Some Recent Algorithmic Questions
In Deep Reinforcement Learning

CS 285

Instructor: Aviral Kumar
UC Berkeley

- °f)
“ N\ ;o
" - .

. »

4 o

. e

Berkeley

UNIVERSITY OF CALIFORN

What Will We Discuss Today?

So far, we have gone over several interesting RL algorithms, and some
theoretical aspects in RL

 Which algorithmic decisions in theory actually translate to practice,
especially for Q-learning algorithms?

* Phenomena that happen in deep RL, and how we can try understanding
them....

e \What affects performance of various deep RL algorithms?

* Some open questions in algorithm design in deep RL

Disclaimer: Most material covered in this lecture is very recent and being
still actively researched upon. | will present some of my perspectives on
these questions in this lecture, but this is certainly not exhaustive.

Part 1: Q-Learning Algorithms

Sutton’s Deadly Triad in Q-learning

¢ Off-policy |

, Sampling | Divergence
: Function i
. Approximation } Few |_3arameters More parameters
S, | diverges converges

10°
10* N // 10° V2
| -¢ 10% // 10° ﬁ\\\ e AT A AP
/@ ”’2 J/ 10° // \\\ More expressive
) \211/\ o / 10 functions
4 ” approximators

& 10° 4 ,
; / 10~
10° /

500 1000 1500 2000 1 100 200 300 400 500

work fine? ;

(2) The example by Tsitsiklis and (b) v(s) = we(s) diverges. (c) v(s)=w(¢(s)+u) converges.
Van Roy (1997).

Hasselt et al. Deep Reinforcement Learning and the Deadly Triad. ArXiv 2019.

What aspects will we cover?

e Divergence: Divergence can happen with the deadly triad and several
algorithms tailored towards preventing this divergence. But does it actually
happen in practice?

Large part of theory focused on fixing divergence

e “Overfitting”/Sampling Error: As with any learning problem, we would expect
training neural network Q-learning schemes to suffer from some kind of
overfitting. Do these methods suffer from any overfitting?

Worst-case bounds exist, but we do not know how things behave in practice

e Data distribution: Off-policy distributions can be bad, moreover narrow data
distributions can give brittle solutions? So, which data distributions are good,
and how do we get those distributions?

(Too) worst-case bounds, but how do things behave in practice?

Dlvergence in Deep Q-Learning

Whlle Q values are overestlmated there IS not reaIIy S|gn|f|cant dlvergence

100000 - 0 - . large small

10000 = - 107

O ,,,,01%) 14%| 33%| 10% 10 — 05 — 05

o - 10° 0.75 0.75

o) 100 - - 10° 0.9 0.9

© o . 107 0.95 0.95

r>é 10° 0.99 0.99
= = - 10°
0.1- - 10°

10° f /

0.01 - - 10!
| | | | 102

Q Target Q Inverse Double Q 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Double Q Million of frames Million of frames

N
o

B Normalized Returns
- Project Q* Error
. FQI Q* Error

o
o

i Large neural networks just seem |
i flne in an FQI-ster settlng ‘

S
W]
{ =
O
3]
c
-
C.J R CEDNNNINNN CTITNTEGGEREN R RRRRRRRRNRERRIR SRR SRR
B I
£
= 0.4 -
x 0.9% divergence
5
2 0.2
©
g 0.0 5 —- — -
Tabular (256, 256) (64, 64) (16, 16) (4, 4)
Architecture

Hasselt et al. Deep Reinforcement Learning and the Deadly Triad. ArXiv 2019.
Fu*, Kumar*, Soh, Levine. Diagnosing Bottlenecks in Deep Q-Learning Algorithms. ICML 2019

Overfitting in Deep Q-Learning

Does overflttlng happen for real |n FQI W|th neural networks’? ‘

11111
Q s,a€ED
0.0030 : :
1.0 Sampling Method
Samples — 32 :
; ‘ 32 ,, 0-0025 64
c il 5‘15: § 0.0020 - —— 1024
3 . _ s Replay Buffer
5 0.6 - 3 :
B S 0.0015 ;rovveveenrererenenss
N
® ©
: =
P © 0.0010 e
=
o
e

) 50 100 150 200 250 300
lterations

Few samples leads to poor
performance

§

0.0000 ** : : : : :
0 50 100 150 200 250 300
Iterations

Replay buffer prevents overfitting, even though it is
off-pollcy

?. V When movmg from FQI to DQN/Actor—crltlc what happens’?

