Offline Reinforcement Learning
CS 285

Instructor: Aviral Kumar
UC Berkeley

Berkel ey

UUUUUU SITY OF CALIFORNIA

What have we covered so far?

00
{ ¢
m,]?X “se,ap~m |V T (8757 at)
t=1

e Exploration:

- Strategies to discover high-reward states, diverse Skl||S etc.
- How hard is exploration? R —

#Samples > () ((

S|[A]
1 —7)3

log

S|JA
0

 Even if we are ready to collect so many samples, it may be
dangerous in practice: imagine a random policy on an
autonomous car or a robot!

Azar, Munos, Kappen. On the Sample Complexity of RL with a Generative Model. ICML 2012
and many others...

Can we apply standard RL in the real-world?
e RL is fundamentally an “active” learning paradigm: the agent needs
to collect its own dataset to learn meaningful policies

e This can be unsafe or expensive in real world problems!

‘\0 '
N ‘
!“5 2O
<D
2% > I'
=D
2 2.
3%

a\epae

Unobserved
responses

Mechanical

Observed
decisions and
* response
V\()]
* Unobserved
responses
ventilation? Sedation? Vasopressors?

Time

| Iterated data collection can cause

poor generalization!

Gottesman, Johansson, Komorowski, Faisal, Sontag, Doshi-Velez. Guidelines for RL in Healtcare. Nature Medicine, 2019.
Kumar, Gupta, Levine. DisCor: Corrective Feedback in RL via Distribution Correction, NeurlPS 2020.

Offline (Batch) Reinforcement Learning

reinforcement learning fully off-policy/offline reinforcement learning

) train for
many epochs

big dataset
from past no
. interaction

this is done
many times

Oy iy
‘ [) R .
SR) -.55 ‘;‘,) '
‘._:‘j N '® R o { A0
4‘ ' <‘4 : - 4/

» 4 ‘

YNNI e
‘.- _A’A"
; Il '\ 'l\
.\I" VL"('.".‘
AL
) : ,"/ :“ ¢
e 2ot lolal ot o o

: T
et N
N " 5 - S s
N LA A S A A
2 VGV VLV
LS LR E N Fr
Py ™ NG
e X
v .
- DAL o
AP TR RTR IR
IR IGTOTIONR S

\\‘. ANAAA A .",A
O
A
e oSS e
(P2 atavanan
NN ARy

Learn from a previously collected static dataset

e Large static datasets of meaningful
behaviours already exist

[Why is offline RL |
| promising? |

 |arge datasets at the core of successes In
Vision and NLP

Lange, Gabel, Reidmiller. Batch Reinforcement Learning. 2012.
Levine, Kumar, Tucker, Fu. Offline RL Tutorial and Perspectives on Open Problems. arXiv 2020.

Applications of Offline RL

......................................

Stimulator 4\

Agent controls based
on the sensor data

..

Kalashnikov et al. QT-Opt: Scalable Deep RL for Vision-Based Robotic Manipulation. CoRL 2018.
Jaques et al. Way Off-Policy Batch Reinforcement Learning for Dialog. EMNLP 2020.

Guez et al. Adaptive Treatment of Epilepsy via Batch-Mode Reinforcement Learning. AAAI 2008.
Kendall et al. Learning to Drive in a Day. ICRA 2019.

Levine, Kumar, Tucker, Fu. Offline RL Tutorial and Perspectives on Open Problems. arXiv 2020.

How good can offline RL perform?

Can do as good as the dataset!

»Cat?

i Offline Reinforcement Learning

Can do better than the dataset!

Can show that Q-learning recovers optimal policy from random data.

Fu, Kumar, Nachum, Tucker, Levine. D4RL: Datasets for Deep Data-Driven RL. arXiv 2020.

Formalism and Notation

O
7 t
m,]?‘x sy ap~m | T (Stv at)
t=1

e Dataset construction:

Reward known
- Several trajectories:

D={r, -, 7N}, ° {sz,a r st}t ,

* Approximate “distribution” of states in the dataset: D(s)

 Approximate distribution of actions at a given state in the
dataset: D(als)

e Will use notation for the behavior policy, m3(a|s) = D(als)

e Standard RL notation from before: Q™ (s,a), V™ (s),d" (s), etc.

