
CS285 Deep Reinforcement Learning HW4: Model-Based RL

Due November 3rd, 11:59 pm

1 Introduction

The goal of this assignment is to get experience with model-based reinforcement learning. In general, model-
based RL consists of two main parts: learning a dynamics function to model observed state transitions, and
then using predictions from that model in some way to decide what to do (e.g., use model predictions to learn
a policy, or use model predictions directly in an optimization setup to maximize predicted rewards).

In this assignment, you will get both theoretical and practical experience with model-based RL. In the analysis
section, you will analyze the effectiveness of a simple count-based model. Before doing that section, it will be
greatly beneficial to first go over lecture 17 of this course on basics of RL theory (if you wish to complete this
section before the lecture, the same lecture from past years will be sufficient); another beneficial resource will
be section 2 of this textbook. Then, in the coding section, you will implement both the process of learning a
dynamics model, as well as the process of creating a controller to perform action selection through the use of
these model predictions. For references to this type of approach, see this paper and this paper.

1

https://rltheorybook.github.io/rltheorybook_AJKS.pdf
https://arxiv.org/pdf/1708.02596.pdf
https://arxiv.org/pdf/1909.11652.pdf

2 Analysis

Setting. We have a discounted tabular MDP M = (S,A, P, r, γ) where S, A are a finite set of states and
actions, P is the dynamics model (where P (· | s, a) is a probability distribution over states), r is a reward
function (where rewards are between [0, 1]), and γ ∈ (0, 1) is the discount factor.

Learning a dynamics model. We consider the most naive model-based algorithm. Suppose we have access
to a simulator of the environment, and at each state-action pair (s, a), we call our simulator N times retrieving
samples s′ ∼ P (· | s, a). Then, we build a dynamics model of the environment as simply:

P̂ (s′ | s, a) = count(s, a, s′)

N

where count(s, a, s′) is the number of times we observed (s, a) transitioning to s′. For tabular MDP M , we

can view P̂ as a matrix of size |S||A| × |S|.

Additional notation. Let M̂ be an MDP identical to M , except where the true dynamics P is replaced
by model P̂ . Let V̂ π, Q̂π, V̂ ∗, and Q̂∗ denote the value function and state-action value function, and optimal
value and state-action value function, in M̂ , respectively.

Problem 2.1. In lecture 17, we saw a proof of a lemma called the Simulation Lemma, which states that for
any policy π:

Qπ − Q̂π = γ(I − γP̂π)−1(P − P̂)V π .

Prove the following similar lemmma, which we dub the Alternative Simulation Lemma:

(Alternative Simulation Lemma) For any policy π, we have:

Qπ − Q̂π = γ(I − γPπ)−1(P − P̂)V̂ π .

2

Problem 2.2 In lecture 17, we saw how to bound ||Qπ − Q̂π||∞ using the Simulation Lemma and standard
concentration arguments. We will attempt to do the same with the Alternative Simulation Lemma derived in
Problem 2.1. Which of the following statements (may be multiple) are correct?

Hint: A statement is correct if the inequalities referenced are applied correctly, and if their assumptions hold
before applying them.

Hint 2: For each observed transition from (s, a) to s′, you can define a random variable X = Is′ · V that is
the dot product between Is′ ∈ R|S| an indicator vector at s′ and vector V ∈ R|S|, and whose expected value is
E[X] = P (· | s, a) · V . What does Hoeffding’s inequality look like when applied to all N observed transitions
from (s, a) in this way? Can Hoeffding’s inequality be applied for any vector V ?

1. For any policy π and δ > 0, the following holds with probability at least 1− δ,

||(P − P̂)V̂ π||∞ ≤ max
s,a
||P (· | s, a)− P̂ (· | s, a)||1||V̂ π||∞

≤ 1

1− γ

√
4|S| log(|S||A|/δ)

N
,

where we use Hoeffding’s inequality and the union bound in the second inequality.

