{H}(\mathbf{s}_{t+1}|\mathbf{a}_t)$$

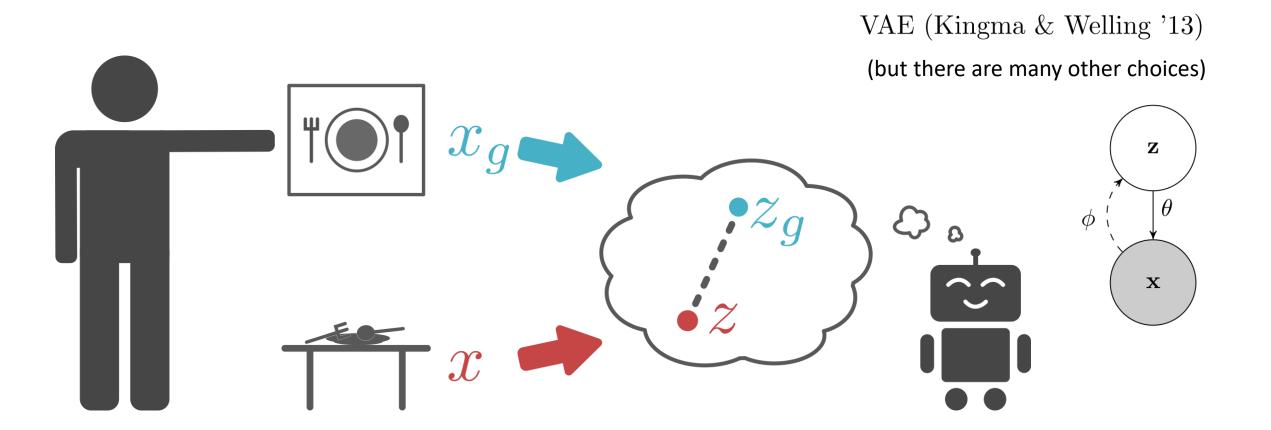
can be viewed as quantifying "control authority" in an information-theoretic way

- Definitions & concepts from information theory
- Learning without a reward function by reaching goals
- > A *state distribution-matching* formulation of reinforcement learning
- > Is coverage of valid states a *good* exploration objective?
- Beyond state covering: covering the space of skills

An Example Scenario

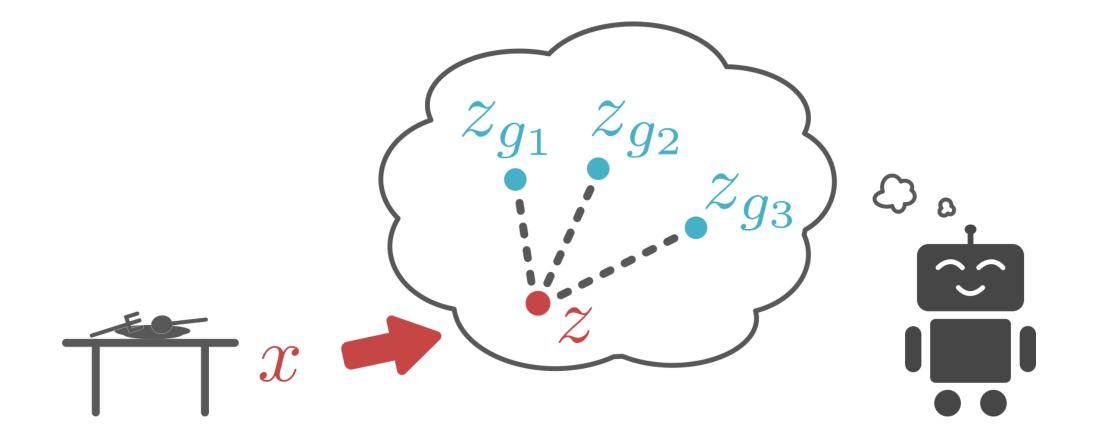
training time: unsupervised

Learn without any rewards at all



Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. '18 Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. '19