Part 1: Classic Offline RL Algorithms

and Challenges
With Offline RL

Part 2: Deep RL Algorithms to
Address These Challenges

Part 3: Related Problems,
Evaluation Protocols, Applications

Part 1: Classic Algorithms and
Challenges With Offline RL

A Generic Off-Policy RL Algorithm

DQN and Actor-critic algorithms both follow a similar skeleton, but
with different design choices.

rollout data { (8, ay, S:- ,Ti) }

{1. Collect data using the current policy |

= — _
buffer {2. Store this data in a replay buffer
7T k v ’ . Use replay buffer to make updates on }
g update b { the policy and the Q-function
\ rollout(s) j . ﬂ-k?—l— 1) (. Continue from step 1.
) -
mm E ((8isa;) — |7 (8i,a;) +ymaxQ (s;,a’)

Actor-critic Algorithm.
1. Learn QT

2. Optimize policy w.r.t.Q™ : 7 < arg max
™

S

<[Q"]

Can such off-policy RL algorithms be used?

Off-Policy RL Algorithms can be applied, in principle

rollout data {(Si,a;.s.,r;

“Off-Policy” buffer from

|f buffer j past policies
@ ﬂ-k “Off-Policy” buffer from

update some unknown policies

rollout(s)) L k41)
4 | s,r l\
@
t a |

f k41
\ deployment j

I We will discuss some classical §

| algorithms based on this idea }
” next “. _ rollout(s)

data collected once
with any policy training phase

Actor-critic Algorithm:
- Lagoudakis, Parr. Least Squares Policy lteration. JMLR 2003.

I 4 AT o o
1. Learn Q™ using offline dataD. Ernest el al. Tree-Based Batch Mode Reinforcement Learning. JMLR
A A 2005
2. Optlmlze pohcy W.r.t.Qﬂ' . T <— arg max Ex [er] Gordon G. J. Stable Function Approximation in Dynamic Programming.
™

ICML 1995, and many more...

Classic Batch Q-Learning Algorithms

Algorithm 1 Fitted Q-Iteration (FQI)

1: Initialize Q-network Qg, buffer L.

2: for fitting iteration k£ in {1, ..., N} do

3: Compute Qg(s,a) and target values
yr(s,a) = r + ymaxa Qr—1(s’,a’)
on {(s,a)} ~ u for training

4: Minimize TD error for Qg viat =

1,---, T gradient descent updates,
ming (Qe(s a) — yx)’
5: end for

Can be solved in many ways:
(1) find fixed point of the above equation
(2) minimise the gap between the two sides of the equation

. Compute target values using the |
current Q-function |

Train Q-function by minimizing TD
error with respect to target values »
from Step 1. i

i LeastSquares |
Temporal Difference |
{ Q-Learning (LSTD- }
? Q) :

Lagoudakis, Parr. Least Squares Policy lteration. JMLR 2003.

Ernest el al. Tree-Based Batch Mode Reinforcement Learning. JMLR 2005

Riedmiller. Neural Fitted Q-lteration. ECML 2005.

Gordon G. J. Stable Function Approximation in Dynamic Programming. ICML 1995

Antos, Szepesvari, Munos. Fitted Q-lteration in Continuous Action-Space MDPS. NeurlPS 2007.

Classic Batch RL Algorithms based on IS

J(m0) = Ermry(r) WO(Ti Z’Ytr(s, a)

H
sy | ([T 222450) 3 ytr(s,) | o 3wy 37t

Lan~g (a|s:) [QAWO (St, a)]) .

High-confidence bounds on the return estimate

Variance reduction techniques

Precup. Eligibility Traces for Off-Policy Policy Evaluation. CSD Faculty Publication Series, 2000.
Precup, Sutton, Dasgupta. Off-Policy TD Learning with Function Approximation. ICML 2001.
Peshkin and Shelton. Learning from Scarce Experience. 2002.

Thomas, Theocharous, Ghavamzadeh. High Confidence Off-Policy Evaluation. AAAI 2015.

Thomas, Theocharous, Ghavamzadeh. High Confidence Off-Policy Improvement. ICML 2015.

Thomas, Brunskill. Magical Policy Search: Data Efficient RL with Guarantees of Global Optimality. EWRL 2016.
Jiang and Li. Doubly-Robust Off-Policy Value Estimation for Reinforcement Learning. ICML 2016.

Modern Offline RL: A Simple Experiment

Collect expert data and run actor-critic algorithms on this data

Performance doesn’t
iImprove with more data

HalfCheetah-v2: AverageReturn

HalfCheetah-v2: lo
1000 ; 30 : . 5 g(Q)
N T T M b O — n=1000 Learning diverges
7 —— 1n=10000 # 951 —— n=10000
500 4o ...~ n=100000 —— 1n=100000 % é
. —— 1n=1000000 50 1 n=1000000
250_, ~ :
U [— o Ba ian.. 15 e _—
—950 - | A o
, “ : 10 e Berenrennenns sty
_500 ST - - : :
§ 1 Z SO SO I S
—T50) A e s R SRR e : : :
—1000 1 i ; ; 0 : : : :
0.0K 02K 04K 06K 08K 1.0K 0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps TrainSteps

how well it does how well it thinks it does

L

Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy RL via Bootstrapping Error Reduction, NeurlPS 2019.
Levine, Kumar, Tucker, Fu. Offline RL Tutorial and Perspectives on Open Problems. arXiv 2020.