Fu*, Kumar*, Soh, Levine. Diagnosing Bottlenecks in Deep Q-Learning Algorithms. ICML 2019

Overfitting in Deep Q-Learning

o
-
v

Normalized Returns

100 \C 300 400 530
lkeration

More gradient steps hurt
performance

= gradient steps per environment step

. Sample N samples from |
the environment ‘

Train for K steps before
sampling next :

c 12500 20000 1
_
=
E 10000 15000 -
@ 7500
g 10000 1
§ 5000 1
< 2500 - 5000
0 T . 0 T
0 50 100 150 200 0 50 100 150
Environment Steps Environment Steps

Fu*, Kumar*, Soh, Levine. Diagnosing Bottlenecks in Deep Q-Learning Algorithms. ICML 2019

200

Overfitting in Deep Q-Learning

Why does performance degrade with more training?

 Possibility 1: Large deep networks overfit, and that can cause poor
performance — so more training leads to worse performance...

 Possibility 2: Is there something else with the deep Q-learning update?

T Early stopping helps

0.4 y
//
é 0.3 ’,,//
& /
g / Although this is with “oracle
/ access” to Bellman error on all
0.1 T states.... so not practical
/" —— Oracle Returns
Bellman Error
0.0 . None
0 20 100 150 200 250 300

lteration

Fu*, Kumar*, Soh, Levine. Diagnosing Bottlenecks in Deep Q-Learning Algorithms. ICML 2019

Overfitting in Deep Q-Learning

 Possibility 2 is also a major contributor: Performance often depends on the
fact that optimization uses a bootstrapped objective — i.e. uses labels from
itself for training

Preliminaries: Gradient descent with deep networks has an implicit
regularisation effect in supervised learning, i.e. it regularizes the solution Iin
overparameterized settings.

: 2
m)%n ‘ |AX — y\ ‘2 If gradient descent converges to a
good solution, it converges to a
minimum norm solution

m)%nHXH% s.t. AX =y

Check Arora et al. (2019) for a discussion of how this regularization is more complex...

Gunasekar et al. Implicit Regularization in Matrix Factorization. NeurlPS 2017.
Arora et al. Implicit Regularization in Deep Matrix Factorization. NeurlPS 2019.
Mobahi et al. Self-Distillation Amplifies Regularization in Hilbert Space. NeurlPS 2020.

Implicit Under-Parameterization

'ﬁ When training Q-functions with bootstrapping on the same dataset, more gradient
§ steps lead to a loss of expressivity due to excessive regularization, that manifests '
as a loss of rank of the feature matrix.

Q(s,a) = w' &(s, a) ® c RISIMAIX w € R

Learned by a O = Udlag{az(q))}VT

neural network

sranks(®) = min {k : 22}1 7i(®) > 1 — 5}

: Online
Offline
GridWorld Asterix Gridworld 2 Asterix
60l 140 ¢
— w» 120 e ROmEanmeear = 400
s 20 = - =
i ¢ 100 = 300 w—— DQN (n=1)
:-.' 40 1 - e B8O .3; e DON (n=4)
= = o - |~ x 200 * DON (n=8)
T 30- x e 60 c
3 == Supervised B 8 e \
g - < e ' 4 d @ 100
“ 204 = T=10 w 1001 DON 0 - -
w— Twm200 —— DQN (4x data) 20 1 0 ————
10 H H i l 0 : : ' ‘ ’ . . o - g

Kumar*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. 2020.

Implicit Under-Parameterization

-\

HPR___ nRR__
Minimize Minimize Minimize
TD Error ~a > TD Error ~a s TD Error

Q(s a)
Rank(d) ‘ Rank(¢) ‘
decreases

decreases

<I>k --------------------------------------- 2 .

sa

Kumar*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. 2020.

Implicit Under-Parameterization

Seaquest (FQE vs M()

Doesn’t happen when bootstrapping is absent
400

(.01

u'i

300

Q(Sa a) — T(Sa CL) =+ /VES/,CL/NP(S/|S,CL)7T(CL/|S’) [Q(Slv a/)]

- FQE j
2004 = MCReturns Ve ______

100 - ' Q(SO,CLO) — ZWtTt(Staat)
t=0

0 100 200 300
Gradient Updates (x 62.5k)

srank.(®).

ﬁ It hurts the representability of the optimal Q-function .' IG5 Sgric(r)rvised (Oracle)

* — =200

=N
o

w
-

On the gridworld example from before,
representing the optimal Q-function becomes
hard with more rank drop!

