
Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

Assignment 2: Policy Gradients

Due September 25, 11:59 pm

1 Introduction

The goal of this assignment is to experiment with policy gradient and its variants, including variance reduction
tricks such as implementing reward-to-go and neural network baselines.

Starter code
https://github.com/berkeleydeeprlcourse/homework_fall2023/tree/master/hw2

LATEX assignment template
https://github.com/berkeleydeeprlcourse/homework_fall2023/blob/main/hw2/hw2_template.tex

Google has donated $50/student of cloud credit to students enrolled in the class. If you’re enrolled in the class
(or you are paying for your own GCP credits), you should follow the setup guide here:

https://github.com/berkeleydeeprlcourse/homework_fall2023/blob/main/hw2/google_cloud/README.md

Please don’t use Colab for this assignment! It will probably crash or shutdown halfway through a long
run. Running things on GCP or locally will be a much better experience.

If you use Google Cloud, you shouldn’t need to use more than $15 of cloud credit in this
assignment. HW3 will take a lot more compute power (and it needs a GPU), so you’ll want to make sure
you have enough to finish it on cloud without any issues.

2 Review

2.1 Policy gradient

Recall that the reinforcement learning objective is to learn a θ∗ that maximizes the objective function:

J(θ) = Eτ∼πθ(τ) [r(τ)] (1)

where each rollout τ is of length T , as follows:

πθ(τ) = p(s0, a0, ..., sT−1, aT−1) = p(s0)πθ(a0|s0)
T−1∏
t=1

p(st|st−1, at−1)πθ(at|st)

and

r(τ) = r(s0, a0, ..., sT−1, aT−1) =

T−1∑
t=0

r(st, at).

The policy gradient approach is to directly take the gradient of this objective:

∇θJ(θ) = ∇θ

∫
πθ(τ)r(τ)dτ (2)

=

∫
πθ(τ)∇θ log πθ(τ)r(τ)dτ. (3)

= Eτ∼πθ(τ) [∇θ log πθ(τ)r(τ)] (4)

(5)

https://github.com/berkeleydeeprlcourse/homework_fall2023/tree/master/hw2
https://github.com/berkeleydeeprlcourse/homework_fall2023/blob/main/hw2/hw2_template.tex
https://github.com/berkeleydeeprlcourse/homework_fall2023/blob/main/hw2/google_cloud/README.md

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

In practice, the expectation over trajectories τ can be approximated from a batch of N sampled trajectories:

∇θJ(θ) ≈
1

N

N∑
i=1

∇θ log πθ(τi)r(τi) (6)

=
1

N

N∑
i=1

(
T−1∑
t=0

∇θ log πθ(ait|sit)

)(
T−1∑
t=0

r(sit, ait)

)
. (7)

Here we see that the policy πθ is a probability distribution over the action space, conditioned on the state. In
the agent-environment loop, the agent samples an action at from πθ(·|st) and the environment responds with
a reward r(st, at).

2.2 Variance Reduction

2.2.1 Reward-to-go

One way to reduce the variance of the policy gradient is to exploit causality: the notion that the policy cannot
affect rewards in the past. This yields the following modified objective, where the sum of rewards here does
not include the rewards achieved prior to the time step at which the policy is being queried. This sum of
rewards is a sample estimate of the Q function, and is referred to as the “reward-to-go.”

∇θJ(θ) ≈
1

N

N∑
i=1

T−1∑
t=0

∇θ log πθ(ait|sit)

(
T−1∑
t′=t

r(sit′ , ait′)

)
. (8)

2.2.2 Discounting

Multiplying a discount factor γ to the rewards can be interpreted as encouraging the agent to focus more on
the rewards that are closer in time, and less on the rewards that are further in the future. This can also be
thought of as a means for reducing variance (because there is more variance possible when considering futures
that are further into the future). We saw in lecture that the discount factor can be incorporated in two ways,
as shown below.

The first way applies the discount on the rewards from full trajectory:

∇θJ(θ) ≈
1

N

N∑
i=1

(
T−1∑
t=0

∇θ log πθ(ait|sit)

)(
T−1∑
t′=0

γt′−1r(sit′ , ait′)

)
(9)

and the second way applies the discount on the “reward-to-go:”

∇θJ(θ) ≈
1

N

N∑
i=1

T−1∑
t=0

∇θ log πθ(ait|sit)

(
T−1∑
t′=t

γt′−tr(sit′ , ait′)

)
. (10)

.