S0, why do RL algorithms fail, even
though imitation learning would work
In this setting (e.g., in Lecture 2)?

Let’s see how the Q-function is updated

Q(s,a) < 1(s,a) + ymax Q(s',a’)

Qa

T [(Qs,a) = (r(s,0) + 7 max Q(s',)))*

a

! Q-values at |
i other actions §

[Will be used for L I"if
Which actions does the Q- backups
function train on? Q(s,a)] -~ [s,) ~ B

a~D A VA

! Q-values on }
{ thedata ¢}

Q-learning queries values at unseen action targets,
which are never trained during training :

Why are erroneous backups a big deal?

 This phenomenon also happens in online RL settings, where the Q-function
IS erroneously optimistic

 But Boltzmann or epsilon-greedy exploration on this overoptimistic Q-
function (generally) leads to “error correction”

7Texplore(&‘s) X eXp(Q(87 CL))

Error correction is not necessarily guaranteed with online data collection
when using deep neural nets, but mostly works fine in practice (trick: use
replay buffers, perform distribution correction, etc)

 But the primary ability of error correction, i.e., exploration, is impossible
In offline RL, due to no access to an environment....

Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy RL via Bootstrapping Error Reduction, NeurlPS 2019.
Levine, Kumar, Tucker, Fu. Offline RL Tutorial and Perspectives on Open Problems. arXiv 2020.

Kumar, Gupta, Levine. DisCor: Corrective-Feedback in RL via Distribution Correction. NeurlPS 2020.
Kumar, Gupta. Does On-Policy Data Collection Fix Errors in Off-Policy Reinforcement Learning?, BAIR blog.

Distributional Shift in Offline RL

e Distribution shift between the behavior policy (the policy
that collected the data) and the policy during learning

£ m5(a]s)

Q(s,a) < r(s,a) + ymaxQ(s',a") = ,

CL/

Q(s,a) < r(5,a) + Yo wr(asH Qs ')

-

Training: “33,a~d”5(s(Q(37 a) — BQ(Sv a))Q}

Offllne Q Learnlng algorlthms can overestlmate the value of
unseen actlons and can thus be falsely optlmlstlc '.

Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy RL via Bootstrapping Error Reduction, NeurlPS 2019.
Levine, Kumar, Tucker, Fu. Offline RL Tutorial and Perspectives on Open Problems. arXiv 2020.

Error Compounds in RL (Additional Slide)

Typical cartoon showing
“error compounding” in RL

ST™apd optimal labels a* and attains generalization error e on s ~ d"” (s) then

¥ the best possible bound on the expected error of the learned policy.

and optimal labels a*, and attains generalization error e on s ~ d™ (s), then £(m)

£C+ H the
best possible bound on the expected error of the learned policy. o, |

Error compounding over the horizon magnifies a small error into a big one.

Recent work has also showed counterexamples that indicate we can’t do better.

Janner, Fu, Zhang, Levine. When to Trust Your Model: Model-Based Policy Optimization. NeurlPS 2019.
Ross, Gordon, Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning. AISTATS 2011
Levine, Kumar, Tucker, Fu. Offline RL Tutorial and Perspectives on Open Problems. arXiv 2020.

Part 2: Deep RL Algorithms to
Address Distribution Shift

Addressing Distribution Shift via Pessimism

Q(s,a) <= 1(s;a) + VEu/mr, (a5 Qs)] “Policy Constraint”

Ty i= arg mngaN%(ab) Q(s,a)] s.t. D(my(als), mglals)) < e

| Out-of-distribution action }

Will b ed for
back
i “ ~ D a)l ~ D
i values are no longer used } @(s,a) Ry, Q(s,a) Yy
) . \ 4 \
V J _ 'I‘
/

| Hence, all values used during
training are also trained, |
i leading to better learning

4:a’rv7r¢ (a|s) [Q(S/7 a/)]

Levine, Kumar, Tucker, Fu. Offline RL Tutorial and Perspectives on Open Problems. arXiv 2020.