2. For any policy π and δ > 0, the following holds with probability at least 1− δ,

||(P − P̂)V̂ π||∞ ≤
1

1− γ

√
2 log(2|S||A|/δ)

N
,

using Hoeffding’s inequality and the union bound.

3. For δ > 0, the following holds with probability at least 1− δ,

||(P − P̂)V ∗||∞ ≤
1

1− γ

√
2 log(2|S||A|/δ)

N
,

where the inequality arises from Hoeffding’s inequality and the union bound.

4. For δ > 0, the following holds with probability at least 1− δ,

||(P − P̂)V̂ ∗||∞ ≤
1

1− γ

√
2 log(2|S||A|/δ)

N
,

where we use Hoeffding’s inequality and the union bound.

Hint 3: Some people have expressed confusion on how to use Hint 2 in Problem 2.2. Since it wasn’t explicitly
covered in lecture 17, here is a usage of Hint 2. You guys can follow the same format where V is replaced with
the appropriate vector, and verify if the argument still holds.

Let V ∈ R|S| be a vector that does not depend on the observed transitions at all. For each observed transition
i that is from (s, a) to s′, we define random variable Xi = Is′ · V that is the dot product between Is′ ∈ R|S|

an indicator vector at s′ and vector V . We see that E[Xi] = P (· | s, a) · V and that 0 ≤ Xi ≤ ||V ||∞.
Note that because V does not depend on the observed transitions, all Xi are independent. Note also that
1
N

∑
i Xi = P̂ (· | s, a) · V . Therefore, we can use Hoeffding’s inequality to conclude that for any (s, a), and

with probability at least 1− δ/(|S||A|), we have

(P (· | s, a)− P̂ (· | s, a)) · V ≤
√

2||V ||2∞ log(2|S||A|/δ)
N

.

3

3 Model-Based Reinforcement Learning

We will now provide a brief overview of model-based reinforcement learning (MBRL), and the specific type
of MBRL you will be implementing in this homework. Please see Lecture 11: Model-Based Reinforcement
Learning (with specific emphasis on the slides near page 9) for additional details.

MBRL consists primarily of two aspects: (1) learning a dynamics model and (2) using the learned dynamics
models to plan and execute actions that minimize a cost function (or maximize a reward function).

3.1 Dynamics Model

In this assignment, you will learn a neural network dynamics model fθ of the form

∆̂t+1 = fθ(st,at) (1)

which predicts the change in state given the current state and action. So given the prediction ∆̂t+1, you can
generate the next prediction with

ŝt+1 = st + ∆̂t+1. (2)

See the previously referenced paper for intuition on why we might want our network to predict state differences,
instead of directly predicting next state.

You will train fθ in a standard supervised learning setup, by performing gradient descent on the following
objective:

L(θ) =
∑

(st,at,st+1)∈D

∥(st+1 − st)− fθ(st,at)∥22 (3)

=
∑

(st,at,st+1)∈D

∥∆t+1 − ∆̂t+1∥22 (4)

In practice, it’s helpful to normalize the target of a neural network. So in the code, we’ll train the network to
predict a normalized version of the change in state, as in

L(θ) =
∑

(st,at,st+1)∈D

∥Normalize(st+1 − st)− fθ(st,at)∥22. (5)

Since fθ is trained to predict the normalized state difference, you generate the next prediction with

ŝt+1 = st +Unnormalize(fθ(st,at)). (6)

3.2 Action Selection

Given the learned dynamics model, we now want to select and execute actions that minimize a known cost
function (or maximize a known reward function). Ideally, you would calculate these actions by solving the
following optimization:

a∗t = argmin
at:∞

∞∑
t′=t

c(ŝt′ ,at′) where ŝt′+1 = ŝt′ + fθ(ŝt′ ,at′). (7)

However, solving Eqn. 7 is impractical for two reasons: (1) planning over an infinite sequence of actions is
impossible and (2) the learned dynamics model is imperfect, so using it to plan in such an open-loop manner
will lead to accumulating errors over time and planning far into the future will become very inaccurate.

