Model-Based Policy Learning

CS 285

Instructor: Sergey Levine
UC Berkeley




every N steps

Last time: model-based RL with MPC

model-based reinforcement learning version 1.5:
1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?

plan through f(s,a) to choose actions

execute the first planned action, observe resulting state s’ (MPC)

A

append (s,a,s’) to dataset D



he stochastic open-loop case

Zfr(st,atﬂal ..... ar

t

why is this suboptimal?



he stochastic closed-loop case

T =argmax E
s

T~p(T)

|

Zfr(st,at)]

form of 7?7

\
neural ne \O,a
1 net %\O

time-varying linear



Backpropagate directly into the policy?

backprop

backprop

n

easy for deterministic policies, but also possible for stochastic policy

model-based reinforcement learning version 2.0:
1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?
3. backpropagate through f(s,a) into the policy to optimize mg(as|s;)

4. run 7o (as|s;), appending the visited tuples (s,a,s’) to D



What’s the problem with backprop into policy?

backprop

backprop

*‘ /

big gradients here small gradients here




What’s the problem with backprop into policy?

backprop

backprop

e~




What’s the problem with backprop into policy?

backprop

backprop

* Similar parameter sensitivity problems as shooting methods
* But no longer have convenient second order LQR-like method,
because policy parameters couple all the time steps, so no dynamic
programming
e Similar problems to training long RNNs with BPTT
* Vanishing and exploding gradients

* Unlike LSTM, we can’t just “choose” a simple dynamics, dynamics
are chosen by nature



What’s the solution?

e Use derivative-free (“model-free”) RL algorithms, with the model
used to generate synthetic samples
* Seems weirdly backwards
* Actually works very well
* Essentially “model-based acceleration” for model-free RL



Model-Free Learning With a Model



Model-free optimization with a model

1
Policy gradient: ~ VoJ(0 N Z Z Vo log mo(a;,ils;, t) it

1=1 t=1

T da, ds T dr Y dsy da ds
Back thwi dient: _ tar USi+1 t’ £/ ¢ —1 ¢
ackprop (pathwise) gra VQJ(Q) Z do  da, Z ds H dayr 1 dsy 1 + dsir

t=1 t'=t+1 " =t+42

* Policy gradient might be more stable (if enough samples are used)
because it does not require multiplying many Jacobians

e See a recent analysis here:

* Parmas et al. “18: PIPP: Flexible Model-Based Policy Search Robust to the
Curse of Chaos



Model-based RL via policy gradient

model-based reinforcement learning version 2.5:
1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?
3. use f(s,a) to generate trajectories {7;} with policy my(als)
4. use {7;} to improve my(als) via policy gradient
5)

. run 7y (az|s;), appending the visited tuples (s, a,s’) to D

What'’s a potential problem with this approach?



The curse of long model-based rollouts

e = training-trajeetory— run mg with true dynamics

How quickly does error accumulate?

O(eT?)




How to get away with short rollouts?




Model-based RL with short rollouts

model-based reinforcement learning version 3.0:
1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?
3. pick states s; from D, use f(s,a) to make short rollouts from them
4. use both real and model data to improve my(als) with off-policy RL
D

. run 7y (az|s;), appending the visited tuples (s, a,s’) to D



Dyna-Style Algorithms



Model-based RL with short rollouts

model-based reinforcement learning version 3.0:
1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?
3. pick states s; from D, use f(s,a) to make short rollouts from them
4. use both real and model data to improve my(als) with off-policy RL
D

. run 7y (az|s;), appending the visited tuples (s, a,s’) to D



Model-free optimization with a model

Dyna online Q-learning algorithm that performs model-free RL with a model
given state s, pick action a using exploration policy

observe s’ and r, to get transition (s, a,s’,r)

. update model p(s’|s,a) and #(s,a) using (s, a,s’)

. Q-update: Q(s,a) < Q(s,a) + aFy .[r+ max, Q(s',a") — Q(s,a)]

repeat K times:

SRR NI

6. sample (s,a) ~ B from buffer of past states and actions

7. Q-update: Q(s,a) < Q(s,a) + aEy  [r + max, Q(s',a") — Q(s,a)]

Richard S. Sutton. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming.



