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So far...

* Forward transfer: source domain to target domain
 Diversity is good! The more varied the training, the more likely transfer is to
succeed
* Multi-task learning: even more variety
* No longer training on the same kind of task
* But more variety = more likely to succeed at transfer

* How do we represent transfer knowledge?
* Model (as in model-based RL): rules of physics are conserved across tasks
* Policies — requires finetuning, but closer to what we want to accomplish
 What about learning methods?



What is meta-learning?

* If you’ve learned 100 tasks already, can you
figure out how to learn more efficiently?

* Now having multiple tasks is a huge advantage!
* Meta-learning = learning to learn

* In practice, very closely related to multi-task
learning

* Many formulations
* Learning an optimizer
* Learning an RNN that ingests experience
* Learning a representation
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Why is meta-learning a good idea?

* Deep reinforcement learning, especially model-free, requires a
huge number of samples

 |f we can meta-learn a faster reinforcement learner, we can learn
new tasks efficiently!

 What can a meta-learned learner do differently?
* Explore more intelligently
* Avoid trying actions that are know to be useless
* Acquire the right features more quickly



Meta-learning with supervised learning

training data test set
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Meta-learning with supervised learning

training data test set
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test input

(few shot) training set

supervised learning: f(x) — y
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input (e.g., image) output (e.g., label)

supervised meta-learning: f(DY,xz) — y

/

training set

* How to read in training set?
* Many options, RNNs can work
* More on this later



What is being “learned”?
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“GGeneric” learning:

0* = arg mgin L£(0,D')

— flearn (Dtr)

supervised meta-learning: (D", x) — y

“Generic” meta-learning;:

* . ‘ ts
0" = argmemzﬁ(cbupg )

1=1

where ¢; = fo(D:")



What is being “learned”?

“Generic” learning:

0* = arg mgin L(
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“GGeneric” meta-learning:
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Meta Reinforcement Learning



The meta reinforcement learning problem

“GGeneric” learning: “Generic” meta-learning;:
0* = arg mein L(6,D™) 0" = arg mgin Zl L(¢p;, DL®)

— flearn (Dtr) where gb?, — f@ (Dfr)
Reinforcement learning;: Meta-reinforcement learning:
0" = argmax Er, ()[R(7)] 0* = arg mgxz; Er,. (r|R(7)]

= frRL(M) M={S,AP,r} where ¢; = fo(M;)

\ \

MDP MDP for task i



The meta reinforcement learning problem

Some examples:

0* = arg max > Er, () R(7)]

1=1

where ¢; = fo(M;)

assumption: M; ~ p(M)

meta test-time:

sample Mest ~ p(M), get ¢; = fo(Miest)

{My, ..., My}

\

meta-training MDPs



Contextual policies and meta-learning

6* = arg max ; Er, (n]R(7)) > 0* = arg max ; E, [R(7T)]
where sz = f@(Mz) 7T9(@t|8t, §1,A1,7T15...,5t—1,0¢t—1, Tt—l)

context used to infer whatever we need to solve M;
i.e., z; or ¢; (which are really the same thing)

in meta-RL, the context is inferred from experience from M, mo(at|st, di)

in multi-task RL, the context is typically given \

“context”

¢: stack location  ¢: walking direction  ¢: where to hit puck



Meta-RL with recurrent policies

main question: how to implement fy(M;)?

0" = argmaXZE% () | R(T
what should fy(M;) do?

h ; (M;)
@re di = fol > 1. improve policy with experience fromD
)}

81,a1,5‘2,?“1) (ST,GT,STH,TT

/ \ . (new in RL): choose how to interact, i.e. choose a;
St+1

meta-RL must also choose how to explore!
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Meta-RL with recurrent policies

n 0*
a
6" = argmax ) Er, (r)[R(7) r ﬁ T
i=1
| > > L hz_’
where ¢; = fo(M;) | | ! i
(s1,a1,82,7m1) (82,09, 83,72) (53:03,54,73) S
l_'_l
s0... we just train an RNN policy? T, (als)

yes!
crucially, RNN hidden state is not reset between episodes!
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Why recurrent policies learn to explore
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1. improve policy with experience from M,
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2. (new in RL): choose how to interact, i.e. choose a,

S meta-RL must also choose how to explore!

T, (als)
optimizing total reward over

the entire meta-episode with
J

T

*
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Y RNN policy automatically
episode learns to explore!
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Meta-RL with recurrent policies

n 0
0* = arg max Z Er, ()| R(7)]

|
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where ¢; = fo(M;) | | I

(81,01, 82,71) (82,az,s3,72) (53,03,54,73)

(a) Good behavior, Ist (b) Good behavior, 2nd (¢) Bad behavior, Ist (d) Bad behavior, 2nd

(C] ({_:I } [E } episode episode episode episode
(b) Hlustrative Episode
Heess, Hunt, Lillicrap, Silver. Memory-based control with Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2:
recurrent neural networks. 2015. Blundell, Kumaran, Botvinick. Learning to Reinforcement Fast Reinforcement Learning via Slow Reinforcement

Learning. 2016. Learning. 2016.