Instead, one alternative is to solve the following gradient-free optimization problem:

A∗ = arg min
{A(0),...,A(K−1)}

t+H−1∑
t′=t

c(ŝt′ ,at′) s.t. ŝt′+1 = ŝt′ + fθ(ŝt′ ,at′), (8)

4

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-11.pdf
http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-11.pdf
https://arxiv.org/pdf/1708.02596.pdf

in which A(k) = (a
(k)
t , . . . , a

(k)
t+H−1) are each a random action sequence of length H. What Eqn. 8 says is

to consider K random action sequences of length H, predict the result (i.e., future states) of taking each of
these action sequences using the learned dynamics model fθ, evaluate the cost/reward associated with each
candidate action sequence, and select the best action sequence. Note that this approach only plans H steps
into the future, which is desirable because it prevent accumulating model error, but is also limited because it
may not be sufficient for solving long-horizon tasks.

A better alternative to this random-shooting optimization approach is the cross-entropy method (CEM), which
is similar to random-shooting, but with iterative improvement of the distribution of actions that are sampled
from. We first randomly initialize a set of K action sequences A(0), ..., A(K−1), like in random-shooting.
Then, we choose the J sequences with the highest predicted sum of discounted rewards as the ”elite” action
sequences. We then fit a diagonal Gaussian with the same mean and variance as the ”elite” action sequences,
and use this as our action sampling distribution for the next iteration. After repeating this process M times,
we take the final mean of the Gaussian as the optimized action sequence. See Section 3.3 in this paper for
more details.

Additionally, since our model is imperfect and things will never go perfectly according to plan, we adopt a
model predictive control (MPC) approach, where at every time step we perform random-shooting or CEM to
select the best H-step action sequence, but then we execute only the first action from that sequence before
replanning again at the next time step using updated state information. This reduces the effect of compounding
errors when using our approximate dynamics model to plan too far into the future.

3.3 On-Policy Data Collection

Although MBRL is in theory off-policy—meaning it can learn from any data—in practice it will perform
poorly if you don’t have on-policy data. In other words, if a model is trained on only randomly-collected data,
it will (in most cases) be insufficient to describe the parts of the state space that we may actually care about.
We can therefore use on-policy data collection in an iterative algorithm to improve overall task performance.
This is summarized as follows:

Algorithm 1 Model-Based RL with On-Policy Data

Run base policy π0(at, st) (e.g., random policy) to collect D = {(st,at, st+1)}
while not done do

Train fθ using D (Eqn. 4)
st ← current agent state
for rollout number m = 0 to M do

for timestep t = 0 to T do
A∗ = πMPC(at, st) where πMPC is obtained from random-shooting or CEM
at ← first action in A∗

Execute at and proceed to next state st+1

Add (st,at, st+1) to D
end

end

end

3.4 Ensembles

A simple and effective way to improve predictions is to use an ensemble of models. The idea is simple: rather
than training one network fθ to make predictions, we’ll train N independently initialized networks {fθn}Nn=1.
At test time, for each candidate action sequence, we’ll generateN independent rollouts and average the rewards
of these rollouts to choose the best action sequence.

5

https://arxiv.org/pdf/1909.11652.pdf

4 Code

You will implement the MBRL algorithm described in the previous section.

4.1 Overview

Obtain the code from https://github.com/berkeleydeeprlcourse/homework_fall2023/tree/
master/hw4. You will be implementing a model-based RL agent in cs285/agents/model based agent.py.
Make sure to also read the following files:

• cs285/env configs/mpc config.py: generates all of the configuration for the model-based agent.

6

https://github.com/berkeleydeeprlcourse/homework_fall2023/tree/master/hw4
https://github.com/berkeleydeeprlcourse/homework_fall2023/tree/master/hw4

Problem 1

What you will implement:
Collect a large dataset by executing random actions. Train a neural network dynamics model on this fixed
dataset. The implementation that you will do here will be for training the dynamics model.