Different Types of Policy Constraints

Mo i= argmax By, als) [Q(5:)] s:t. Diy(als), ms(als)) < ¢
Several Ways of Implementing Them:
D(my,m3) = MMD (7, 73)
® SUppOrt matCh|ng (Kumar et al. 2019, Laroche et al. 2019, Wu et al. 2019)
e Distribution matching (Peng et al. 2019, Fujimoto et al. 2019, Jaques et al. 2019)
e State-marginal constraints wachum a pai 2020 D(mg, ms) = Dxr(mg, m5)
D(my,m3) = D(d™(s,a),d™(s,a))

¢ ImpI|C|t /closed-form distribution constraints (Peng et al. 2019, Nair et al. 2020, Wang et al. 2020)

Support constraint;
Distribution-matching can choose one of
constraint; can choose yellow policies
one of purple policies A

| Different types of |

O(s.a) Q(s. a)])~ B /\\ anstraints Ie?d to
I\ A N N\ [i different solutions, |
A [\ / \ /f \ \ } providing a whole |ot of
|) %/ | | different offline RL |
algorithms :

a a

Which constraint should | use?

Before answering this question, let’s see how the usage of
a policy constraint affects optimal solutions?

max 4Zw[zjvtr(st,at)]—ozD(w(a\s),mg(a\s))

Thus we would want the constraint to be least restrictive, while still preventing
the “badness”

* TJechnically, support constraints are less restrictive
- Imagine a case where the behavior policy takes all actions uniformly.

- Constraining to the behavior policy via distribution-matching may lead to highly
stochastic policies that are not optimal.

- However, choosing to match only supports leads to choosing in-distribution
actions, but at the same time, only optimises the RL objective

Kumar. Data-Driven Deep Reinforcement Learning. BAIR blog, December 2019.
Levine, Kumar, Tucker, Fu. Offline RL Tutorial and Perspectives on Open Problems. arXiv 2020.

Which constraint should | use?
Support constraint; S A TP AN DI ASAPIP LI e T f

Distribution-matching @ge.one of J Su pport constraints
@3‘3&:’;&‘;‘;"} yelow potcies | better in theory, but not |

Q(s,a))~ b | much differencein
L\ § practice, often depends

' { on how well can policy }

! \‘\ ' I

Q(s, (l.)“

constraint methods be |
Jtuned]

0.1 0.1 0.1 0.1 0.1 0.1
(R R R R

r(s,«)=r(s,—)=0 r(s,—)=1,r(s,«)=-—1

JoJ
Initial state: S Goal state: G ‘1‘0"1‘0"1‘0"1‘0’%0"1'0’ 0.9 0.9 0.9 0.9 0.9 0.9

(a) 1D-Lineworld Environment (b) Behavior Policy

ogllgllolk lihood—

W (T T TTT [skdddddd

) Learned Policy via distribution-matching (b) Learned Policy via support-constraint

Policy Constraint Methods, Empirically

Dataset collected from a mixture of random and “mediocre” policies

2500 . Hopper-v2 2500 . Walker2d-v2
w 3000 w 3000 1
© o "MW AANVAAAAALANA M
5 2500 o 2500 [J
2 1500 - Different choices }
S %0 2 of D matter ;-
o 0 o
~500
0 1 2 3 3 S
training steps (1e5) training steps (1e5)
— 5ac bc — bcq — bear kI vp : How do these I
i methods perform |}
o }
Naive off- Behavior Policy constraint methods: BCQ, § _/)
policy RL cloning BEAR and BRAC (with KL) D
Domain | Task Name BC | SAC | BEAR | BRAC-p | BRAC-v ' I
antmaze-umaze 65.0 0.0 73.0 50.0 70.0
antmaze-umaze-diverse 55.0 0.0 61.0 40.0 70.0
AntMaze antmaze-medium-play 0.0 0.0 0.0 0.0 0.0 "'
antmaze-medium-diverse 0.0 0.0 8.0 0.0 0.0
antmaze-large-play 0.0 0.0 0.0 0.0 0.0
antmaze-large-diverse 0.0 0.0 0.0 0.0 0.0 '

Wu, Tucker, Nachum. Behavior Regularized Offline Reinforcement Learning. arXiv 2019.
Fu, Kumar, Nachum, Tucker, Levine. D4RL: Datasets for Deep Data-Driven RL. arXiv 2020.

Are policy constraint methods sufficient?

i Require estimation of the behavior policy

T . — arg maXEaNW¢(a|s) [Q(S,CL)] S.t. D(7T¢(&‘S),7T5(a|8)) S 2

¢
estimated from data

If the behavior policy is wrongly estimated (e.g, when it does not match the function
class), policy constraint methods can fail dramatically (e.g., AntMaze)

| Often tend to be too conservative

If we know that a certain state has all actions with O reward, we do not care
about constraining the policy there, since we will not be worse...