Architectures for meta-RL

standard RNN (LSTM) architecture

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2:

MDP  Bpisoder o Bpisede2 “Dpﬁtf“”“d“ Fast Reinforcement Learning via Slow Reinforcement

—_— e Learning. 2016.
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Reinforcement Learning
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Gradient-Based Meta-Learning



Back to representations...
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is pretraining a type of meta-learning?
better features = faster learning of new task!



Meta-RL as an optimization problem

0* = arg mgxz E’”% () [R(T)] 1. improve policy with experience from M,
=1 {(Sl,Ql,SQ,Tl),...,(ST,CET,ST_|_1,?"T)}

where ¢; = f@(Mi)

what if fy(M;) is itself an RL algorithm? standard RL:
fo(M;) = 0+ aVyJ;(6) 0" = argmax Er, (- [R(7)]
\ Y J
requires interacting with M; J(0)
to estimate VoE ., |R(T)] OF L 0, 4+ aVyr J(6%)

this is model-agnostic meta-learning (MAML) for RL!

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.



MAML for RL in pictures
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What did we just do??

supervised learning: f(z) — y
supervised meta-learning: f(D"Y,z) — y
model-agnostic meta-learning: fy AML(D“’, T) =y

Just another computation graph...

fasn (D%, @) = for(2) Can implement with any autodiff

P =6-a S Vellfs(e)y) package (e.g., TensorFlow)
(z.y)eD" But has favorable inductive bias...



MAML for RL in videos

after 1 gradient step  after 1 gradient step
after MAML training  (forward reward) (backward reward)

w

— meta-learning — meta-learning — meta-learning
---- |learning/adaptation ---- |learning/adaptation 9 ---- |earning/adaptation

VL VL VL
VEZ V'CZ V£3
S v

’ \\ ,/ \\
* /l \\ ” ’/ \\ ’ \\
07 0} 0} 0} 03



More on MAML/gradient-based meta-learning
for RL

MAML meta-policy gradient estimators:
* Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.

* Foerster, Farquhar, Al-Shedivat, Rocktaschel, Xing, Whiteson. DiCE: The Infinitely
Differentiable Monte Carlo Estimator.

* Rothfuss, Lee, Clavera, Asfour, Abbeel. ProMP: Proximal Meta-Policy Search.

Improving exploration:

* Gupta, Mendonca, Liu, Abbeel, Levine. Meta-Reinforcement Learning of Structured
Exploration Strategies.

» Stadie*, Yang*, Houthooft, Chen, Duan, Wu, Abbeel, Sutskever. Some Considerations on
Learning to Explore via Meta-Reinforcement Learning.

Hybrid algorithms (not necessarily gradient-based):
* Houthooft, Chen, Isola, Stadie, Wolski, Ho, Abbeel. Evolved Policy Gradients.

* Fernando, Sygnowski, Osindero, Wang, Schaul, Teplyashin, Sprechmann, Pirtzel, Rusu. Meta-
Learning by the Baldwin Effect.



Meta-RL as a POMDP



Meta-RL as... partially observed RL?
M={SAD,PE r}

O — observation space observations o € O (discrete or continuous)

£ — emission probability p(o¢|s)
policy must act on observations o;!

ey @ & @ e

typically requires either:

S1 52 @ explicit state estimation, i.e. to estimate p(s¢|o1.¢)

policies with memory



Meta-RL as... partially observed RL?

—t—
mo(als, z) this is just a POMDP!
\ before: M ={S, A, P,r}
encapsulates information policy N B L
needs to solve current task now: M = {87 A,O,P,E, T}

~

learning a task = inferring z

~

SxZ §=(s,2)
S

0= 3§

S
|

from context (s1,a1,S2,71), (82, a2, 83,72), ...

key idea: solving the POMDP M is equivalent to meta-learning!



Meta-RL as... partially observed RL?

mo(als, z) this is just a POMDP!
\ typically requires either:
encapsulates information policy
needs to solve current task explicit state estimation, i.e. to estimate p(st@

policies with memory
learning a task = inferring z

need to estimate p(z¢|S1.4. @1.4.77.
from context (s1,a1,S2,71), (82, a2, 83,72), ... P(2e|S1:4, Q125 7121

exploring via posterior sampling with latent context this is not optimal!  but it’s pretty good,
why? both in theory and in

some approximate posterior practice!

1. sample z ~ p(2¢|s1:t, a1:t,71:¢) (e.g., variational)

2. act according to mg(als, z) to collect more data

\ act as though z was correct!

