monocular RGB
camera

7 DoF robotic
manipulator

2-finger
gripper

object
bin

Option 1:

Understand the problem, design a solution

Option 2:

Set it up as a machine learning problem

supervised
learning







reinforcement
learning




What are some recent advances
we’ve seen in Al?

M which animal da you like?
\¥)
Ioke cows. %

M i ike?

T : .

W'} | heardihey go io college.
Cows go 1o college? ﬁ

P
Y

| heard that a cow went to Harvard

What did the cow study? w
B M Govine sciences
b o
Do horses ever go to Harvard? %
Pt
M

7 ®

vibrant portrait painting of Salvador Dalf with a robotic half face a shiba inu wearing a beret and black turtleneck

Explaining a joke
Prompt
Explain this joke:
Joke: Did you see that Google just hired an eloquent whale for image credit: UW IPD

their TPU team? It showed them how to communicate between two

an espresso machine that makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation a corgi’s head depicted as an explosion of a nebula different pod s!

Model Response

Prediction: TPUs are a type of computer chip that Google uses

for deep learning. A "pod" is a group of TPUs. A "pod" is also a

group of whales. The joke is that the whale is able to

communicate between two groups of whales, but the speaker is

pretending that the whale is able to communicate between two

groups of TPUs. 4



What’s the main idea behind this?

Explaining a joke
- O

like cows.

Prompt

TN | reord they go 1 college

Explain this joke:

Cows go 1o college?

Joke: Did you see that Google just hired an eloquent whale for
their TPU team? It showed them how to communicate between two
different pods!

Y | heard thata cow went to Harvard

Model Response

)
Prediction: TPUs are a type of computer chip that Google uses
for deep learning. A "pod" is a group of TPUs. A "pod" is also a

@
a*
@

Do horses ever go to Harvard?

::n_@n group of whales. The joke is that the whale is able to
communicate between two groups of whales, but the speaker is
) © pretending that the whale is able to communicate between two

groups of TPUs.

po(x) po(y|x)
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What does reinforcement learning do differently?

_| Agent I
Vk_J
action

R, A,
. Rt+1

; s.. | Environment ]4—

\

reward

N\

evolutionary algorithms, controls, optimization

Synthesis of Complex Behaviors

with
Online Trajectory Optimization
LEE SEDOL

01:33:54

01:38:39

Yuval Tassa, Tom Erez & Emo Todorov

IEEE International Conference
on Intelligent Robots and Systems
2012

Evolved Virtual Creatures. Model-Predictive Control with iLQG.
Karl Sims, 1994 Yuval Tassa, 2012



Reinforcement learning can discover new solutions

Impressive because no person had
thought of it!

01:33:54
01:38:39

“Move 37” in Lee Sedol AlphaGo match: reinforcement
learning “discovers” a move that surprises everyone

Impressive because it looks like
something a person might draw!

esso machine that makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation a corgi’s head depicted as an explosion of a nebula



Deep Reinforcement Learning, Decision Making,
and Control

CS 285

Instructor: Sergey Levine
UC Berkeley




Course logistics



Class Information & Resources

Sergey Levine Kyle Stachowicz Joey Hong Vivek Myers Kevin Black
Instructor Head GSI GSI GSI GSI

Course website: http://rail.eecs.berkeley.edu/deeprlcourse

Ed: CS285 Deep Reinforcement Learning: https://edstem.org/us/join/c9XPxK

Gradescope: CS285 Deep Reinforcement Learning: https://www.gradescope.com/courses/571673

Office hours: check course website, mine are after class right here (starting next week)

Links to lecture videos, etc.: always posted on Ed (pinned post)


http://rail.eecs.berkeley.edu/deeprlcourse
https://edstem.org/us/join/c9XPxK
https://www.gradescope.com/courses/571673

Prerequisites & Enrollment

* All enrolled students must have taken CS182, CS5189, CS289, CS281A,
CS282, or an equivalent course at your home institution

* Please contact Sergey Levine if you haven’t

* If you are not eligible to enroll directly into the class, fill out the
enrollment application form (do this today):
http://rail.eecs.berkeley.edu/deepricourse/

* We will enroll subject to availability based on responses to this form
* We will not use the official CalCentral wait list!
* Fill out an application before the end of this week (8/25/23)!