2.2.3 Baseline

Another variance reduction method is to subtract a baseline (that is a constant with respect to τ) from the
sum of rewards:

∇θJ(θ) = ∇θEτ∼πθ(τ) [r(τ)− b] . (11)

This leaves the policy gradient unbiased because

∇θEτ∼πθ(τ) [b] = Eτ∼πθ(τ) [∇θ log πθ(τ) · b] = 0.

In this assignment, we will implement a value function V π
ϕ which acts as a state-dependent baseline. This

value function will be trained to approximate the sum of future rewards starting from a particular state:

V π
ϕ (st) ≈

T−1∑
t′=t

Eπθ
[r(st′ , at′)|st] , (12)

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

so the approximate policy gradient now looks like this:

∇θJ(θ) ≈
1

N

N∑
i=1

T−1∑
t=0

∇θ log πθ(ait|sit)

((
T−1∑
t′=t

γt′−tr(sit′ , ait′)

)
− V π

ϕ (sit)

)
. (13)

2.2.4 Generalized Advantage Estimation

The quantity
(∑T−1

t′=t γ
t′−tr(st′ , at′)

)
− V π

ϕ (st) from the previous policy gradient expression (removing the i

index for clarity) can be interpreted as an estimate of the advantage function:

Aπ(st, at) = Qπ(st, at)− V π(st), (14)

where Qπ(st, at) is estimated using Monte Carlo returns and V π(st) is estimated using the learned value
function V π

ϕ . We can further reduce variance by also using V π
ϕ in place of the Monte Carlo returns to estimate

the advantage function as:

Aπ(st, at) ≈ δt = r(st, at) + γV π
ϕ (st+1)− V π

ϕ (st), (15)

with the edge case δT−1 = r(sT−1, aT−1) − V π
ϕ (sT−1). However, this comes at the cost of introducing bias

to our policy gradient estimate, due to modeling errors in V π
ϕ . We can instead use a combination of n-step

Monte Carlo returns and V π
ϕ to estimate the advantage function as:

Aπ
n(st, at) =

t+n∑
t′=t

γt′−tr(st′ , at′) + γnV π
ϕ (st+n+1)− V π

ϕ (st). (16)

Increasing n incorporates the Monte Carlo returns more heavily in the advantage estimate, which lowers bias
and increases variance, while decreasing n does the opposite. Note that n = T − t − 1 recovers the unbiased
but higher variance Monte Carlo advantage estimate used in (13), while n = 0 recovers the lower variance but
higher bias advantage estimate δt.

We can combine multiple n-step advantage estimates as an exponentially weighted sum, which is known as
the generalized advantage estimator (GAE). Let λ ∈ [0, 1]. Then we define:

Aπ
GAE(st, at) =

1− λT−t−1

1− λ

T−t−1∑
n=1

λn−1Aπ
n(st, at), (17)

where 1−λT−t−1

1−λ is a normalizing constant. Note that a higher λ emphasizes advantage estimates with higher
values of n, and a lower λ does the opposite. Thus, λ serves as a control for the bias-variance tradeoff, where
increasing λ decreases bias and increases variance. In the infinite horizon case (T = ∞), we can show:

Aπ
GAE(st, at) =

1

1− λ

∞∑
n=1

λn−1Aπ
n(st, at) (18)

=

∞∑
t′=t

(γλ)t
′−tδt′ , (19)

where we have omitted the derivation for brevity (see the GAE paper https://arxiv.org/pdf/1506.02438.pdf
for details). In the finite horizon case, we can write:

Aπ
GAE(st, at) =

T−1∑
t′=t

(γλ)t
′−tδt′ , (20)

which serves as a way we can efficiently implement the generalized advantage estimator, since we can recursively
compute:

Aπ
GAE(st, at) = δt + γλAπ

GAE(st+1, at+1) (21)

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

3 Policy Gradients

3.1 Implementation

You will be implementing two different return estimators within pg agent.py. The first (“Case 1” within
calculate q vals) uses the discounted cumulative return of the full trajectory and corresponds to the
“vanilla” form of the policy gradient (Equation 9):

r(τi) =

T−1∑
t′=0

γt′r(sit′ , ait′). (22)

The second (“Case 2”) uses the “reward-to-go” formulation from Equation 10:

r(τi) =

T−1∑
t′=t

γt′−tr(sit′ , ait′). (23)

Note that these differ only by the starting point of the summation.

Implement these return estimators as well as the remaining sections marked TODO in the code. For the small-
scale experiments, you may skip those sections that are run only if nn baseline is True; we will return to
baselines in Section 4. (These sections are in MLPPolicyPG:update and PGAgent:estimate advantage.)