What code files to fill in:

1. cs285/agents/model_based_agent.py: up to (and including) update_statistics.

2. cs285/scripts/run_hw4.py: everything except for collect_mbpo_rollout at the top of the
file.

What command to run:

python cs285/scripts/run_hw4.py -cfg experiments/mpc/halfcheetah_0_iter.yaml

This config will only run the first iteration without actually evaluating the policy, meaning it will only train the
ensemble of dynamics models. The code will produce plots inside your logdir that illustrate the full learning
curve of the dynamics models. For the first command, the loss should go below 0.2 by iteration 500.

Modify experiments/mpc/halfcheetah_0_iter.yaml to change some hyperparameters. Try at least
two other configurations of hyperparameters that affect dynamics model training (e.g., number of layers,
hidden size, or learning rate).

What to submit: For this question, submit the learning curve for 3 runs total: the initial run with provided
hyperparameters as well as 2 of your own.

Note that for these learning curves, we intend for you to just copy the png images produced by the code.

7

Problem 2

What will you implement:
Action selection using your learned dynamics model and a given reward function.

What code files to fill in:

1. cs285/agents/model_based_agent.py: the rest of the file, except for the CEM strategy in
get_action.

What commands to run:

python cs285/scripts/run_hw4.py -cfg experiments/mpc/obstacles_1_iter.yaml

Recall the overall flow of our training loop. We first collect data with our policy (which starts as random), we
train our model on that collected data, we evaluating the resulting MPC policy (which now uses the trained
model), and repeat. To verify that your MPC is indeed doing reasonable action selection, run one iteration of
this process using the command above. This will evaluate your MPC policy, but not use it to collect data for
future iterations. Look at eval_return, which should be greater than -70 after one iteration.

What to submit:
Submit this run as part of your run logs, and report your eval_return.

8

Problem 3

What will you implement:

MBRL algorithm with on-policy data collection and iterative model training.

What code files to fill in:

None. You should already have done everything that you need, because run_hw4.py already aggregates
your collected data into a replay buffer. Thus, iterative training means to just train on our growing replay
buffer while collecting new data at each iteration using the most newly trained model.

What commands to run:

python cs285/scripts/run_hw4.py -cfg experiments/mpc/obstacles_multi_iter.yaml

python cs285/scripts/run_hw4.py -cfg experiments/mpc/reacher_multi_iter.yaml

python cs285/scripts/run_hw4.py -cfg experiments/mpc/halfcheetah_multi_iter.yaml

You should expect rewards of around -25 to -20 for the obstacles env, rewards of around -300 to -250 for the
reacher env, and rewards of around 250-350 for the cheetah env.

What to submit:
Submit these runs as part of your run logs, and include the return plots in your pdf.

9

Problem 4

What will you implement:
You will compare the performance of your MBRL algorithm as a function of three hyperparameters: the
number of models in your ensemble, the number of random action sequences considered during each action
selection, and the MPC planning horizon.

What code files to fill in:
None.

What commands to run:

python cs285/scripts/run_hw4.py -cfg experiments/mpc/reacher_ablation.yaml

Modify (or make copies of) the YAML file to ablate each of the hyperparameters. For each hyperparameter,
do at least 1 run with it increased and 1 with it decreased from the default (so 7 runs total). Make sure to
keep the other hyperparameters the same when studying the effect of one of them.

What to submit:

1. Submit these runs as part of your run logs.

2. Include the following plots (as well as captions that describe your observed trends) of the following:

• effect of ensemble size

• effect of the number of candidate action sequences

• effect of planning horizon

Be sure to include titles and legends on all of your plots.

10

Problem 5

What will you implement:
You will compare the performance of your MBRL algorithm with action selecting performed by random-
shooting (what you have done up to this point) and CEM.

Because CEM can be much slower than random-shooting, we will only run MBRL for 5 iterations for this
problem. We will try two hyperparameter settings for CEM and compare their performance to random-
shooting.