http://rail.eecs.berkeley.edu/deeprlcourse/

Class format

* Lectures

* Lectures will be posted over the weekend on

YouTube

The YouTube playlist link will be posted on Ed

and on the course website:

* https://youtube.com/playlist?list=PL iWQOSsE6TfVYGEGIAOMaOzzv41Jfm Ps

Some lectures from past years, some new
Watch the lectures in advance

Post questions on Ed thread

Upvote questions on Ed thread

Every lecture has a quiz

A
S

Cad®

4

Deep RL: CS 285 Fall 2021

25/150

CANCEL SAVE
4 videos * No views * Updated today
Public v

Lectures for UC Berkeley CS 285: Deep /‘
Reinforcement Learning for Fall 2021

G RAIL

= SORT
¥ % CS 285: Lecture 1, Part 1
{ 0 d X

- ;m

RAIL

M ... CS 285: Lecture 1, Part 2

& e

CS 285: Lecture 1, Part 3

RAIL
L

RAI

-
-2
L |
L1/ CS 285: Lecture 1, Part 4

£ ma

RAIL

CS 285: Lecture 1, Part 1

> Unlisted

5 views * Aug 22, 2020

RAIL
793 subscribers

0 Comments = SORTBY

e Add a public comment

SUBSCRIBE


https://youtube.com/playlist?list=PL_iWQOsE6TfVYGEGiAOMaOzzv41Jfm_Ps

Class format

* Every lecture has a quiz

* Complete on Gradescope prior to class
* Due at 5 pm on the day of the corresponding lecture
* Except today’s quiz, which is due 5 pm next wk Mon

e Should never take more than 5-10 min if you
watched the lecture and understood it

e Check your understanding, lightweight & quick

* Also serves to summarize the key concepts you
should know

* If you don’t like your grade you can actually
take it again (second time)!

* We release your grades automatically on the due
date at 5 pm

 We release a “second try” quiz that you can take if
you don’t like your grade (within 48 hours)

* Answers will be released with “second try” quiz

Lecture 1 Quiz

TTTTTTTTTTT

a1
1 Point

Which of the following are true for RL, but not supervised learning? Check all that apply

In RL, sequential inputs are not independent and identically distributed
In RL, we cannot use deep neural networks
In RL, the task is not simply to match the ground truth label

In RL, we don't have any access to a loss, reward, or objective signal of any sort

Q2

1 Point

Which of the following could be framed as reinforcement learning problems? Check all that
apply

buying and selling inventory for a warehousing application
controlling a robot to run at a desired speed

ontrolling a vehicle to regulate the flow of traffic



Class format

* In class

* Attend class live: meant to be interactive

* Discuss questions: submit & upvote Ed questions to have a fun class!

* More in-depth derivations: we’ll go through some whiteboard derivations
Participate and ask questions: plenty of time for Q&A, bring your questions!

Length: Class will be about 50 min, followed by about 30 min of OH, since you
are already watching 50-70 minutes of online lecture

 Office hours: My office hours will take place immediately after class

* As soon as we cover all discussion, we will switch to “office hours” — use this
time to ask questions about final projects, etc.

* Exception is today, since we have a “classic” lecture, and presumably you don’t
have many OH questions on first day of class :)



What you should know

* Assignments will require training neural networks with standard
automatic differentiation packages (PyTorch)

* Review Section
* We will have a review section to cover PyTorch next week on Wednesday
e Optional, no quiz, but very useful if you are unfamiliar with it!

* If you are unsure about background, try HW1 as soon as it comes out (next
Monday) and if you’re having trouble, come to the review section



Course content



What we’ll cover

From supervised learning to decision making

Model-free algorithms: Q-learning, policy gradients, actor-critic
Model-based algorithms: planning, sequence models, etc.
Exploration

Offline reinforcement learning

Inverse reinforcement learning

N o U s W NhPE

Advanced topics, research talks, and invited lectures



Assignments

Homework 1: Imitation learning (control via supervised learning)
Homework 2: Policy gradients

Homework 3: Q-learning and actor-critic algorithms

Homework 4: Model-based reinforcement learning

Homework 5: Offline reinforcement learning

Final project: Research-level project of your choice (form a group of up to
2-3 students, you’re welcome to start early!)