3.2 Experiments

Experiment 1 (CartPole). Run multiple experiments with the PG algorithm on the discrete CartPole-v0
environment, using the following commands:

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \

--exp_name cartpole

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \

-rtg --exp_name cartpole_rtg

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \

-na --exp_name cartpole_na

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \

-rtg -na --exp_name cartpole_rtg_na

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 4000 \

--exp_name cartpole_lb

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 4000 \

-rtg --exp_name cartpole_lb_rtg

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 4000 \

-na --exp_name cartpole_lb_na

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 4000 \

-rtg -na --exp_name cartpole_lb_rtg_na

What’s happening here:

• -n : Number of iterations.

• -b : Batch size (number of state-action pairs sampled while acting according to the current policy at
each iteration).

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

• -rtg : Flag: if present, sets reward_to_go=True. Otherwise, reward_to_go=False by default.

• -na : Flag: if present, sets normalize_advantages to True, normalizing the advantages to have a mean
of zero and standard deviation of one within a batch.

• --exp_name : Name for experiment, which goes into the name for the data logging directory.

Various other command line arguments will allow you to set batch size, learning rate, network architecture,
and more.

Deliverables for report:

• Create two graphs:

– In the first graph, compare the learning curves (average return vs. number of environment steps)
for the experiments prefixed with cartpole. (The small batch experiments.)

– In the second graph, compare the learning curves for the experiments prefixed with cartpole_lb.
(The large batch experiments.)

For all plots in this assignment, the x-axis should be number of environment steps, logged
as Train_EnvstepsSoFar (not number of policy gradient iterations).

• Answer the following questions briefly:

– Which value estimator has better performance without advantage normalization: the trajectory-
centric one, or the one using reward-to-go?

– Did advantage normalization help?

– Did the batch size make an impact?

• Provide the exact command line configurations (or #@params settings in Colab) you used to run your
experiments, including any parameters changed from their defaults.

What to Expect:

• The best configuration of CartPole in both the large and small batch cases should converge to a maximum
score of 200.

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

4 Using a Neural Network Baseline

4.1 Implementation

You will now implement a value function as a state-dependent neural network baseline. This will require filling
in some TODO sections skipped in Section 3. In particular:

• This neural network will be trained in the update method of MLPPolicyPG along with the policy gradient
update.

• In pg agent.py:estimate advantage, the predictions of this network will be subtracted from the

reward-to-go to yield an estimate of the advantage. This implements
(∑T−1

t′=t γ
t′−tr(sit′ , ait′)

)
−V π

ϕ (sit).

• We will train the baseline network for multiple gradient steps for each policy update, determined by the
parameter baseline_gradient_steps.

4.2 Experiments

Experiment 2 (HalfCheetah). Next, you will use your baselined policy gradient implementation to learn
a controller for HalfCheetah-v4.

Run the following commands:

No baseline

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v4 \

-n 100 -b 5000 -rtg --discount 0.95 -lr 0.01 \

--exp_name cheetah

Baseline

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v4 \

-n 100 -b 5000 -rtg --discount 0.95 -lr 0.01 \

--use_baseline -blr 0.01 -bgs 5 --exp_name cheetah_baseline

You might notice that we omitted -na (normalize advantages). That’s because in reality, advantage normal-
ization is a very powerful trick, and eliminates the need for a baseline most of the simple environments that
we test in.

Deliverables:

• Plot a learning curve for the baseline loss.

• Plot a learning curve for the eval return. You should expect to achieve an average return over 300 for
the baselined version.

• Run another experiment with a decreased number of baseline gradient steps (-bgs) and/or baseline
learning rate (-blr). How does this affect (a) the baseline learning curve and (b) the performance of
the policy?

• Optional: Add -na back to see how much it improves things. Also, set video_log_freq 10, then open
TensorBoard and go to the “Images” tab to see some videos of your HalfCheetah walking along!

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

5 Implementing Generalized Advantage Estimation

You will now use the value function you previously implemented to implement a simplified version of GAE-λ.
This will require filling in the remaining TODO section in pg agent.py:estimate advantage.