|II

General “Dyna-style” model-based RL recipe

1. collect some data, consisting of transitions (s, a, s, r)
2. learn model p(s’|s,a) (and optionally, 7(s,a))
3. repeat K times:
4. sample s ~ B from buffer
choose action a (from B, from 7, or random)
. simulate s’ ~ p(s’[s,a) (and r = 7(s,a))

train on (s, a,s’,r) with model-free RL

o N o> o

. (optional) take N more model-based steps



Model-accelerated off-policy RL

evict each time

process 5: model data collection model changes

process 4

process 2
target

upda,te

rollout start
state s ~ BB

process 1: data collection

(s,a,s’,r)

4

process 3
i i

evict old data

w(als) (e.g., e-greedy)




Model-Based Acceleration (MBA)
Model-Based Value Expansion (MVE)
Model-Based Policy Optimization (MBPO)

take some action a; and observe (s;,a;,s,r;), add it to B
sample mini-batch {s;,a;,s’,r;} from B uniformly
use {s;,a;,s;} to update model p(s’[s, a)

. sample {s;} from B

for each s;, perform model-based rollout with a = 7(s) &\

use all transitions (s, a, s, r) along rollout to update Q-function k

D Ut A W N e

Gu et al. Continuous deep Q-learning with model-based acceleration. ‘16
Feinberg et al. Model-based value expansion. ’18
Janner et al. When to trust your model: model-based policy optimization. ‘19



Multi-Step Models & Successor Representations



What kind of model do we need to evaluate 3
policy?

The job of the model is to evaluate the policy (if you can evaluate it, you can make it better)

J(ﬂ-) — ESNp(Sl) [Vﬂ'(sl)] fit model f(S, a)

L fit a model to
00
. P ﬁ estimate return
4 (St) — E , Y EM;Nw(at; EX, [T(St’a at’)]
-

generate
o let’s keep it simple samples (i.e.
r . run the policy)
— Z At tEp(St, 1s,)[7(8¢7)] (easy to re-derive for
Py action-dependent rewards) ‘ improve the
00 policy
t'—t

=D "> p(se = slsi)r(s)



What kind of model do we need to evaluate 3

policy?

V7(se) = Z ok _tEp(stwst) r(se)]

t=t’

=) (Y Y rp(sy = slst)) r(s)

S

\ )
|

Pr (Sfuture — S|St)

pw(sfuture — S‘St) — (]- — 7) Z fYt _tp(st’ — S|St)

\_Y_} =t

just to ensure it sumsto 1

(if you can evaluate it, you can make it better)

fit model f(s,a)
fit a model to
ﬁ estimate return

generate
samples (i.e.
run the policy)

—

improve the
policy



What kind of model do we need to evaluate 3
policy?

(if you can evaluate it, you can make it better)

oo
P (Stuture = S|8¢) = (1 — VT tp(sy = s|sy
(Stut se) = )Z ( st) fit model f(s,a)

t'=t

1 fit a model to
VW(St) -7 Zpﬂ' (Sfuture - S|St)T(S) ﬁ estimate return

S
\ Y ) generate
samples (i.e.
HJW (St ) Tfr_*' run the policy)

; improve the

policy

U%T(St) — pﬂ(sfuture — 7:|St)

This is called a successor representation

Dayan. Improving Generalisation for Temporal Difference Learning: The Successor Representation. 1993.



Successor representations

(1 o 7)5(815 — Z) + ,}/Eat’\-”ﬂ'(at|St),St+1Np(St_|_]_|St,at) [M?(St—Fl)]

\ J
|

like a Bellman backup with “reward” r(s;) = (1 —~)d(s; = i)

in practice, we can use vectorized backups for all 2 at once

A few issues...

» Not clear if learning successor representation is easier than model-free RL
» How to scale to large state spaces?
» How to extend to continuous state spaces?



Successor features

pi (se) = (1 —7) Z’Yt,_tp(st' = i[s¢)

t'=t

V7 (s¢) = u™(se)' 7

so what?

f the number of features is much
ess than the number of states,
earning them is much easier!