See, e.g. Russo, Roy. Learning to Optimize via Posterior Sampling.



Variational inference for meta-RL

olicy: mp(as|St. 2
P y 9( t| ts t) ZtNqu(zt|81,a1,'l“1,...,St,at,'l"t)

inference network: qg(2¢|s1,a1,71,..., 8¢, as, 7t)

(6, 6) = argmax " Burgy roory [Ri(7) = Diceale] ) Ip(2)

-/ N\

maximize post-update reward stay close to prior e
(same as standard meta-RL)

conceptually very similar to RNN meta-RL, but with stochastic z

stochastic z enables exploration via posterior sampling

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via
Probabilistic Context Variables. ICML 2019.



Specific instantiation: PEARL

policy: mg(a¢|ss, z¢) (s,a,s’,7); —-[

]——lIJ¢,(z|Cl)—l g6 (zc)

X —

| w(alen)

inference network: qu(z¢|s1,a1,71,...,S¢, a, 1) ——>

AR

¢
¢

(Sa a, Sf& T)N_"[

1 n
(6,) = arg max NZ gy oo [Ri(T) = Dxcw (2] ) [p(2))]
I - WEa -
perform maximization using soft actor-critic (SAC), / ------- ] : Ww"’r }(‘/
state-of-the-art off-policy RL algorithm | ﬁ e ( ===

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via
Probabilistic Context Variables. ICML 2019.



MELD: Model-Based Meta-RL with Images

meta-learning can be viewed as a (kind of) POMDP

Episode 1: Explore Reward Prediction Mean Reward Prediction Variance
3 = 2.0 = R T s
Do | S 3 | Dense |
) | ALY )
-2 /\\//\," """"""" 0.5+
Using this latent variable model generalizes meta-learning and POMDPs Timestep Timestep

Turns out to work very well as a meta-learning algorithm!

Task: right hole Task: left hole

a |

Episode 2 Episode 1 Episode 2

Reward given when inserted into correct hole

4x normal speed

Zhao, Nagabandi, Rakelly, Finn, Levine. MELD: Meta-Reinforcement Learning from Images via Latent State Models. ‘20



References on meta-RL, inference, and POMDPs

* Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy
Meta-Reinforcement learning via Probabilistic Context
Variables. ICML 20109.

e Zintgraf, Igl, Shiarlis, Mahajan, Hofmann, Whiteson.
Variational Task Embeddings for Fast Adaptation in Deep
Reinforcement Learning.

* Humplik, Galashov, Hasenclever, Ortega, Teh, Heess. Meta
reinforcement learning as task inference.



The three perspectives on meta-RL

Perspective 1: just RNN it

r Wﬁ

o T

(81,61,1, S9, ?“1) (SQ, a2, 83, ?’2) (53: as, 54, TS)

hz'_’

|
l

Perspective 2: bi-level optimization
fg(M@) = 9 + OéVgJi(Q)
MAML for RL

Perspective 3: it’s an inference problem!
ﬂ-Q(GJ'S?’Z) Zt Np(zt|31:taa1:ta(r1:t)

everything needed to solve task

0* = arg max > Er, () R(7)]

1=1

where ¢; = fo(M;)

what should fy(M;) do?

1. improve policy with experience from M,

{(817 ai, SQJT].)) SR (STa ar, ST+1,?"T)}

2. (new in RL): choose how to interact, i.e. choose a;

meta-RL must also choose how to explore!



The three perspectives on meta-RL

Perspective 1: just RNN it

r Q*ﬁ

T I T

(s1,a1,52,71) (52,02, 83,72) (s3,03,54,73)
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Perspective 2: bi-level optimization
fe (MZ) = 9 + OéVgJZ'(Q)
MAML for RL

Perspective 3: it’s an inference problem!

7T9(C’J|Saz) 2t ~ p(2¢|S1:4, Q11457121

everything needed to solve task

+ conceptually simple
+ relatively easy to apply
- vulnerable to meta-overfitting

- challenging to optimize in practice

+ good extrapolation (“consistent”)
+ conceptually elegant

- complex, requires many samples

+ simple, effective exploration via posterior sampling
+ elegant reduction to solving a special POMDP
- vulnerable to meta-overfitting

- challenging to optimize in practice



But they're not that different!