O ueEWNhE

Grading: 50% homework (10% each), 40% project, 10% quizzes
5 late days total for homeworks
(does not apply to quizzes, proposal, milestone report, or final project report)



Your “Homework” Today

Make sure you are signed up for Ed (UC Berkeley CS285)

2. Start forming your final project groups, unless you want to work
alone, which is fine
3. Take the lecture 1 quiz

* it should be super quick if you watched lecture 1, mostly to familiarize yourself with
Gradescope interface



What is reinforcement learning?



What is reinforcement learning?

Mathematical formalism for learning-based
decision making

Approach for learning decision making and control
from experience



How is this different from other machine
earning topics?

Standard (supervised)
machine learning:

Reinforcement learning:

* Datais noti.i.d.: previous outputs influence
future inputs!
e Ground truth answer is not known, only know
if we succeeded or failed
f(x) =y
* more generally, we know the reward

given D = {(x4,¥:)}

learn to predict y from x

Usually assumes:

e i.i.d.data
* known ground truth outputs in training

supervised
learning

learning

reinforcement }




What is reinforcement learning?

supervised learning

reinforcement learning

y N

'_| Agent |

L:Exﬁ;J [oMajbbd] a?e reward
e’ §

R,

g Uy

<—”-—r .
.. | Environment

action
A,

. <
Input: x pick your
output: y input: s; at each time step own actions
data: D = {(xi,yi)} ~ output: a; at each time step /
goal: fo(x;) = y; someone gives data: (si,a1,71,...,Sp,ar,rr)
this to you

goal: learn my : s — ay

to maximize ), ry



decisions (actions)

consequences

observations (states)
rewards

Actions: muscle contractions Actions: motor current or torque
Observations: sight, smell Observations: camera images
Rewards: food Rewards: task success measure (e.g.,

running speed)

Actions: what to purchase
Observations: inventory levels
Rewards: profit



Complex physical tasks

oo ]

Rajeswaran, et al. 2018



Really complex physical tasks!

Learning and Adapting Agile Locomotion Skills

{4 Ba e "
2L :.‘ i
\_/

lauramsmith.github.io
https://sites.google.com/berkeley.edu/twirl

Smith et al., “Learning and Adapting Agility Skills by Transferring Experience.” 2022.



Really really complex physical tasks!

Advanced Skills by Learning
Locomotion and Local Navigation
End-to-End

Nikita Rudin, David Hoeller,
Marko Bjelonic and Marco Hutter

‘ i .

Rudin et al., “Learning Locomotion and Local Navigation End-to-End.” 2022



Unexpected solutions

Mnih, et al. 2015



At scale in the real world

Deep RL at Scale: Sorting Waste in Office Buildings with
a Fleet of Mobile Manipulators

Deep RL at Scale: Sorting Waste in Office Buildings with
a Fleet of Mobile Manipulators

Herzog et al. Deep RL at Scale: Sorting Waste in Office Buildings with a Fleet of Mobile Manipulators. 2023.



Not just games and robots!

Cathy Wu



Reinforcement learning with language models

Prompts Dataset

Sample many prompts

(
Initial Language Model

2999

Train on

{sample, reward} pairs

Reward (Preference)
Model
&\ Y
Y @ /k/’
et N
= ONITNT g
= (’“:r L =
g Xa
vV W
J

Lorem ipsum dolor
sit amet, consecte
adipiscing elit. Aen|
Donec quam felis
vulputate eget, arc
Nam quam nunc
eros faucibus tinciq

luctus pulvinar, her

Eq

Human Scoring

Generated text

Source: https://huggingface.co/blog/rlhf

Outputs are ranked
(relative, ELO, etc.)

Can you explain to me how RL with human feedback works for language models like | am
five?

Sure! So, imagine you have a robot named Rufus who wants to learn how to talk like a

human. Rufus has a language model that helps him understand words and sentences.

First, Rufus will say something using his language model. For example, he might say "l am

arobot."

Then, a human will listen to what Rufus said and give him feedback on whether it sounded
like a natural sentence a human would say. The human might say, "That's not quite right,
Rufus. Humans don't usually say 'l am a robot.' They might say 'l'm a robot' or 'l am a

machine.

Rufus will take this feedback and use it to update his language model. He will try to say
the sentence again, using the new information he received from the human. This time, he

might say "I'm a robot."

The human will listen again and give Rufus more feedback. This process will continue until

Rufus can say sentences that sound natural to a human.

Over time, Rufus will learn how to talk like a human thanks to the feedback he receives
from humans. This is how language models can be improved using RL with human

feedback.