Experiment 3 (LunarLander-v2). You will now use your implementation of policy gradient with gener-
alized advantage estimation to learn a controller for a version of LunarLander-v2 with noisy actions. Search
over λ ∈ [0, 0.95, 0.98, 0.99, 1] to replace <λ> below. Do not change any of the other hyperparameters (e.g.
batch size, learning rate).

python cs285/scripts/run_hw2.py \

--env_name LunarLander-v2 --ep_len 1000 \

--discount 0.99 -n 300 -l 3 -s 128 -b 2000 -lr 0.001 \

--use_reward_to_go --use_baseline --gae_lambda <λ> \

--exp_name lunar_lander_lambda<λ>

Deliverables:

• Provide a single plot with the learning curves for the LunarLander-v2 experiments that you tried.
Describe in words how λ affected task performance. The run with the best performance should achieve
an average score close to 200 (180+).

• Consider the parameter λ. What does λ = 0 correspond to? What about λ = 1? Relate this to the task
performance in LunarLander-v2 in one or two sentences.

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

6 Hyperparameters and Sample Efficiency

One criticism of policy gradient methods is that they tend to be very sample inefficient. Examining your
results for the previous problems, you’ll notice that your algorithm takes hundreds of thousands or millions of
steps in the environment before it is able to learn a good policy.

While improving sample inefficiency is in general an open challenge, we can do a lot better by just picking
better hyperparameters! During training, we have to choose many hyperparameters and settings:

1. Discount factor

2. Network size

3. Batch size (super small batch sizes may have high variance, but very large batch sizes waste a lot of
samples because you must recollect the entire batch for every gradient step)

4. Learning rate

5. Whether to use return-to-go

6. Whether to normalize advantages

7. Whether to use GAE, and if we do, what value of λ to use

Experiment 4 (InvertedPendulum). First, train a policy for the inverted pendulum problem without GAE
and with otherwise default settings. Use five different seeds to get a good estimate of average performance:

for seed in $(seq 1 5); do

python cs285/scripts/run_hw2.py --env_name InvertedPendulum-v4 -n 100 \

--exp_name pendulum_default_s$seed \

-rtg --use_baseline -na \

--batch_size 5000 \

--seed $seed
done

Your task is to tune hyperparameters so that your implementation reaches maximum performance (score of
1000) in fewer environment steps than these default settings (note: this is not the same as minimizing
number of policy gradient iterations: one policy gradient iteration corresponds to batch size environment
steps). Try and find hyperparameters that reach a score of 1000 in as few steps as possible!

Deliverables:

1. Provide a set of hyperparameters that achieve high return on InvertedPendulum-v4 in as few environ-
ment steps as possible.

2. Show learning curves for the average returns with your hyperparameters and with the default settings,
with environment steps on the x-axis. Returns should be averaged over 5 seeds.

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

7 Extra Credit: Humanoid

Experiment 5 (Humanoid-v4). Let’s put everything we’ve learned together to learn a policy for a more
complicated environment! The Humanoid-v4 environment in Gym trains a humanoid to walk, from scratch!

If you’ve implemented everything correctly, you shouldn’t have to do anything new for this section. Just run
the following command - we’ve filled in some hyperparameters that should work:

python cs285/scripts/run_hw2.py \

--env_name Humanoid-v4 --ep_len 1000 \

--discount 0.99 -n 1000 -l 3 -s 256 -b 50000 -lr 0.001 \

--baseline_gradient_steps 50 \

-na --use_reward_to_go --use_baseline --gae_lambda 0.97 \

--exp_name humanoid --video_log_freq 5

We’ve enabled videos so you can enjoy the results! If everything works correctly, you should end up with a
video of a 3D humanoid walking (or stumbling/skipping/running) along. It should achieve a final return of at
least 600, but try to

WARNING! This will take a long time to run (as much as 20 hours). Do not attempt this experiment until
you finish ALL of the other problems! It will not work if you have any bugs! If it does not reach return
300 by 20 iterations, you probably have a bug!

You are welcome to use any techniques you are familiar with to make training faster. We recommend:

• The vectorized Gym interface, to use multiple cores for simulating episodes

• Fast operations like torch.cumsum to speed up your GAE calculations

This experiment may take 10+ hours to run.

https://www.gymlibrary.dev/content/vectorising/

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

8 Analysis

Consider the following infinite-horizon MDP:

s1 sF
a2a1

At each step, the agent stays in state s1 and receives reward 1 if it takes action a1, and receives reward 0 and
terminates the episode otherwise. Parametrize the policy as stationary (not dependent on time) with a single
parameter:

πθ(a1|s1) = θ, πθ(a2|s1) = 1− θ

1. Applying policy gradients

(a) Use policy gradients to compute the gradient of the expected return J(θ) = Eπθ
R(τ) with respect

to the parameter θ. Do not use discounting.