Can we do better?

Nair, Dalal, Gupta, Levine. Accelerating Online RL with Offline Datasets. arXiv 2020.

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline RL. NeurlPS 2020.

Levine, Kumar, Tucker, Fu. Offline RL Tutorial and Perspectives on Open Problems. arXiv 2020.
Ghasemipour, Schurrmanns, Gu. EmaQ: Expected Max Q-Learning. arXiv 2020.

Let’s revisit the motivating example
(and take a slightly different perspective on the problem)

HalfCheetah-v2: AverageReturn HalfCheetah-v2: log(Q)

n=1000 : ;
n=10000 .o e
n=100000 ' :
n=1000000

1000 30

750 B Freseesaseneenes -TELPEEY .

011 [— SR S n=100000 .
n=1000000

250- , \

| Can we directly tackle false }
| over-estimation, instead of
fixes to avoid out-of- |
distribution actions? :

20 1

04 S— o B o 15 o i - ... ol

—250 1A% _
: g : : 10 Aol fresseassennasien Borenrensenss i prmeerrrerTTT

500 _ : ; : :
: : : 5_

om0 J— J— e

—1000 i i i i 0 i i i i
0.0K 02K 04K 06K 08K 1.0K 0.0K 02K 04K 0.6K 0.8K 1.0K

| | t In some cases, not all out-of- }
TrainSteps TrainSteps i {

- distribution actions are bad, {
| they are bad if they affect the |
i policy (i.e. when values are |

overestimated)

how well it does how well it thinks it does

Can we devise methods that learn lower-bounds on the policy value/ performance?

Yes! Two ways: model-based and model-free

A Framework for Conservative Model-Based RL

Output policy
Mout

E=EEA
| ()

[LearnMMDPJ _’[P-MDP Mp J

1. Learn a dynamic model P(s’[s, a) from |
the offline data. ‘

Learn a conservative/ “pessimistic”
estimate of the reward function.

Perform policy optimisation (e.g., via ;
planning or Dyna) with the learned !
model and the reward function. '”

This Is the new bit!

Make rewards pessimistic

{. } = data support
= unknown

- = known

Keep unaltered reward

Janner, Fu, Zhang, Levine. When to Trust Your Model? Model-Based Policy Optimization. NeurlPS 2019.
Yu, Thomas, Yu, Ermon, Zou, Levine, Finn, Ma. MOPO: Model-based Offline Policy Optimization. NeurlPS 2020.
Kidambi, Rajeswaran, Netrapalli, Joachims. MOReL: Model-Based Offline Reinforcement Learning. NeurlPS 2020.

Model-Based Offline RL Methods

r(s,a) = r(s,a) — Au(s, a).

Covariance matrix of an

ensemble of dynamics models

<o 2]

Disagreement in an ensemble of
dynamics models

Qis(_:(s, a) = = IMax; ; Hf_gbz(s a) f¢3 (s, a)”z

7(s,a) = —Rmax if disc(s,a) > threshold

Yu, Thomas, Yu, Ermon, Zou, Levine, Finn, Ma. MOPO: Model-based Offline Policy Optimization. NeurlPS 2020.
Kidambi, Rajeswaran, Netrapalli, Joachims. MOReL: Model-Based Offline Reinforcement Learning. NeurlPS 2020.

Model-Based Offline RL, Empirically

Model-based methods without
any form of correction can work
I well with “broad” coverage
datasets

D4RL halfcheetah-mixed halfcheetah-jump

“
~

Retumrn

I Conservatism helps in
situations with narrow datasets

SAC MBPO no ens MBPO SAC MBPO no ens. MBPO
(see MBPO vs MOPO on med-
expert)
Dataset type | Environment BC | MOPO (ours) MBPO | SAC | BEAR | BRAC-v
random halfcheetah 2.1 31928 30.7 39 | 30.5 25.5 28.1
random hopper 1.6 13.3 1.6 454+60 | 113 9.5 12.0
random walker2d 9.8 13.0 £ 2.6 8.6 1 8.1 4.1 6.7 0.5
medium halfcheetah 36.1 402127 | 283227 | -43 38.6 45.5 :
medium hopper 29.0 265+37 | 49+33| 08| 476 32.3 Better than policy
medium walker2d 66| 140+101 | 127+76| 09| 332 81.3 | constraint methods
mixed halfcheetah 384 53026 473E126 | -24 36.2 459 generally
mixed hopper 11.8 925 1+63 | 498 304 1.9 10.8 0.9
mixed walker2d 11.3 427 £ 83 | 222+ 12.7 3.5 25.3 0.8
med-expert | halfcheetah 35.8 57.9 £ 24.8 9.7£9.5 1.8 51.7 45.3
med-expert | hopper 111.9 51.7 =429 | 56.0 £ 34.5 1.6 4.0 0.8
med-expert | walker2d 6.4 55.0 £ 19.1 76 £3.7 | -0.1 26.0 66.6

Yu, Thomas, Yu, Ermon, Zou, Levine, Finn, Ma. MOPO: Model-based Offline Policy Optimization. NeurlPS 2020.