Q' fitting error
N
o

p—
-

0 100 200 300 400 500
Environment Steps

NOormalizea Keturn

Effective Rank and Performance

{ Rank collapse corresp

ds to po

O

or perfo

rmance -

0.01

srank;(®). 4

GridWorld Asterix Gridworld 200 Asterix
140 1
- 400 = 120 P T . . TS = 400
- 300 4 100 < 300 —— DQN (n=1)
e & 80) —— DQN (n=4)
Z 200- < -~ < 200 —— DQN (n=8)
c e 60+ c
- = Supervised © © © \\
201 = T=10 w 1001 — poN % 401 @ 100
— T=200 - DQN (4x data) 201
10 v Y ¥ v 1 O-‘ T - T Y v v v v 1 0 1 . . - -
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 50 100 150 200
10—————-—————————-_ 10 ————————————————— 15000
- = Supervised
0.8 = T=10 - £0.8; < 12500
— 2 § 2 10000
+~ - .
0.6 e : 0.61 - = Supervised o
0.4 g = 0.4 — Nn=200 S
' - . v -
5 : \/\"“” § 50001
< 5 =
0.2 2 0.2 25001
0.0 = et - Ty . ; : ; ; 0.0 O W T S TN S W S, - 01 : :
O 100 200 300 400 500 0O 100 200 300 400 500 0 100 200 300 400 500 0 50 100 150 200
Fitting Iterations Gradient Updates (x62.5k) Environment Steps Environment Steps

Also observed on the gym environments, rank collapse corresponds...

Kumar*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. 2020.

Data Distributions in Q-Learning

 Deadly triad suggests poor performance due to off-policy distributions,
bootstrapping and function approximation.

* Are on-policy distributions much better for Q-learning algorithms?

* |f not, then what factor decides which distributions are “good” for deep Q-
learning algorithms?

a

Fra)(Q(s,0) = (r(s,a) + 7 max Q(s', a')))?

H(p) = — Z p(s,a)logp(s,a) Measures the entropy/
(s,a) uniformity of weights

Which Data-Distributions are Good?

Compare different data distributions:

win max Buany [(Qs,0) - TQ(s)

JUniform’\

0.85
High entropy weights are
e - «Replay |« Prioritized good for performance
§ 0.75 ik
3
= 0.70 .Replay(10) :
9 .Random No sampling error here, all
w™ 0.65 . .
2 state-action pairs
O . .
2 0.60 provided to the algorithm
0.55
JPi* |
%20 Do replay buffers work Not always,
0.6 0.7 0.8 0.9 .
Weight Entropy because of more lead to biased
coverage? Maybe... training

H(p)

Finding Good Data-Distributions

ollout data { (i, ai,s,,7;)) Corrective feedback = the ability of
— l data collection to correct errors in

- — the Q-function.
buffer

D
g update A

erm)j/\‘Wk+1)
1 k41

On-policy data Includes replay buffer distributions
collection

What we’ll show is that on-policy
data collection may fail to correct

) . errors in the target values that are
Corrective .
y important to be backed up..
Feedback

Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurlPS 2020.

Consider This Example...

« Let's start with a simple case of an MDP with function approximation

$(s1) and ¢(sy) are related .

nodes of the same shape

lteration 1 ¢(32)
. } Nodes are aliased with other

- © States bein Intermediate values of error,
' updated | . O O O O O O (high (L) to low (R) error)

Data distribution would affect solutions in the presence of aliasing

Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurlPS 2020.

Q- Learnlng with On-Policy Data Collection
Er = |Qr — Q"

......) : Iteration 3

Iteration 4 Iteration 5

Iteration 1 B EEUINER
backups

Function Approximation +

On-policy distribution =
Incorrect targets

|Error increases! |

Summary of the Tree MDP Example

On-policy distributions may
not correct errorful targets
due to aliasing and skewness

lteration 1 Iteration 2

Incorrect target value induces
error at other frequent states

via Bellman backups

Iteration 4 teration 5

Training under the resulting
distribution may further inhibit
error correction at leaf nodes

lteration 9

Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurlPS 2020.