Hint: to compute
∑∞

k=1 kα
k−1, you can write:

∞∑
k=1

kαk−1 =

∞∑
k=1

d

dα
αk =

d

dα

∞∑
k=1

αk

(b) Compute the expected return of the policy Eτ∼πθ
R(τ) directly. Compute the gradient of this

expression with respect to θ and verify that this matches the policy gradient.

2. Compute the variance of the policy gradient in closed form and describe the properties of the variance
with respect to θ. For what value(s) of θ is variance minimal? Maximal? (Once you have an exact
expression for the variance you can eyeball the min/max).

Hint: Once you have it expressed as a sum of terms P (θ)/Q(θ) where P and Q are polynomials, you can
use a symbolic computing program (Mathematica, SymPy, etc) to simplify to a single rational expression.

3. Apply return-to-go as an advantage estimator.

(a) Write the modified policy gradient and confirm that it is unbiased.

(b) Compute the variance of the return-to-go policy gradient and plot it on [0, 1] alongside the variance
of the original estimator.

4. Consider a finite-horizon H-step MDP with sparse reward:

s1 s2 s3 . . . sH

sF

a1 a1

a2

a1

a2
a2 a2

The agent receives reward Rmax if it arrives at sH and reward 0 if it arrives at sF (a terminal state). In
other words, the return for a trajectory τ is given by:

R(τ) =

{
1 τ ends at sH

0 τ ends at sF

Using the same policy parametrization as above, consider off-policy policy gradients via importance
sampling. Assume we want to compute policy gradients for a policy πθ with samples drawn from πθ′ .

(a) Write the policy gradient with importance sampling.

(b) Compute its variance. How does it change when H becomes large?

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

9 Survey

Please estimate, in minutes, for each problem, how much time you spent (a) writing code and (b) waiting for
the results. This will help us calibrate the difficulty for future homeworks.

• Policy Gradients:

• Neural Network Baseline:

• Generalized Advantage Estimation:

• Hyperparameters and Sample Efficiency:

• Humanoid:

• Analysis:

1.1 Applying policy gradients:

1.2 Policy gradient variance:

1.3 Return-to-go:

1.4 Importance sampling:

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

10 Submission

10.1 Submitting the PDF

Your report should be a document containing

(a) All graphs and answers to short explanation questions requested for Experiments 1-4.

(b) All command-line expressions you used to run your experiments.

(c) (Optionally) Your bonus results (command-line expressions, graphs, and a few sentences that comment
on your findings).

(d) Your solutions from the analysis problems in section 8

10.2 Submitting the code and experiment runs

In order to turn in your code and experiment logs, create a folder that contains the following:

• A folder named run logs with all the experiment runs from this assignment. These folders can be
copied directly from the cs285/data folder. Do not change the names originally assigned to the
folders, as specified by exp name in the instructions. Video logging is disabled by default in the
code, but if you turned it on for debugging, you need to run those again with --video log freq -1, or
else the file size will be too large for submission.

• The cs285 folder with all the .py files, with the same names and directory structure as the original
homework repository (excluding the cs285/data folder). Also include any special instructions we need
to run in order to produce each of your figures or tables in the form of a README file.

As an example, the unzipped version of your submission should result in the following file structure. Make
sure that the submit.zip file is below 15MB.

If you are a Mac user, do not use the default “Compress” option to create the zip. It creates artifacts
that the autograder does not like. You may use zip -vr submit.zip submit -x "*.DS Store" from your
terminal.

submit.zip

run logs

q1 lb rtg na CartPole-v0 12-09-2019 17-53-4

events.out.tfevents.1567529456.e3a096ac8ff4

q3 b40000 r0.005 LunarLanderContinuous-v4 12-09-2019 00-17-58

events.out.tfevents.1567529456.e3a096ac8ff4

...

cs285

agents

bc agent.py

...

policies

...

...

README.md

...

Berkeley CS 285 Deep Reinforcement Learning, Decision Making, and Control Fall 2023

10.3 Turning it in

Turn in your assignment by the deadline on Gradescope. Uploade the zip file with your code to HW2 Code,
and upload the PDF of your report to HW2.

	Introduction
	Review
	Policy gradient
	Variance Reduction
	Reward-to-go
	Discounting
	Baseline
	Generalized Advantage Estimation

	Policy Gradients
	Implementation
	Experiments

	Using a Neural Network Baseline
	Implementation
	Experiments

	Implementing Generalized Advantage Estimation
	Hyperparameters and Sample Efficiency
	Extra Credit: Humanoid
	Analysis
	Survey
	Submission
	Submitting the PDF
	Submitting the code and experiment runs
	Turning it in

