
Challenges and Open Problems

CS 285

Instructor: Sergey Levine
UC Berkeley



Challenges in Deep Reinforcement Learning



What’s the problem?

Challenges with core algorithms:

• Stability: does your algorithm converge?

• Efficiency: how long does it take to converge? (how many samples)

• Generalization: after it converges, does it generalize?

Challenges with assumptions:

• Is this even the right problem formulation?

• What is the source of supervision?



Stability and hyperparameter tuning

• Devising stable RL algorithms is very hard

• Q-learning/value function estimation
• Fitted Q/fitted value methods with deep network function 

estimators are typically not contractions, hence no guarantee of 
convergence

• Lots of parameters for stability: target network delay, replay 
buffer size, clipping, sensitivity to learning rates, etc.

• Policy gradient/likelihood ratio/REINFORCE
• Very high variance gradient estimator
• Lots of samples, complex baselines, etc.
• Parameters: batch size, learning rate, design of baseline

• Model-based RL algorithms
• Model class and fitting method
• Optimizing policy w.r.t. model non-trivial due to backpropagation 

through time
• More subtle issue: policy tends to exploit the model



The challenge with hyperparameters

• Can’t run hyperparameter sweeps in the real 
world
• How representative is your simulator? Usually the 

answer is “not very”

• Actual sample complexity = time to run 
algorithm x number of runs to sweep
• In effect stochastic search + gradient-based 

optimization

• Can we develop more stable algorithms that 
are less sensitive to hyperparameters?



What can we do?

• Algorithms with favorable improvement and convergence properties
• Trust region policy optimization [Schulman et al. ‘16]

• Safe reinforcement learning, High-confidence policy improvement [Thomas ‘15]

• Algorithms that adaptively adjust parameters
• Q-Prop [Gu et al. ‘17]: adaptively adjust strength of control variate/baseline

• More research needed here!

• Not great for beating benchmarks, but absolutely essential to make RL a 
viable tool for real-world problems



Sample Complexity



model-based deep RL
(e.g. PETS, guided policy search)

model-based “shallow” RL
(e.g. PILCO)

replay buffer value estimation methods
(Q-learning, DDPG, NAF, SAC, etc.)

policy gradient methods
(e.g. TRPO)

fully online methods
(e.g. A3C)

gradient-free methods
(e.g. NES, CMA, etc.)

100,000,000 steps
(100,000 episodes)
(~ 15 days real time)

Wang et al. ‘17

TRPO+GAE (Schulman et al. ‘16)

half-cheetah (slightly different version)

10,000,000 steps
(10,000 episodes)
(~ 1.5 days real time)half-cheetah

Gu et al. ‘16

1,000,000 steps
(1,000 episodes)
(~3 hours real time)

Chebotar et al. ’17 (note log scale)

10x gap

about 20 
minutes of 
experience on a 
real robot

10x

10x

10x

10x

10x

Chua et a. ’18: Deep Reinforcement Learning in a Handful of Trials

30,000 steps
(30 episodes)
(~5 min real time)



The challenge with sample complexity

• Need to wait for a long time for your 
homework to finish running

• Real-world learning becomes difficult or 
impractical

• Precludes the use of expensive, high-fidelity 
simulators

• Limits applicability to real-world problems



What can we do?

• Better model-based RL algorithms

• Design faster algorithms
• Addressing Function Approximation Error in Actor-Critic Algorithms (Fujimoto et 

al. ‘18): simple and effective tricks to accelerate DDPG-style algorithms

• Soft Actor-Critic (Haarnoja et al. ‘18): very efficient maximum entropy RL 
algorithm

• Reuse prior knowledge to accelerate reinforcement learning
• RL2: Fast reinforcement learning via slow reinforcement learning (Duan et al. ‘17)

• Learning to reinforcement learning (Wang et al. ‘17)

• Model-agnostic meta-learning (Finn et al. ‘17)



Scaling & Generalization



Scaling up deep RL & generalization

• Large-scale

• Emphasizes diversity

• Evaluated on generalization

• Small-scale

• Emphasizes mastery

• Evaluated on performance

• Where is the generalization?