Reinforcement learning with image generation

DDPO
(RL)

“a dolphin riding a bike”

Kevin Black*, Michael Janner*, Yilun Du, llya Kostrikov, Sergey Levine. Training Diffusion Models with Reinforcement Learning. 2023.



Reinforcement learning for chip design

Actions Reward
RL .":'U;IEI"III Places Macros 'DFIE at a TirT"IE Force-Directed Method
| l l l Places Standard Cells | HPWL
| [& ] L] [ )
‘ u |71 4 +- | | +i | ﬁ rﬁ = Congestion
l L L
= From Scralch = Finetune a Pre-frained Policy
0.4
0.3
E W
S 02 w o N
g
&
a 0.1
0
0 10 20 40 41

Training Time (hrs)

Source: https://ai.googleblog.com/2020/04/chip-design-with-deep-reinforcement.html




Why should we study
deep reinforcement learning?



Reinforcement learning can discover new solutions

Impressive because no person had
thought of it!

01:33:54
01:38:39

“Move 37” in Lee Sedol AlphaGo match: reinforcement
learning “discovers” a move that surprises everyone

Impressive because it looks like
something a person might draw!

esso machine that makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation a corgi’s head depicted as an explosion of a nebula

35



How does data-driven Al work?

0.06

0.05

0.04

0.03

0.02

Y] hich aimal do you ke
'M/.IIIIIII.'

TN | reord they go 1 college

like cows.

Cows go 1o college?

Y | heard thata cow went to Harvard

(M)

o

L]

What did the cow study?

Bavine sciences.

Do horses ever go to Harvard?

po(y[x)

@
a*
@
@

Explaining a joke

Prompt
Explain this joke:

Joke: Did you see that Google just hired an eloquent whale for
their TPU team? It showed them how to communicate between two
different pods!

Model Response

Prediction: TPUs are a type of computer chip that Google uses
for deep learning. A "pod" is a group of TPUs. A "pod" is also a
group of whales. The joke is that the whale is able to
communicate between two groups of whales, but the speaker is
pretending that the whale is able to communicate between two
groups of TPUs.

36



So where does that leave us?

[ ] [ ] [ ]
Data-Driven Al Reinforcement Learning
Explaining a joke =
EP‘:""ptt“' Jokes (s e
Joke: Did you see that Google just hired an eloquent whale for ; i g‘jjrirﬁl: ¢ ALPHAGO
their TPU te ? It showed them how to communicate between two

JAll about optimization T 4!
s c .

+ learns about the real world from data + optimizes a goal with emergent behavior

- doesn’t try to do better than the data - but need to figure out how to use at scale!

Data without optimization

doesn’t allow us to solve new
problems in new ways

37



A bitter but misunderstood lesson

We have to learn the bitter lesson that
building in how we think we think
does not work in the long run.

The two methods that seem to scale

A1 N 2 A1 [PATIINO ANA SPTCYU

Data without optimization Optimization without data is
doesn’t allow us to solve new | P hard to apply to the real
problems in new ways world outside of simulators

Learning Search
use data to extract patterns use computation to extract inferences

iy

Richard Sutto

some optimization process that uses
optimization (typically iterative) computation to
make rational decisions

allows us to understand the world leverages that understanding for emergence 38



A bit of philosophy ( secuimdaveresdbramsanet )

Daniel Wolpert

(knows quite a lot
about brains)

Why do we need machine learning anyway?

A postulate:

“We have a brain for one reason and one reason
only - that's to produce adaptable and complex
movements. Movement is the only way we have

We need machine learning for one reason and one reason
only — that’s to produce adaptable and complex decisions.

affecting the world around us... | believe that to

Decision: how do | move my joints? Kunderstand movement is to understand the whole
brain.” /

i Decision: how do | steer the car?

What is the decision? The image label?

What happens with that label afterwards?

39



How do we build intelligent machines?

HAL 9000




Why should we study this now?

big end-to-end trained models work quite well! we have RL algorithms that we can
feasibly combine with deep networks

00:01:00

‘Which animal do you [ike?

Y] | heard they go o college

H 1 heard that a cow went te Harvard

and yet learning-based control in truly real-world
settings remains a major open problem!




What other problems do we need to solve to
enable real-world sequential decision making?



Beyond learning from reward

* Basic reinforcement learning deals with maximizing rewards

* This is not the only problem that matters for sequential decision
making!