Q-Learning with On-Policy Data Collection

- Tr
0.000107 [l | Ek+1 — &k d k(S,a/)
0.00008 - ﬂ | . ==== Bellman error _
g Er = |Qr — Q7
0.00004 A
»
8 0.00002 - - —
0.00000 - Policy visitation corresponds to reduced
| LN Bellman error, but overall error may increase!
—0.00002{ 7" _
0 100 200 300
Iteration B T
Q(S7 CL) — [wlv wQ] ¢(3, CL)
ai, 0

A 01,0 o(+, a0) = [1,1]

H’/a(. a a a
| b ﬁ 16-3"
¢('7 CL1) — [17 1001]

~ = 0.999

[wl, UJQ] [O le — 4] Check that overall error increases!

init

Kumar, Gupta, Levine. DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction. NeurlPS 2020.

What does this tell us?

* While on-policy data collection is sufficient for “error correction”/ convergence
In the absence of function approximation, function approximation can make it
ineffective in error correction...

* We saw that more gradient updates under such a distribution lead to poor
features (due to the implicit under-parameterization phenomenon), which can
potentially lead to poor solutions after that....

* We saw that entropic distributions are better — but we have no control over
what comes in the buffer, unless we actually change the exploration strategy, so
can we do better?

Part 2: Policy Gradient Algorithms

Initial State Distribution in Pollcy Gradients

Pollcy gradlents maximize expected value at the |n|t|al state '“

1
VoV'™ (30) 1 — ~]EsNd:g lE:a/vwg(-l.s) [VG log o (a‘S)QM (3, a’)] '

ay Policy gradient can be nearly
0, leading to poor solutions!

Ignore *'? Reward shaping?
re-weighting?

Proposntlon 4.1 (Vamshmg gradlents at suboptlmal parameters) Con31der the chain MDP of Fig-

A BN - . - - AT) h l‘l - ald l.b’ll“- - Il .l ‘Sl

 Poor solutions are sort of “equally poor” and the depth of the chain makes &9,
it hard to find any gradient of improvement /4,

where V,V "?(sp) 1S a tensor of the £y, order derivatives of V "?(sg) and the norm 1s the operator
norm of the tensor.* Furthermore, V*(so) — V™ (s¢) > (H +1)/8 — (H + 1)%/3%.

Agarwal, Kakade, Lee, Mahajan. On the Theory of Policy Gradient Methods. 2019

Policy Gradient Plateaus: What and Why?

Policy gradient + function approximation + on-policy data "

RL (function approximation) . ~ RL(tabular) . Supervised (function approximation) M|ght end up opt|m|Z|ng one

': e | = ool component of the objective
x o | WA | SSEEEP A more than others
e At TRt 6 At g ir /1| SRS AN
A 12 f If you hit a saddle point of the
| e | —S===ooooor: : | 1 expected return function
2 | 2 ’ (corners), then stays there

| f - il Initialization, etc become

iImportant now!

s ! s E 1) steps i Xo (a|s) _ exp{é’ (S] a)}
> . exp{f(s,a’)}

Also affected by attraction to suboptimal solutions during training!

Schaul, Borsa, Modayil, Pascanu. Ray interference: A source of plateaus in deep RL. 2019

Importance of Initialization and Rewards

“Good” initialization

Consider a 3-armed bandit (1-step RL) problem with

" o I
arm 1 being the optimal arm. 2ol
0.8
0.7+
m9, = (0.05,0.01,0.94) ' mg, = (0.01,0.05,0.94) " 08t
0.5
1 = 0.4+
08 0.3F
o)
0.6 — 09k ‘//'/
- |
0.4 -{[100 iter. o |
0.7 T
/7 — W, T
0.2 - / 0.6 wp, (")
| N 0.5
0

0.4»
>2 04 08 IS
0.8 1 Bad” initialization |
8000 iter.

/
mo(1) r(2) —r(3) 0.1 L
70 (3) = 2 (D) = 1(2)) N 1V

0 1000 2000 3000 4000 5000 6000 7000 8000

Initialization matters, reward values matter. Also matter in offline settings.

Mei, Xiao, Szepesvari, Schuurmans. On the Global Convergence of Softmax Policy Gradient Methods. ICML 2020.

Summary and Takeaways

e Qverfitting in RL consists of more than just sampling error in standard
supervised learning — we discussed how the update in Q-learning leads
to poor solutions.

e Data-distributions matter a lot for RL problems: for both Q-learning
algorithms and policy-gradient algorithms, only started understanding the
surface in this domain

e |terated training and changing objectives can be heavily affected by
initialization, coverage, function approximation, etc in both Q-learning and
policy gradient methods

Several open questions along these lines, have the

potential to lead to stable and efficient algorithms