What code files to fill in:

1. cs285/agents/model_based_agent.py: the CEM action selection strategy.

What commands to run:

python cs285/scripts/run_hw4.py -cfg experiments/mpc/halfcheetah_cem.yaml

You should expect rewards around 800 or higher when using CEM on the cheetah env. Try a cem_iterations
value of both 2 and 4, and compare results.

What to submit:
1) Submit these runs as part of your run logs.

2) Include a plot comparing random shooting (from Problem 3) with CEM, as well as captions that describe
how CEM affects results for different numbers of sampling iterations (2 vs. 4).

11

Problem 6

What will you implement:

In this homework you will also be implementing a variant of MBPO. Another way of leveraging the learned
model is through generating additional samples to train the policy and value functions. Since RL often
requires many environment interaction samples, which can be costly, we can use our learned model to generate
additional samples to improve sample complexity. In MBPO, we build on your SAC implementation from HW3
and use the learned model you implemented in the earlier questions for generating additional samples to train
our SAC agent. We will try three settings:

1. Model-free SAC baseline: no additional rollouts from the learned model.

2. Dyna (technically “dyna-style” - the original Dyna algorithm is a little different): add single-step rollouts
from the model to the replay buffer and incorporate additional gradient steps per real world step.

3. MBPO: add in 10-step rollouts from the model to the replay buffer and incorporate additional gradient
steps per real world step.

What code files to fill in:

1. cs285/scripts/run_hw4.py: the collect_mbpo_rollout function at the top of the file.

What commands to run:

python cs285/scripts/run_hw4.py -cfg experiments/mpc/halfcheetah_mbpo.yaml --sac_config_file
experiments/sac/halfcheetah_clipq.yaml

Edit experiments/sac/halfcheetah_clipq.yaml to change the MBPO rollout length. The model-free
SAC baseline corresponds to a rollout length of 0, The Dyna-like algorithm corresponds to a rollout length of
1, and full MBPO corresponds to a rollout length of 10.

You should be able to reach returns around 700 or higher with full MBPO with a rollout length of 10.

What to submit:
1) Submit these 3 runs as part of your run logs.

2) Include a plot to show a comparison between the 3 runs, and explain any trends you see.

12

https://arxiv.org/pdf/1906.08253

Submission

4.2 Submitting the PDF

Your report should be a PDF document containing the plots and responses indicated in the questions
above.

4.3 Submitting the Code and Logs

In order to turn in your code and experiment logs, create a folder that contains the following:

• A folder named data with all the experiment runs from this assignment. Do not change the names
originally assigned to the folders, as specified by exp name in the instructions. To minimize
submissions size, please include runs with video logging disabled. If you would like to reuse your video
logging runs, please see the script provided in cs285/scripts/filter_events.py.

• The cs285 folder with all the .py files, with the same names and directory structure as the original
homework repository (not include the data/ folder). A plotting script should also be submitted, which
should be a python script (or jupyter notebook) such that running it can generate all plots from your
pdf. This plotting script should extract its values directly from the experiments in your run logs and
should not have hardcoded reward values.

As an example, the unzipped version of your submission should result in the following file structure. Make
sure that the submit.zip file is below 15MB and that they include the prefix hw4 mb .

submit.zip

data

cheetah...

events.out.tfevents.1567529456.e3a096ac8ff4

...

cs285

agents

model based agent.py

...

policies
...

...

README.txt

...

If you are a Mac user, do not use the default “Compress” option to create the zip. It creates artifacts
that the autograder does not like. You may use zip -vr submit.zip submit -x "*.DS Store" from
your terminal.

Turn in your assignment on Gradescope. Upload the zip file with your code and log files to HW4 Code, and
upload the PDF of your report to HW4.

13

	Introduction
	Analysis
	Model-Based Reinforcement Learning
	Dynamics Model
	Action Selection
	On-Policy Data Collection
	Ensembles

	Code
	Overview
	Submitting the PDF
	Submitting the Code and Logs