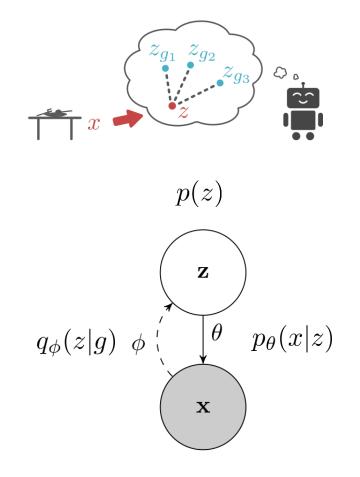
Learn without any rewards at all



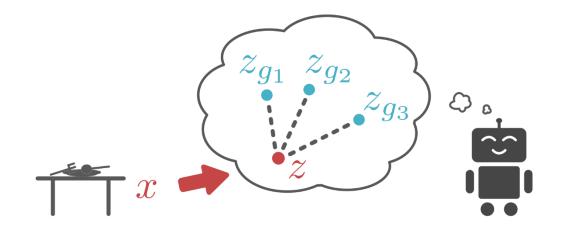
Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. '18 Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. '19

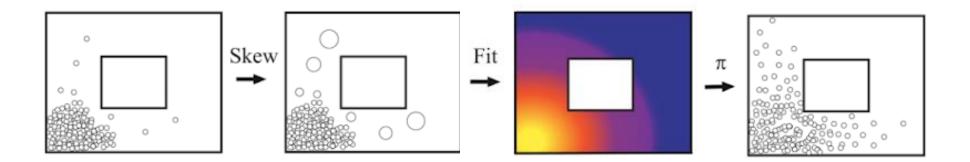
Learn without any rewards at all

- 1. Propose goal: $z_g \sim p(z), x_g \sim p_{\theta}(x_g|z_g)$
 - 2. Attempt to reach goal using $\pi(a|x, x_g)$, reach \bar{x}
 - 3. Use data to update π
 - 4. Use data to update $p_{\theta}(x_g|z_g), q_{\phi}(z_g|x_g)$



Nair^{*}, Pong^{*}, Bahl, Dalal, Lin, L. **Visual Reinforcement Learning with Imagined Goals**. '18 Dalal^{*}, Pong^{*}, Lin^{*}, Nair, Bahl, Levine. **Skew-Fit: State-Covering Self-Supervised Reinforcement Learning.** '19





Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. '18 Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. '19

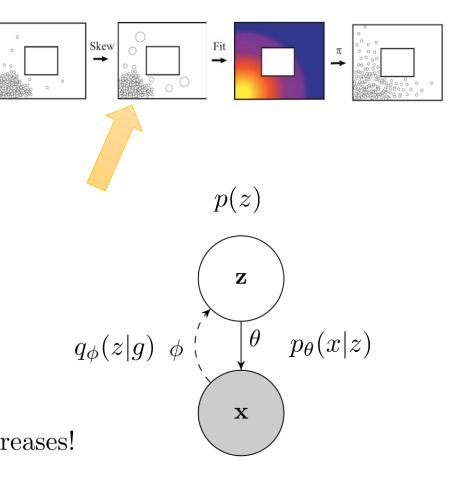
1. Propose goal:
$$z_g \sim p(z), x_g \sim p_{\theta}(x_g|z_g)$$

2. Attempt to reach goal using $\pi(a|x, x_g)$, reach (\bar{x})

3. Use data to update π

4. Use data to update $p_{\theta}(x_g|z_g), q_{\phi}(z_g|x_g)$

standard MLE: $\theta, \phi \leftarrow \arg \max_{\theta, \phi} E[\log p(\bar{x})]$ weighted MLE: $\theta, \phi \leftarrow \arg \max_{\theta, \phi} E[w(\bar{x}) \log p(\bar{x})]$ $w(\bar{x}) = p_{\theta}(\bar{x})^{\alpha}$ key result: for any $\alpha \in [-1, 0)$, entropy $\mathcal{H}(p_{\theta}(x))$ increases!



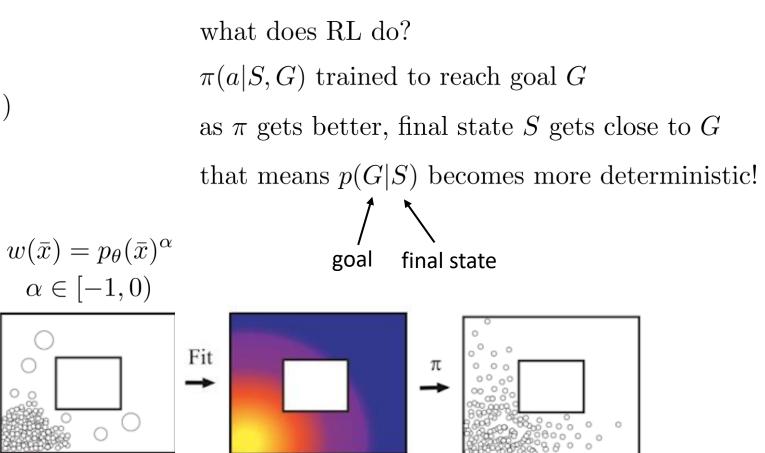
what is the objective?

