
Model-Based Policy Learning

CS 285

Instructor: Sergey Levine
UC Berkeley



Last time: model-based RL with MPC
ev

er
y 

N
 s

te
p

s



The stochastic open-loop case

why is this suboptimal?



The stochastic closed-loop case



Backpropagate directly into the policy?

backprop backprop
backprop

easy for deterministic policies, but also possible for stochastic policy



What’s the problem with backprop into policy?

big gradients here small gradients here

backprop backprop
backprop



What’s the problem with backprop into policy?

backprop backprop
backprop



What’s the problem with backprop into policy?

• Similar parameter sensitivity problems as shooting methods
• But no longer have convenient second order LQR-like method, 

because policy parameters couple all the time steps, so no dynamic 
programming

• Similar problems to training long RNNs with BPTT
• Vanishing and exploding gradients
• Unlike LSTM, we can’t just “choose” a simple dynamics, dynamics 

are chosen by nature

backprop backprop
backprop



What’s the solution?

• Use derivative-free (“model-free”) RL algorithms, with the model 
used to generate synthetic samples
• Seems weirdly backwards

• Actually works very well

• Essentially “model-based acceleration” for model-free RL



Model-Free Learning With a Model



Model-free optimization with a model

• Policy gradient might be more stable (if enough samples are used) 
because it does not require multiplying many Jacobians

• See a recent analysis here:
• Parmas et al. ‘18: PIPP: Flexible Model-Based Policy Search Robust to the 

Curse of Chaos

Policy gradient:

Backprop (pathwise) gradient:



Model-based RL via policy gradient

What’s a potential problem with this approach?



The curse of long model-based rollouts

How quickly does error accumulate?



How to get away with short rollouts?

- huge accumulating error
- never see later time steps

+ much lower error + much lower error

+ see all time steps

- wrong state distribution



Model-based RL with short rollouts



Dyna-Style Algorithms



Model-based RL with short rollouts



Model-free optimization with a model

Richard S. Sutton. Integrated architectures for learning, planning, and 

reacting based on approximating dynamic programming. 

Dyna online Q-learning algorithm that performs model-free RL with a model



General “Dyna-style” model-based RL recipe

+ only requires short (as few as one step) rollouts from model

+ still sees diverse states



Model-accelerated off-policy RL

dataset of transitions
(“replay buffer”)

target 
parameters

current 
parameters

buffer of 
model-based 

transitions



Model-Based Acceleration (MBA)
Model-Based Value Expansion (MVE)
Model-Based Policy Optimization (MBPO)

Gu et al. Continuous deep Q-learning with model-based acceleration. ‘16

Feinberg et al. Model-based value expansion. ’18

Janner et al. When to trust your model: model-based policy optimization. ‘19

+ why is this a good idea?

- why is this a bad idea?



Multi-Step Models & Successor Representations



What kind of model do we need to evaluate a 
policy?

The job of the model is to evaluate the policy

generate 
samples (i.e.

run the policy)

fit a model to 
estimate return

improve the 
policy

(if you can evaluate it, you can make it better)

let’s keep it simple

(easy to re-derive for 
action-dependent rewards)



What kind of model do we need to evaluate a 
policy?

generate 
samples (i.e.

run the policy)

fit a model to 
estimate return

improve the 
policy

(if you can evaluate it, you can make it better)

just to ensure it sums to 1



What kind of model do we need to evaluate a 
policy?

generate 
samples (i.e.

run the policy)

fit a model to 
estimate return

improve the 
policy

(if you can evaluate it, you can make it better)

This is called a successor representation

Dayan. Improving Generalisation for Temporal Difference Learning: The Successor Representation. 1993.



Successor representations

A few issues…

➢ Not clear if learning successor representation is easier than model-free RL
➢ How to scale to large state spaces?
➢ How to extend to continuous state spaces?



Successor features

so what?

If the number of features is much 
less than the number of states, 
learning them is much easier!



Successor features



Using successor features

Idea 1: recover a Q-function very quickly

Is this the optimal Q-function?

Equivalent to one step of policy iteration

Better than nothing, but not optimal



Using successor features

Idea 2: recover many Q-functions

Finds the highest reward policy in each state

Barreto et al. Successor Features for Transfer in Reinforcement Learning. 2016.



Continuous successor representations

always zero for any sampled state if states are continuous



Continuous successor representations



The C-Learning algorithm

This is an on policy algorithm

Could also derive an off policy algorithm

Eysenbach, Salakhutdinov, Levine. C-Learning: Learning to Achieve Goals via Recursive Classification. 2020.