Learning Lower-Bounded Q-values
Conservative Q-Learning (CQL) Algorithm

Since learned Q-values (our belief of policy values) are overestimated,

let’s make them provably lower bound the true value

Minimize big
Q-values

Standard Bellman
Error

QgQL = min max 4a~,u(a|s)[Q(3 a)]

LB, o [(Q(s, @) — ((5, @) + AEn, 1) [G(s @)]))?]

Otu(5:0) < Qls,a) Vs € Dya

CQL Algorithm:
1. Learn QSQL using offline data D.

2. Optimize policy w.r.t. QEQL } M ¢ argmax E, [QEQL]

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline RL. NeurlPS 2020.

A Tighter Lower Bound

Minimize big Maximize Data
Q-values 4 Q-values
Q%QL .= Hgn mBX ﬂarv,u(a|s) [Q(Sv a)] — 4:a,er(a,|S)[C2(S7 CL)]
1 _
+5 Esas~p (Q(s,a) — (r(s,a) + VEqmr, (a5 [Q(s", a")]))?]

Standard Bellman
Error

Q@QL(S, a) < Q(s,a) Vs e D, ax

Vqu(s) = Eanm, [Qqu (0] <V7(s) ¥seD

CQL Algorithm:
1. Learn QSQL using offline data D.

2. Optimize policy w.r.t. QEQL : M ¢ argmax E, [QAEQL]

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline RL. NeurlPS 2020.

Practical CQL Algorithm

—

i . . 2
min aEs~p |log) _exp(Q(s,a)) —Eansy(als) [Q(S;8)] | + 5 Es,a,6~D (Q — B"”"Q’“) -

— —

Algorithm 1 Conservative Q-Learning (both variants)

1: Initialize Q-function, Q)y, and optionally a policy, 7.
2: forsteptin {1,...,N} do

3: Train the Q-function using G gradient steps on objective Only change on top of
from Equation 4
standard Deep Q-
8, := 0,1 — 1o VeCQL(R)(6) i P
(Use B™ for Q-learning, B¢+ for actor-critic) 9

4: (only with actor-critic) Improve policy 74 via G, gradient
steps on ¢ with SAC-style entropy regularization:
¢t == @t—1 + NrEsp,anmy(-1s) (Qo (s, a) —log my(als)]

5: end for
CQL Algorithm:
~ "1. Learn Q’éQL using offline data D.
minmax o (Esvp anpals) (@8, 2)] = Esnp anis (als) [Q(5, 2)]) __2. Optimize policy w.r.t. QA}SQL ;T 4 argmax E, [Q"éQL]

1

b5 Bunwnn | (Qs.2) - B Q46,0 | +R00) (caL(R)).

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline RL. NeurlPS 2020.

CQL, Empirically

Learned policy value - Actual policy value

SN

\ %>

Task Name CQL(H) | CQL (Egn. 1) Ensemble(2) Ens.(4) | Ens.(10) | Ens.(20) BEAR
hopper-medium-expert -43.20 -151.36 3.71e6 2.93e6 0.32e6 | 24.05e3 65.93
hopper-mixed -10.93 -22.87 15.00e6 59.93e3 8.92¢3 2.47e3 | 1399.46
hopper-medium -7.48 -156.70 26.03e12 | 437.57¢6 1.12e12 885e3 4.32
Behavior . Policy ct:rc])nztralnt
cloning Naive off- MELNOCS
policy RL :
Domain | Task Name BC | SAC | BEAR | BRAC-p | BRAC-v || CQL(H) | CQL(p)
65.0 0.0 73.0 50.0 70.0 74.0 73.5
55.0 0.0 61.0 40.0 70.0 84.0 61.0
AntMaze 0.0 0.0 0.0 0.0 0.0 61.2 4.6
antmaze-medium-diverse 0.0 0.0 8.0 0.0 0.0 53.7 5.1 “Stitching”
antmaze-large-play 0.0 0.0 0.0 0.0 0.0 15.8 3.2
antmaze-large-diverse | 00 | 00 | 00 | 00 | 00 1 149 | 23
pen-human - 44 | 63 -1.0 [3. 0.6 || 75 | 8
hammer-human 1.5 0.5 0.3 0.3 0.2 4.4 2.1
door-human 0.5 3.9 -0.3 -0.3 -0.3 9.9 9.1
Adroit relocate-human 0.0 0.0 -0.3 -0.3 -0.3 0.20 0.35 Better than other
pen-cloned 56.9 | 23.5 26.5 1.6 -2.5 39.2 40.3 methods. not the
hammer-cloned 0.8 0.2 0.3 0.3 0.3 2.1 5.7 .
door-cloned 0.1 | 0.0 0.1 0.1 0.1 0.4 3.5 best in each case
relocate-cloned -0.1 -0.2 -0.3 -0.3 -0.3 -0.1 -0.1
kitchen-complete 33.8 | 15.0 0.0 0.0 0.0 43.8 31.3
Kitchen kitchen-partial 33.8 0.0 13. 0.0 0.0 49.8 50.1
kitchen-undirected 47.5 2.5 47.2 0.0 0.0 51.0 524 Only method to