$$\max \mathcal{H}(p(G)) - \mathcal{H}(p(G|S))$$
f
goals get higher

goals get higher entropy due to Skew-Fit

0

0 0



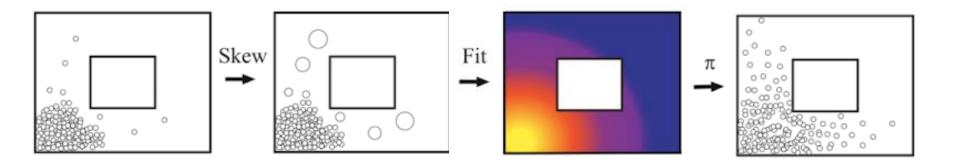
Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. '18 Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. '19

Skew

what is the objective?

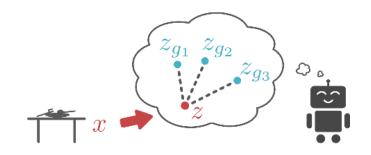
 $\max \mathcal{H}(p(G)) - \mathcal{H}(p(G|S)) = \max \mathcal{I}(S;G)$

maximizing mutual information between S and G leads to good exploration (state coverage) – $\mathcal{H}(p(G))$ effective goal reaching – $\mathcal{H}(p(G|S))$



Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. '18 Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. '19

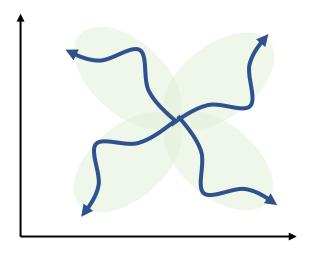
Reinforcement learning with *imagined* goals



Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. '18 Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. '19

- Definitions & concepts from information theory
- > Learning without a reward function by reaching goals
- > A *state distribution-matching* formulation of reinforcement learning
- > Is coverage of valid states a *good* exploration objective?
- Beyond state covering: covering the space of skills

Aside: exploration with intrinsic motivation



common method for exploration:

incentivize policy $\pi(\mathbf{a}|\mathbf{s})$ to explore diverse states ...before seeing any reward reward visiting **novel** states

if a state is visited often, it is not novel

 \Rightarrow add an exploration bonus to reward: $\tilde{r}(\mathbf{s}) = r(\mathbf{s}) - \log p_{\pi}(\mathbf{s})$

state density under $\pi(\mathbf{a}|\mathbf{s})$

1. update $\pi(\mathbf{a}|\mathbf{s})$ to maximize $E_{\pi}[\tilde{r}(\mathbf{s})]$ 2. update $p_{\pi}(\mathbf{s})$ to fit state marginal

Can we use this for state marginal matching?

the state marginal matching problem: learn $\pi(\mathbf{a}|\mathbf{s})$ so as to minimze $D_{\mathrm{KL}}(p_{\pi}(\mathbf{s})||p^{\star}(\mathbf{s}))$ idea: can we use intrinsic motivation?

 $\tilde{r}(\mathbf{s}) = \log p^{\star}(\mathbf{s}) - \log p_{\pi}(\mathbf{s})$

this does \mathbf{not} perform marginal matching!

1. learn π^k(**a**|**s**) to maximize E_π[˜r^k(**s**)]
2. update p_{π^k}(**s**) to fit state marginal
2. update p_{π^k}(**s**) to fit all states seen so far

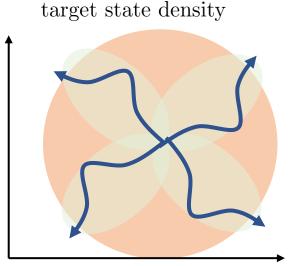
3. return $\pi^{\star}(\mathbf{a}|\mathbf{s}) = \sum_{k} \pi^{k}(\mathbf{a}|\mathbf{s})$

this **does** perform marginal matching!

special case: $\log p^{\star}(\mathbf{s}) = C \Rightarrow uniform \text{ target}$ $D_{\mathrm{KL}}(p_{\pi}(\mathbf{s}) || U(\mathbf{s})) = \mathcal{H}(p_{\pi}(\mathbf{s}))$