Perspective 1: just RNN it

I

& —> — 2

just perspective 1, > > — f;—
but with stochastic ‘l‘ T I
hidden variables! (51,a1,82,71) (82, a2, 53,72) (53,03, $4,73)
ie, =1z just a particular
' .7 . .
Perspective 2: bi-level optimization architecture choice
for these

fg(Mz) =0+ OéVng;(Q)
MAML for RL

Perspective 3: it’s an inference problem!
ﬂ—Q(GJ'S?’Z) Zt Np(zt|31:taa1:t7(r1:t)

everything needed to solve task



Model-Based Meta-RL



Model-based meta-RL

0* = arg max Erory [R(T)]
short sketch of model-based RL:

1. collect data B
2. use B to get p(sia1]st,ar)

3. use p(si11]st,ar) to plan a

L__ Improve mg...
¥ . . . . why
...directly, via policy gradients _
+ requires much less data vs model-free

..via value function or Q-function

@ph(utly, via model p(st+1|st,a)

+ a bit different due to model

+ can adapt extremely quickly!

pick a; ~ mwg(a¢|st)



Model-based meta-RL

example task: ant with broken leg non-adaptive method: /
1. collect data B = {s;,a;, s;}
2. train dg(s,a) — s’ on B

a few episodes

3. use dy to optimize actions

t+k
Aty ...,0t ) = arg max E r(sr,ar)
Atyeens A4k —t

s.t. Si11 = dg(s¢, ay)

adaptive method:
nice idea, but how much 1. take one step, get {s,a,s’}

can we really adapt in just - 12
one (or a few) step(s)? 2.0 0 aV9!|d?(s, a)— s
3. use dp to optimize ay,...,as 1, take a;




Model-based meta-RL

meta-training time meta-test time
Deta-train = {(DY, DY), ..., (DY, D¥)} adaptive method:
o o 1. take one step, get {s,a, s’}
D@r — 2 ? o (2 7
) {(xlayl)a a(xkayk)} 2. 0« 0 — OéVngg(S,CL) o SIHQ
DES _ {(le’yi) (a:'l‘,yf)} 3. use dy to optimize ay,...,a;1k, take a;

assumes past experience has
many different dynamics

generate each D", Dis: /

T+ (s,a) y< s

sample subsequence s;, a¢, ..., St1k, Qt1k, St+k+1 [rom past experience

D; < {(st,a,8041), -+ (Stoh—1 Gtph—1, Stk } "~ could choose k=1, but k> 1

Dts<_{(3t+k’at+k,3t+k+1)} works better (e.g., k = 5)
/,J Dt&,

/‘\/\/\/\



Model-based meta-RL

example task: ant with broken leg meta-test time
-._'-.'5_:55 adaptive method:
.::.-:EE 0 1. take one step, get {s,a, s’}
- { 2. 0+ 0 —aVyl||de(s,a) — s'|?
% ..-: o 3. use dg to optimize ay, ..., a1, take ay
N ...
h N ] ; Real-world

results

See also:

Saemundsson, Hofmann, Deisenroth. Meta-Reinforcement
Learning with Latent Variable Gaussian Processes.
Nagabandi, Finn, Levine. Deep Online Learning via Meta-
Learning: Continual Adaptation for Model-Based RL.

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn.
Learning to Adapt in Dynamic, Real-World Environments
Through Meta-Reinforcement Learning. ICLR 2019.



Model-Based Meta-RL for Quadrotor Control

€—— Quadcopter

2T

-
<

Belkhale, Li, Kahn, McAllister, Calandra, Levine. Model-Based Meta-Reinforcement Learning for Flight with Suspended Payloads. ‘20



Meta-RL and emergent phenomena

m

eta-RL gives rise to

episodic learning

DND
key valu

Episodic
LST™M

Meta-Learning
with Repetitions

e

ssssss

Ch pCh, pCh, PR PR PR PR, PR, {hy )

Task 1 Task 2 Task 3
Repetition of Task 1

Ritter, Wang, Kurth-Nelson, Jayakumar, Blundell, Pascanu,
Botvinick. Been There, Done That: Meta-Learning with
Episodic Recall.

model-free meta-RL gives rise to
model-based adaptation

A

Stage 1 Stage 2
Al —u—— S§1 —=- >
L =¥ ., LT
2 s 1P "
2" .:"'»
: Tra .t i
A2 —u—s S2 ——

Wang, Kurth-Nelson, Kumaran, Tirumala, Soyer, Leibo,
Hassabis, Botvinick. Prefrontal Cortex as a Meta-
Reinforcement Learning System.

Humans and animals seemingly learn behaviors in a variety of ways:
» Highly efficient but (apparently) model-free RL

» Episodic recall
» Model-based RL
» Causal inference
> etc.

Perhaps each of these is a separate “algorithm” in the brain

But maybe these are all emergent phenomena resulting from meta-RL?

meta-RL gives rise to
causal reasoning (!)

p(A) pA)

/N

EpP—— H

A

G—- E \

E p— H

p(E|A) p(H|AE) d(E—e) p(H|AE)

Dasgupta, Wang, Chiappa, Mitrovic, Ortega, Raposo,
Hughes, Battaglia, Botvinick, Kurth-Nelson. Causal
Reasoning from Meta-Reinforcement Learning.