outperform BC

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline RL. NeurlPS 2020.

Offline RL Algorithms covered so far

‘ Work well, but are
| conservative and |
I require behavior policy |

- Support constraints
- Distribution constraints

- Policy Constraint Methods:
- State-marginal constraints

| Generally perform better, }
i since they are less {
f conservative, and do not }
i require behavior policy 1
| estimation

- Model-based algorithms

- Learning lower-bounded policy-values:
- Direct Q-function penalties (CQL)

Next, we will cover some related
problems, discuss how we should
evaluate offline RL methods, and finally,
discuss some practical examples.

A Related Problem: Off-Policy Evaluation

Problem Statement: Rather than returning a good policy, find me the value of a
given policy, without running this policy in the environment

0 . V7 (s) VTi(s) > V7™ (s)?
D

What can be the use of OPE in offline RL?

Model-selection: selecting which policy is good

ntilation? Sedation? Vasopressors?

Why do we need model-selection in offline RL?

Similar to supervised learning methods, excessive training on the same offline dataset

can produce poor solutions. If we can rank these solutions using OPE, we can get good
offline performance.

Irpan, Rao, Bousmalis, Harris, Ibarz, Levine. Off-Policy Evaluation via Off-Policy Classification. NeurlPS 2019.
Gottesman, Futoma, Liu, Parbhoo, Celi, Brunskill, Doshi-Velez. Interpretable OPE in RL by Highlighting Influential Transitions. ICML 2020.

A quick glance on some OPE methods

 Importance Sampling (similar to off-policy policy gradient)

J(7g)

* Marginalized Importance Sampling
(see Nachum et al. 2019 (DualDICE) and Uehera and Jiang, 2019.)

J(Tt‘@)

Srroms ()

“roms (1)

n |

4

e Fitted Q-Evaluation

Q™ (s, a)

=r(s,a) +7

“s,a~d™ (s.a) [T(Sa&)] = 1L,

:ZE:) Z” e a)
(2 7r9(at
(H m(ay

L \t=0

Sum over
dataset

Estimate
this ratio

I Alot of prior work on this! |
I OPE has turned out to be

- , ’ quite challenging with deep '
L@)s)|@7(s50)] | network policies. |

How should we evaluate offline RL methods?

Use real-data collected from various different sources (e.g., human demonstrations,
runs of hardcoded policies, etc.) for training good policies

’.' Can Atrain directly on real data, but how do we test the policy? t','_

Since testing a policy completely offline is hard (unless we actually run the policy
on the real-domain), we would want benchmarks!

| What properties should a benchmark for offline RL have?
1. It should be realistic: should mimic what we would see in the real-world

2. Should provide a method to compare methods in a standardized way, under the
actual evaluation scheme

Standardized Benchmark for Offline RL

Most evaluation so far has used RL policies or replay buffers, which tend to be
substantially easier and different from “real-world” scenarios

Properties: (1) non-representable behavior policies (2) narrow distributions (3)
undirected/multi-task behavior (4) visual perception (8) human demos.

Fu, Kumar, Nachum, Tucker, Levine. D4RL: Datasets for Deep Data-Driven RL. arXiv 2020.

Does Offline RL Work in Practice?

Offline RL for Dialog

Can we Iearn effectlve dlalog poI|C|es that understand the |mpI|C|t human

! preferences in dialog via offline RL?

User]: hey, what’s up?

you want to talk to me?... you want
User]: yes, 1 want to talk to you!
Batch Q]: where did you say to me?... you want to talk to you about you...

you are so good for you... you are so good...
[User]: thanks, 1 appreciate that.

[Batch Q]: where did you get??, that sounds so exciting. how do you work for you...

you want to see you...