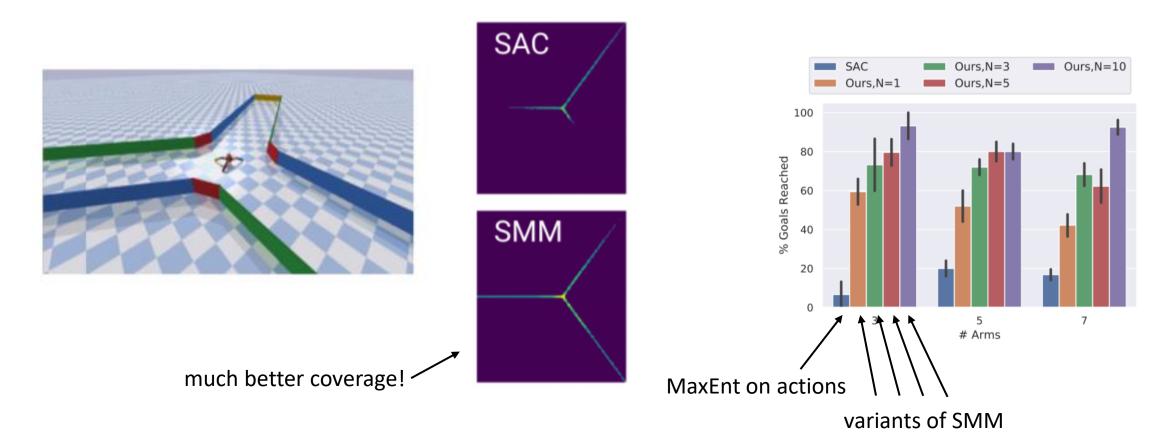
 $p_{\pi}(\mathbf{s}) = p^{\star}(\mathbf{s})$ is Nash equilibrium of two player game between π^k and p_{π^k}

Lee*, Eysenbach*, Parisotto*, Xing, Levine, Salakhutdinov. Efficient Exploration via State Marginal Matching See also: Hazan, Kakade, Singh, Van Soest. Provably Efficient Maximum Entropy Exploration



State marginal matching for exploration

the state marginal matching problem: learn $\pi(\mathbf{a}|\mathbf{s})$ so as to minimize $D_{\mathrm{KL}}(p_{\pi}(\mathbf{s})||p^{\star}(\mathbf{s}))$



Lee*, Eysenbach*, Parisotto*, Xing, Levine, Salakhutdinov. Efficient Exploration via State Marginal Matching See also: Hazan, Kakade, Singh, Van Soest. Provably Efficient Maximum Entropy Exploration

- Definitions & concepts from information theory
- > Learning without a reward function by reaching goals
- > A *state distribution-matching* formulation of reinforcement learning

> Is coverage of valid states a *good* exploration objective?

> Beyond state covering: covering the *space of skills*

Is state entropy *really* a good objective?

Skew-Fit: $\max \mathcal{H}(p(G)) - \mathcal{H}(p(G|S)) = \max \mathcal{I}(S;G)$ more or less the same thing SMM (special case where $p^*(\mathbf{s}) = C$): $\max \mathcal{H}(p_{\pi}(S))$

When is this a good idea?

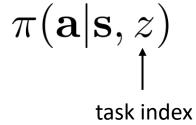
"Eysenbach's Theorem" (not really what it's called) (follows trivially from classic maximum entropy modeling) at test time, an *adversary* will choose the *worst* goal G which goal distribution should you use for *training*? answer: choose $p(G) = \arg \max_p \mathcal{H}(p(G))$

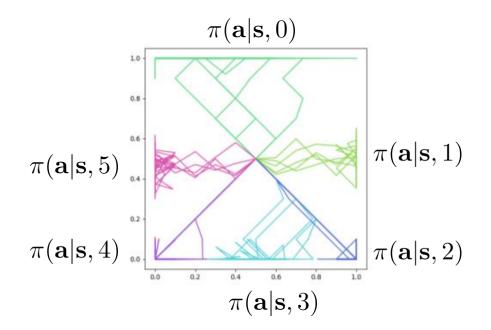
See also: Hazan, Kakade, Singh, Van Soest. Provably Efficient Maximum Entropy Exploration

Gupta, Eysenbach, Finn, Levine. Unsupervised Meta-Learning for Reinforcement Learning

- Definitions & concepts from information theory
- > A *distribution-matching* formulation of reinforcement learning
- > Learning without a reward function by reaching goals
- > A *state distribution-matching* formulation of reinforcement learning
- > Is coverage of valid states a *good* exploration objective?
- > Beyond state covering: covering the *space of skills*