RL has a big problem

reinforcement learning supervised machine learning

this is done
once

train for
many epochs

this is done
many times



RL has a big problem

reinforcement learning actual reinforcement learning

this is done
many times

this is done
many times

this is done
many many times



How bad is it?

Schulman, Moritz, L., Jordan, Abbeel ’16

• This is quite cool

• It takes 6 days of real 
time (if it was real time)

• …to run on an infinite 
flat plane

The real world is not so simple!



Off-policy RL?

reinforcement learning off-policy reinforcement learning

this is done
many times

big dataset
from past

interaction

train for
many epochs

occasionally
get more data



Not just robots!

language & dialogue
(structured prediction)

financeautonomous driving



What’s the problem?

Challenges with core algorithms:

• Stability: does your algorithm converge?

• Efficiency: how long does it take to converge? (how many samples)

• Generalization: after it converges, does it generalize?

Challenges with assumptions:

• Is this even the right problem formulation?

• What is the source of supervision?



Problem Formulation



Single task or multi-task?

The real world is not so simple!

this is where generalization can come from…

etc.
sample

etc.

etc.

MDP 0

MDP 1

MDP 2

pick MDP randomly
in first state

maybe doesn’t require any new 
assumption, but might merit additional 
treatment



Generalizing from multi-task learning

• Train on multiple tasks, then try to generalize or finetune
• Policy distillation (Rusu et al. ‘15)

• Actor-mimic (Parisotto et al. ‘15)

• Model-agnostic meta-learning (Finn et al. ‘17)

• many others…

• Unsupervised or weakly supervised learning of diverse behaviors
• Stochastic neural networks (Florensa et al. ‘17)

• Reinforcement learning with deep energy-based policies (Haarnoja et al. ‘17)

• See lecture on unsupervised information-theoretic exploration

• many others…



Where does the supervision come from?

• If you want to learn from many 
different tasks, you need to get those 
tasks somewhere!

• Learn objectives/rewards from 
demonstration (inverse 
reinforcement learning)

• Generate objectives automatically?



What is the role of the reward function?



environment

Unsupervised Meta-RL

Meta-learned 

environment-specific 

RL algorithm

reward-maximizing 

policy

reward 

function

Unsupervised 

Task Acquisition
Meta-RL

Fast 

Adaptation

Unsupervised reinforcement learning?

1. Interact with the world, 
without a reward function

2. Learn something about the 
world (what?)

3. Use what you learned to 
quickly solve new tasks

Eysenbach, Gupta, Ibarz, L. Diversity is All You Need.

Gupta, Eysenbach, Finn, L. Unsupervised Meta-Learning for Reinforcement Learning.



Other sources of supervision

• Demonstrations
• Muelling, K et al. (2013). Learning to Select and Generalize Striking 

Movements in Robot Table Tennis

• Language
• Andreas et al. (2018). Learning with latent language

• Human preferences
• Christiano et al. (2017). Deep reinforcement learning from human preferences

Should supervision tell 
us what to do or how
to do it?



Rethinking the Problem Formulation

• How should we define a control problem?
• What is the data?

• What is the goal?

• What is the supervision?
• may not be the same as the goal…

• Think about the assumptions that fit your problem setting!

• Don’t assume that the basic RL problem is set in stone



Back to the Bigger Picture



Learning as the basis of intelligence

• Reinforcement learning = can reason about 
decision making

• Deep models = allows RL algorithms to 
learn and represent complex input-output 
mappings

Deep models are what allow 
reinforcement learning algorithms to 
solve complex problems end to end!



What is missing?



Where does the signal come from?

• Yann LeCun’s cake
• Unsupervised or self-supervised learning

• Model learning (predict the future)

• Generative modeling of the world

• Lots to do even before you accomplish your goal!

• Imitation & understanding other agents
• We are social animals, and we have culture – for a reason!

• The giant value backup
• All it takes is one +1

• All of the above



How should we answer these questions?

• Pick the right problems!

• Pay attention to generative models, prediction, etc., not just RL algorithms

• Carefully understand the relationship between RL and other ML fields