Batch Q]: where did you get??, that sounds so exciting. how do you work for you...

[User]: hey, what’s up?

[KL-control]: i’m not sure, but i’m glad to see you, and
1’m so happy that you’re not alone

User]: oh thanks, that’s very nice of you!

KL-control]: i’'m sorry, but i’'m glad to see what you think.
User]: don’t be sorry, you did a good job.

KL-control]: that’s really nice to me.

glen‘zzl:l Quality Fluent Diverse Related

Human-
Empathy | Total Votes reward

Conv. len. 220140 3.61 =53 3.02+.52 225146
Semantic sim. | 1.93 .34 3.50 £45 237145 2.11 145
User laughter | 1.96 =38 3.56 =48 2.33 £.51 1.93 +.42
Words elicited | 2.11 .32 396 +.44 3.04 £.45 2.04 .35
Manual votes | 2.14 =38 347 3+45 291 =47 2.07 +.39

Sent. trans. 202 £31 37149 298 .50 2.04 £42
Question 229 £37 431 +50 3.31+.52 2.20+.40
Sentiment 247 £.32 405+45 323 +t46 242139

248 +£.45 | 13.57 £1.84 | -.035 | -.003
252 +£48 | 12.43 £1.75 | -.020 | .012
3.20 .55 | 12.98 +1.60 | -.149 | -.003
2.55 £.46 | 13.70 £1.44 | .059 | .024
242 +£46 | 13.00 £1.65 | -.030 | .010

2.84 +.48 | 13.60 ==1.63 | .031 014
2.60 £41 | 14.71 £1.63 | .057 | .012

3.23 +.55 | 1540 149 | .085 | .045

Jaques et al. Way Off-Policy Batch Deep RL of Implicit Human Preferences in Dialog. EMNLP 2020.

Offline RL from Unlabelled Robotic Data

 unlabelled/general-purpose robotic data

{ Can we learn effective policies fr

| generated from hardcoded policies via offiine RL methods suchas CQL? |

Input: Datasets D, (With no reward annotations), Dr (with sparse rewards for task T).
Return: Policy 7 trained to execute task T, which should be able to generalize broadly to

new initial conditions. We would like to leverage Dyrior for the latter.

-!".— - = - A =)
Task & Initial Condition No prior BC SAC Ours
data init all oracle
place in box
object in gripper 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 0.00¢|| 1.00 (0.00)
object in tray 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.21 (0.04) —51|| 0.87 (0.03)
grasp from drawer :
open drawer 0.82 (0.11) | 0.93 (0.02) | 0.74 (0.03) | 0.78 (0.01) 0.0%|| 0.84 (0.07)
closed drawer 0.00 (0.00) | 0.79(0.02) | 0.74 (0.03) | 0.77 (0.01) — % 0.84 (0.03)
blocked drawer 1 0.00 (0.00) | 0.00 (0.00) | 0.42 (0.00) | 0.65 (0.05) — K 0.86 (0.02) /
blocked drawer 2 0.00 (0.00) | 0.00 (0.00) | 0.36(0.01) | 0.32(0.18) - '.0.73 (0.08) '

Singh, Yu, Yang, Zhang, Kumar, Levine. Chaining Behaviors via Model-Free Offline RL. CoRL 2020.

Suggested Readings

Summary/ Tutorial: Levine, Kumar, Tucker, Fu (2020). Offline Reinforcement Learning:
Tutorial, Survey and Perspectives on Open Problems.

Datasets/Benchmarks:
- Fu, Kumar, Nachum, Tucker, Levine (2020). D4RL: Datasets for Deep Data-Driven RL.
- Gulcehre et al. (2020). RL Unplugged: Benchmarks for Offline RL.

Algorithms:
- Classic algorithms and policy constraints: see tutorial (Levine et al. 2020) and references
on prior slides (a lot of work has been done in this area).
- Conservative Q-Learning Algorithms: Kumar, Zhou, Tucker, Levine (2020). Conservative
Q-Learning for Offline RL.
- Model-based algorithms:
- Yu et al. (2020). MOPQO: Model-based Offline Policy Optimization.
- Kidambi et al. (2020). MOReL: Model-based Offline Reinforcement Learning.
- Offline RL on Atari: Agarwal et al. (2020). An Optimistic Perspective on Offline RL.
- Several new papers on arXiv and OpenReview, check them out!

Blog Posts (Summaries):
- Kumar. Data-Driven Deep Reinforcement Learning. BAIR blog, December 2019.

- Agarwal and Norouzi. An Optimistic Perspective on Offline Reinforcement Learning. Google
Al Blog, April 2020.

