Some Recent Algorithmic Questions
In Deep Reinforcement Learning

CS 285

Instructor: Aviral Kumar
UC Berkeley

- °f)
“ N\ ;o
" - .

. »

4 o

. e

Berkeley

UNIVERSITY OF CALIFORN



What Will We Discuss Today?

So far, we have gone over several interesting RL algorithms, and some
theoretical aspects in RL

 Which algorithmic decisions in theory actually translate to practice,
especially for Q-learning algorithms?

* Phenomena that happen in deep RL, and how we can try understanding
them....

e \What affects performance of various deep RL algorithms?

* Some open questions in algorithm design in deep RL

Disclaimer: Most material covered in this lecture is very recent and being
still actively researched upon. | will present some of my perspectives on
these questions in this lecture, but this is certainly not exhaustive.



Part 1: Q-Learning Algorithms



Sutton’s Deadly Triad in Q-learning
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(2) The example by Tsitsiklis and (b) v(s) = we(s) diverges. (c) v(s)=w(¢(s)+u) converges.
Van Roy (1997).

Hasselt et al. Deep Reinforcement Learning and the Deadly Triad. ArXiv 2019.



What aspects will we cover?

e Divergence: Divergence can happen with the deadly triad and several
algorithms tailored towards preventing this divergence. But does it actually
happen in practice?

Large part of theory focused on fixing divergence

e “Overfitting”/Sampling Error: As with any learning problem, we would expect
training neural network Q-learning schemes to suffer from some kind of
overfitting. Do these methods suffer from any overfitting?

Worst-case bounds exist, but we do not know how things behave in practice

e Data distribution: Off-policy distributions can be bad, moreover narrow data
distributions can give brittle solutions? So, which data distributions are good,
and how do we get those distributions?

(Too) worst-case bounds, but how do things behave in practice?



Dlvergence in Deep Q-Learning

Whlle Q values are overestlmated there IS not reaIIy S|gn|f|cant dlvergence
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Hasselt et al. Deep Reinforcement Learning and the Deadly Triad. ArXiv 2019.
Fu*, Kumar*, Soh, Levine. Diagnosing Bottlenecks in Deep Q-Learning Algorithms. ICML 2019



Overfitting in Deep Q-Learning

Does overflttlng happen for real |n FQI W|th neural networks’? ‘
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Fu*, Kumar*, Soh, Levine. Diagnosing Bottlenecks in Deep Q-Learning Algorithms. ICML 2019



Overfitting in Deep Q-Learning
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Overfitting in Deep Q-Learning

Why does performance degrade with more training?

 Possibility 1: Large deep networks overfit, and that can cause poor
performance — so more training leads to worse performance...

 Possibility 2: Is there something else with the deep Q-learning update?

T Early stopping helps
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Fu*, Kumar*, Soh, Levine. Diagnosing Bottlenecks in Deep Q-Learning Algorithms. ICML 2019



Overfitting in Deep Q-Learning

 Possibility 2 is also a major contributor: Performance often depends on the
fact that optimization uses a bootstrapped objective — i.e. uses labels from
itself for training

Preliminaries: Gradient descent with deep networks has an implicit
regularisation effect in supervised learning, i.e. it regularizes the solution Iin
overparameterized settings.

: 2
m)%n ‘ |AX — y\ ‘2 If gradient descent converges to a
good solution, it converges to a
minimum norm solution

m)%nHXH% s.t. AX =y

Check Arora et al. (2019) for a discussion of how this regularization is more complex...

Gunasekar et al. Implicit Regularization in Matrix Factorization. NeurlPS 2017.
Arora et al. Implicit Regularization in Deep Matrix Factorization. NeurlPS 2019.
Mobahi et al. Self-Distillation Amplifies Regularization in Hilbert Space. NeurlPS 2020.



Implicit Under-Parameterization

'ﬁ When training Q-functions with bootstrapping on the same dataset, more gradient
§ steps lead to a loss of expressivity due to excessive regularization, that manifests '
as a loss of rank of the feature matrix.
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Kumar*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. 2020.



Implicit Under-Parameterization
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Implicit Under-Parameterization
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Also observed on the gym environments, rank collapse corresponds...

Kumar*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. 2020.



Data Distributions in Q-Learning

 Deadly triad suggests poor performance due to off-policy distributions,
bootstrapping and function approximation.

* Are on-policy distributions much better for Q-learning algorithms?

* |f not, then what factor decides which distributions are “good” for deep Q-
learning algorithms?

a

Fra)(Q(s,0) = (r(s,a) + 7 max Q(s', a')))?

H(p) = — Z p(s,a)logp(s,a) Measures the entropy/
(s,a) uniformity of weights



Which Data-Distributions are Good?

Compare different data distributions:
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Finding Good Data-Distributions
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Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurlPS 2020.




Consider This Example...

« Let's start with a simple case of an MDP with function approximation

$(s1) and ¢(sy) are related .

nodes of the same shape
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Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurlPS 2020.



Q- Learnlng with On-Policy Data Collection
Er = |Qr — Q"

...... ) : Iteration 3
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Iteration 1 B EEUINER
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Summary of the Tree MDP Example

On-policy distributions may
not correct errorful targets
due to aliasing and skewness

lteration 1 Iteration 2

Incorrect target value induces
error at other frequent states

via Bellman backups

Iteration 4 teration 5

Training under the resulting
distribution may further inhibit
error correction at leaf nodes

lteration 9

Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurlPS 2020.



Q-Learning with On-Policy Data Collection
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Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurlPS 2020.



What does this tell us?

* While on-policy data collection is sufficient for “error correction”/ convergence
In the absence of function approximation, function approximation can make it
ineffective in error correction...

* We saw that more gradient updates under such a distribution lead to poor
features (due to the implicit under-parameterization phenomenon), which can
potentially lead to poor solutions after that....

* We saw that entropic distributions are better — but we have no control over
what comes in the buffer, unless we actually change the exploration strategy, so
can we do better?



Part 2: Policy Gradient Algorithms



Initial State Distribution in Pollcy Gradients

Pollcy gradlents maximize expected value at the |n|t|al state '“
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where V,V "?(sp) 1S a tensor of the £y, order derivatives of V "?(sg) and the norm 1s the operator
norm of the tensor.* Furthermore, V*(so) — V™ (s¢) > (H +1)/8 — (H + 1)%/3%.

Agarwal, Kakade, Lee, Mahajan. On the Theory of Policy Gradient Methods. 2019



Policy Gradient Plateaus: What and Why?

Policy gradient + function approximation + on-policy data "

RL (function approximation) . ~ RL(tabular) . Supervised (function approximation) M|ght end up opt|m|Z|ng one
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Also affected by attraction to suboptimal solutions during training!

Schaul, Borsa, Modayil, Pascanu. Ray interference: A source of plateaus in deep RL. 2019



Importance of Initialization and Rewards

“Good” initialization

Consider a 3-armed bandit (1-step RL) problem with
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Initialization matters, reward values matter. Also matter in offline settings.

Mei, Xiao, Szepesvari, Schuurmans. On the Global Convergence of Softmax Policy Gradient Methods. ICML 2020.



Summary and Takeaways

e Qverfitting in RL consists of more than just sampling error in standard
supervised learning — we discussed how the update in Q-learning leads
to poor solutions.

e Data-distributions matter a lot for RL problems: for both Q-learning
algorithms and policy-gradient algorithms, only started understanding the
surface in this domain

e |terated training and changing objectives can be heavily affected by
initialization, coverage, function approximation, etc in both Q-learning and
policy gradient methods

Several open questions along these lines, have the

potential to lead to stable and efficient algorithms