* We will cover more advanced topics

* Learning reward functions from example (inverse reinforcement learning)
* Transferring knowledge between domains (transfer learning, meta-learning)
* Learning to predict and using prediction to act



Where do rewards come from?

reward

Mnih et al.’15
reinforcement learning agent

[-] LazyOptimist 32 points 5 days ago
As human agents, we are accustomed to operating with
rewards that are so sparse that we only experience them
once or twice in a lifetime, if at all.

I Basal ganglia

il cortex (movement, reward)

M Thalamus
(sensory gateway)

M Hippocampus
(memory)

7
Hypothalamus
(regulates body
function)

Amygdala
(emotion)




Are there other forms of supervision?

* Learning from demonstrations
* Directly copying observed behavior
* Inferring rewards from observed behavior (inverse reinforcement learning)

* Learning from observing the world
* Learning to predict
* Unsupervised learning

* Learning from other tasks
* Transfer learning
* Meta-learning: learning to learn



Imitation learning

Bojarski et al. 2016



More than imitation: inferring intentions

Warneken & Tomasello



Inverse RL examples

Demo 1 (of20).

Finn et al. 2016



Prediction

“the idea that we predict the consequences of our motor
commands has emerged as an important theoretical
concept in all aspects of sensorimotor control”

Prediction Precedes Control in Motor Learning

J. Randall Flanagan,"* Philipp Vetter, Procedures for detaile). Figure 1 shows, for a sEngle
Roland 5. Johamsson,” and Danisl M. Wolpert! subiject, the hand path {fop trace) and the grg (middie)

Predicting the Consequences of Our Own Actions: The Role of
Sensorimotor Context Estimation

Sarah J. Blakemore, Susan J. Goodbody, and Danisl M. Waolpert
Sabal Dapartment of Neurophysiology, instiiule of Newralogy, Linhars®y Collage London, Landan WCTN 3806,

Predictive coding in the visual cortex:
a functional interpretation of some
extra-classical receptive-field effects

Rajesh P N, Rao' and Dana H. Ballard®



Prediction for real-world control

v, r,-" ", -.O-.J -J NE Ny N3
A Ta e Ta e Ta e e

als MG G G G G G

Ebert et al. 2017



Jsing tools with
oredictive models

Xie et al. 2019



me a lo

Voleti et al. 2022



Predictive models have come a long way!

Voleti et al. 2022



Leveraging advances in pretrained models

Internet-Scale VQA + Robot Action Data Vision-Language-Action Models for Robot Control Closed-Loop
Robot Control

Q: What is happening Q: What should the robot

in the image? bR Rt RT-2 Large Language Model
A grey donkey walks £ 3 % & F 3 % .3
down the street. f ‘

-
v

P the straerry
into the correct bowl

Q: Que puis-je faire avec
ces objets?

ViT

L T
OO O
S————

Faire cuire un gateau. )

|

[A:132 114 128525 156 | ———

AT=[01,-02, 0]

Q: What should the robot De-Tokenize AR=[10, 25, -7)
do to <task>? Robot Action
3 f
ATranslation = [0.1, -0.2, 0] >
ARotation = [10’, 25} -7°] Co-Fine-Tune Deploy

RT-2: Vision-Language-Action Models: https://robotics-transformer2.github.io/



Leveraging advances in pretrained models

RT-2: Vision-Language-Action Models: https://robotics-transformer2.github.io/



Leveraging advances in pretrained models

RT-2: Vision-Language-Action Models: https://robotics-transformer2.github.io/



How do we build intelligent machines?



How do we build intelligent machines?

* Imagine you have to build an intelligent machine, where do you start?

Anatomy and Functional Areas of the Brain

Functional Areas of Soeabont cona
the Cerebral Cortex

Somatosensory Assoclation Area
Evalicalion of wighs, exm
lomperature, g, for oBject Fecogtion

s Area
Wrtters 87 3p0kan IATGUAGH Comosehoss0n

Functional Areas of
the Cerebellum

Motor Functions
CGooedraton of movemert
Balance and equilbrum
Postuin




Learning as the basis of intelligence

* Some things we can all do (e.g. walking)
e Some things we can only learn (e.g. driving a car)
* We can learn a huge variety of things, including very difficult things

* Therefore our learning mechanism(s) are likely powerful enough to do
everything we associate with intelligence

e But it may still be very convenient to “hard-code” a few really important bits



A single algorithm?