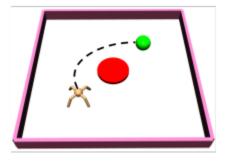
Learning diverse skills





Reaching diverse goals is not the same as performing diverse tasks

not all behaviors can be captured by goal-reaching



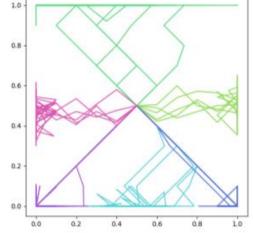
Intuition: different skills should visit different state-space regions

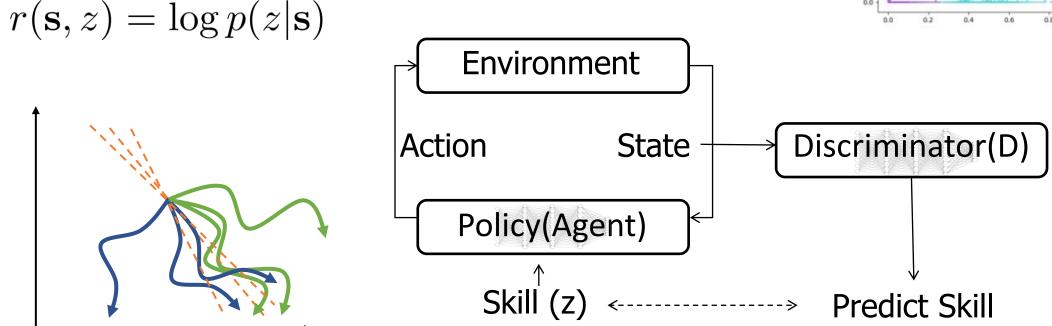
Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

Diversity-promoting reward function

$$\pi(\mathbf{a}|\mathbf{s}, z) = \arg\max_{\pi} \sum_{z} E_{\mathbf{s} \sim \pi(\mathbf{s}|z)}[r(\mathbf{s}, z)]$$

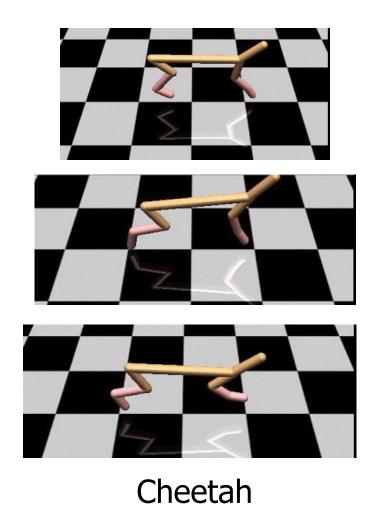
reward states that are unlikely for other $z' \neq z$

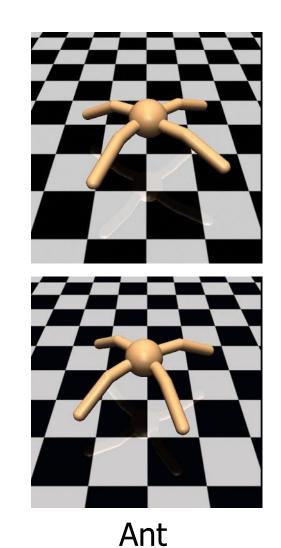


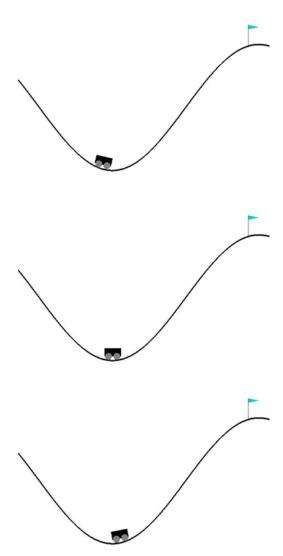


Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

Examples of learned tasks







Mountain car

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

A connection to mutual information

$$\pi(\mathbf{a}|\mathbf{s}, z) = \arg\max_{\pi} \sum_{z} E_{\mathbf{s} \sim \pi(\mathbf{s}|z)}[r(\mathbf{s}, z)]$$

 $r(\mathbf{s}, z) = \log p(z|\mathbf{s})$

$$I(z, \mathbf{s}) = H(z) - H(z|s)$$

maximized by using uniform prior p(z)

minimized by maximizing $\log p(z|\mathbf{s})$

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need. See also: Gregor et al. Variational Intrinsic Control. 2016