YT (se) =y pZ(se)s(s) W (se) = " (s0)" &,

if r(s) = 32, ¢j(s)w; = ¢(s)' w
then V7 (s;) = ™ (s¢)T'w

=) YT (st)w;
j

= u"(sr) oyw
j

=W (s7)" ) o5w = u(s)'T
J



Successor features

M?(St) — (1 o 7)5(St — 7’) + ’YEatNW(at|St),St—|—1NP(St—|—1|St,at)[M?(St—%l)] >

w;T (st) = ¢j(st) + YEa,~m(ar]s:) sep1~p(sis1lse.ar) W;r (St+1)]

special case with
¢i(st) = (1 —)d(sy = 1)

can also construct a “Q-function-like” version:

¢;T (Stﬂ at) — gbj (St) + 7E8t+1Np(St+1|St,at),at+1N7T(at+1 St41) [¢;(St+1j at-i-l)]

Q7 (st,a) = Y™ (s, )" w when 7(s;) =~ ¢(s¢)Tw



Using successor features

Idea 1: recover a Q-function very quickly

1. Train 9™ (s¢, a¢) (via Bellman backups)

2. Get some reward samples {s;,7;} Is this the optimal Q-function?
3. Get w + argming »_. ||d(s;)Tw — ri||?
4. Recover Q™ (s¢,a;) ~ Y™ (s, a;)tw
m'(s) = argmax " (s,a)’ w
a
Equivalent to one step of policy iteration

Better than nothing, but not optimal



Using successor features

Idea 2: recover many Q-functions

1. Train ¢)™* (s, a;) for many policies 7 (via Bellman backups)

2. Get some reward samples {s;,r;}
3. Get w + argming »_. ||d(s;)Tw — ri||?

4. Recover Q™ (s, a;) ~ 9™ (s;,a;)! w for every

7'(8) = arg max max Y™ (s,a)l'w
a

Finds the highest reward policy in each state

Barreto et al. Successor Features for Transfer in Reinforcement Learning. 2016.



Continuous successor representations

I’L’ZT(St) — (1 o 7)5(St — 7’) + ,)/Eat”\-”ﬂ'(at|St),St_|_1Np(St_|_]_|St,at)[M?(St+1)]

\

always zero for any sampled state if states are continuous

Framing successor representation as classification:

pﬂ- (Sfuture |St7 at)
pﬁ (Sfuture |Sta at) + p7r (Sfuture)

p" (F = 1|s¢, at, Stuture) =

binary classifier

F =1 means sputure 1S a future state from s;, a; under 7w

D—I— ~ pW(Sfuture ‘Sta at) D_ ~ pﬂ- (S)



Continuous successor representations

D—I— ~ pw(sfuture ‘Sta at) D_ ~ pﬂ- (S)

pﬂ- (Sfuture ‘Sta at)
pw (Sfuture |St7 at) + p7r (Sfuture)

pﬂ-(F — 1|Staatasfuture) —

pﬂ- (Sfuture)
pw (Sfuture |St7 at) + p7r (Sfuture)

pﬂ-(F — Olstaatvsfuture) —

pﬂ-(F =1 St, At, Sfuture) _ pﬂ-(sfuture|sta at)
pW(F =0 St, At, Sfuture) pw(sfuture)

ﬂ-(F =1 Staatasfuture) T Y ¢
"T(F — 0 St, ay, Sfuture)p (Sfuture) =D (Sfuture ‘Sta at)

\constant independent of a;, s;



The C-Learning algorithm

D—I— ~ pW(Sfuture ‘Sta at) D_ ~ pﬂ- (S)

p7T (F — 1|St7 at, Sfuture)
pW(F — 1|St7 ag, Sfuture) + pﬂ(sfuture)

pW(F — 1|Staatasfuture) —

To train:

1. Sample s ~ p™(s) (e.g., run policy, sample from trajectories)
2. Sample s ~ p™ (Sguure|St, a¢) (e.g., pick sy where t’ = t+A, A ~ Geom())
3. Update p™ (F' = 1|s;, a;, s) using SGD with cross entropy loss

This is an on policy algorithm

Could also derive an off policy algorithm

Eysenbach, Salakhutdinov, Levine. C-Learning: Learning to Achieve Goals via Recursive Classification. 2020.