* An algorithm for each “module”?
* Or a single flexible algorithm?

[BrainPort; Martinez et al; Roe et al.]
adapted from A. Ng



What must that single algorithm do?

* Interpret rich sensory inputs \M\ 9 (
)

* Choose complex actions




Why deep reinforcement learning?

* Deep = scalable learning from large, complex datasets

* Reinforcement learning = optimization

Learning Search
use data to extract patterns use computation to extract inferences

@-)

allows us to understand the world leverages that understanding for emergence

optimization




Some evidence in favor of deep learning

Unsupervised learning models of primary cortical
receptive fields and receptive field plasticity

Andrew Saxe, Maneesh Bhand, Ritvik Mudur, Bipin Suresh, Andrew Y. Ng
Department of Computer Science
Stanford University
{asaxe, mbhand, rmudur, bipins, ang}@cs.stanford.edu
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Some evidence for reinforcement learning

* Percepts that anticipate reward
become associated with similar
firing patterns as the reward
itself

e Basal ganglia appears to be
related to reward system

* Model-free RL-like adaptation is
often a good fit for experimental
data of animal adaptation

* But not always...

Reinforcement learning in the brain

Yael Niv

Psychology Department & Princeton Neuroscience Institute, Princeton University



What challenges still remain?

* We have great methods that can learn from huge amounts of data

* We have great optimization methods for RL

* We don’t (yet) have amazing methods that both use data and RL

* Humans can learn incredibly quickly, deep RL methods are usually slow

* Humans reuse past knowledge, transfer learning in RL is an open problem
* Not clear what the reward function should be

* Not clear what the role of prediction should be



Instead of trying to produce a
program to simulate the adult
mind, why not rather try to
produce one which simulates the
child's? If this were then subjected
to an appropriate course of
education one would obtain the
adult brain.

- Alan Turing

general learning
algorithm

environment




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Deep Reinforcement Learning, Decision Making, and Control  CS 285  Instructor: Sergey Levine UC Berkeley
	Slide 9: Course logistics
	Slide 10: Class Information & Resources
	Slide 11: Prerequisites & Enrollment
	Slide 12: Class format
	Slide 13: Class format
	Slide 14: Class format
	Slide 15: What you should know
	Slide 16: Course content
	Slide 17: What we’ll cover
	Slide 18: Assignments
	Slide 19: Your “Homework” Today
	Slide 20: What is reinforcement learning?
	Slide 21: What is reinforcement learning?
	Slide 22: How is this different from other machine learning topics?
	Slide 23: What is reinforcement learning?
	Slide 24
	Slide 25: Complex physical tasks
	Slide 26: Really complex physical tasks!
	Slide 27: Really really complex physical tasks!
	Slide 28: Unexpected solutions
	Slide 29: At scale in the real world
	Slide 30: Not just games and robots!
	Slide 31: Reinforcement learning with language models
	Slide 32: Reinforcement learning with image generation
	Slide 33: Reinforcement learning for chip design
	Slide 34: Why should we study deep reinforcement learning?
	Slide 35
	Slide 36
	Slide 37
	Slide 38: A bitter but misunderstood lesson
	Slide 39: A bit of philosophy
	Slide 40
	Slide 41: Why should we study this now?
	Slide 42: What other problems do we need to solve to enable real-world sequential decision making?
	Slide 43: Beyond learning from reward
	Slide 44: Where do rewards come from?
	Slide 45: Are there other forms of supervision?
	Slide 46: Imitation learning
	Slide 47: More than imitation: inferring intentions
	Slide 48: Inverse RL examples
	Slide 49: Prediction
	Slide 50: Prediction for real-world control
	Slide 51: Using tools with predictive models
	Slide 52: Predictive models have come a long way!
	Slide 53: Predictive models have come a long way!
	Slide 54: Leveraging advances in pretrained models
	Slide 55: Leveraging advances in pretrained models
	Slide 56: Leveraging advances in pretrained models
	Slide 57: How do we build intelligent machines?
	Slide 58: How do we build intelligent machines?
	Slide 59: Learning as the basis of intelligence
	Slide 60: A single algorithm?
	Slide 61: What must that single algorithm do?
	Slide 62: Why deep reinforcement learning?
	Slide 63: Some evidence in favor of deep learning
	Slide 64: Some evidence for reinforcement learning
	Slide 65: What challenges still remain?
	Slide 66

