Model-Based Policy Learning

CS 285

Instructor: Sergey Levine
UC Berkeley

every N steps

Last time: model-based RL with MPC

model-based reinforcement learning version 1.5:
1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?

plan through f(s,a) to choose actions

execute the first planned action, observe resulting state s’ (MPC)

A

append (s,a,s’) to dataset D

he stochastic open-loop case

Zfr(st,atﬂal ar

t

why is this suboptimal?

he stochastic closed-loop case

T =argmax E
s

T~p(T)

|

Zfr(st,at)]

form of 7?7

\
neural ne \O,a
1 net %\O

time-varying linear

Backpropagate directly into the policy?

backprop

backprop

n

easy for deterministic policies, but also possible for stochastic policy

model-based reinforcement learning version 2.0:
1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?
3. backpropagate through f(s,a) into the policy to optimize mg(as|s;)

4. run 7o (as|s;), appending the visited tuples (s,a,s’) to D

What’s the problem with backprop into policy?

backprop

backprop

*‘ /

big gradients here small gradients here

What’s the problem with backprop into policy?

backprop

backprop

e~

What’s the problem with backprop into policy?

backprop

backprop

» Similar parameter sensitivity problems as shooting methods
* But no longer have convenient second order LQR-like method,
because policy parameters couple all the time steps, so no dynamic
programming
e Similar problems to training long RNNs with BPTT
* Vanishing and exploding gradients

* Unlike LSTM, we can’t just “choose” a simple dynamics, dynamics
are chosen by nature

What’s the solution?

e Use derivative-free (“model-free”) RL algorithms, with the model
used to generate synthetic samples
* Seems weirdly backwards
* Actually works very well
e Essentially “model-based acceleration” for model-free RL

* Use simpler policies than neural nets
e LQR with learned models (LQR-FLM - Fitted Local Models)
* Train local policies to solve simple tasks
* Combine them into global policies via supervised learning

Model-Free Learning With a Model

What’s the solution?

e Use derivative-free (“model-free”) RL algorithms, with the model
used to generate synthetic samples
* Seems weirdly backwards
* Actually works very well
e Essentially “model-based acceleration” for model-free RL

Model-free optimization with a model

1 A
Policy gradient: ~ VoJ(0) = N Z Z Vo log mo(ai¢[si,) Q7

* Policy gradient might be more stable (if enough samples are used)
because it does not require multiplying many Jacobians

* See a recent analysis here:

* Parmas et al. “18: PIPP: Flexible Model-Based Policy Search Robust to the
Curse of Chaos

Model-free optimization with a model

Dyna online Q-learning algorithm that performs model-free RL with a model
given state s, pick action a using exploration policy

observe s’ and r, to get transition (s, a,s’,r)

. update model p(s’|s,a) and #(s,a) using (s, a,s’)

. Q-update: Q(s,a) < Q(s,a) + aFy .[r+ max, Q(s',a") — Q(s,a)]

repeat K times:

SRR NI

6. sample (s,a) ~ B from buffer of past states and actions

7. Q-update: Q(s,a) < Q(s,a) + aEy [r + max, Q(s',a") — Q(s,a)]

Richard S. Sutton. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming.

|II

General “Dyna-style” model-based RL recipe

1. collect some data, consisting of transitions (s, a, s’,r)
2. learn model p(s’|s,a) (and optionally, 7(s,a))
3. repeat K times:
4. sample s ~ B from buffer
choose action a (from B, from 7, or random)
. simulate s’ ~ p(s’[s,a) (and r = 7(s,a))

train on (s, a,s’,r) with model-free RL

o N o> o

. (optional) take N more model-based steps

Model-Based Acceleration (MBA)
Model-Based Value Expansion (MVE)
Model-Based Policy Optimization (MBPO)

take some action a; and observe (s;,a;,s,r;), add it to B
sample mini-batch {s;,a;,s’,r;} from B uniformly
use {s;,a;,s;} to update model p(s’[s, a)

. sample {s;} from B

for each s;, perform model-based rollout with a = 7(s) &\

use all transitions (s, a, s, r) along rollout to update Q-function k

S R W N

Gu et al. Continuous deep Q-learning with model-based acceleration. ‘16
Feinberg et al. Model-based value expansion. ’18
Janner et al. When to trust your model: model-based policy optimization. ‘19

Local Models

What’s the solution?

e Use derivative-free (“model-free”) RL algorithms, with the model
used to generate synthetic samples
* Seems weirdly backwards
* Actually works very well
e Essentially “model-based acceleration” for model-free RL

* Use simpler policies than neural nets
e LQR with learned models (LQR-FLM - Fitted Local Models)
* Train local policies to solve simple tasks
* Combine them into global policies via supervised learning

What’s the solution?

* Use simpler policies than neural nets
e LQR with learned models (LQR-FLM - Fitted Local Models)
* Train local policies to solve simple tasks
* Combine them into global policies via supervised learning

Local models

T
min Zc(xt,ut) s.t. x¢ = f(X¢—1, 1)

ui,...,ur
t=1

min c(x1,u1) +c(f(x1,u1),u2) + - +c(f(f(...)...),up)

ui,..., U

usual story: differentiate via backpropagation and optimize!

if df \dc dc
ClXt, dllt

need

Local models

df df \dc dc
dXt ’ dllt ’ ClXt ’ dllt

need

af df

idea: just fit : around current trajectory or policy!

dXt dut

LQR gives us a linear feedback controller

can execute in the real world!

100 '

Local models

4 B

run p(u, \Xt)
on robot

collect D = {7;
g ()

P(Xt+1|Xta Ut) — N(f(xt, ut): E)

next (ﬁt dynamics A
f(xe,up) ~ Avxe + Brug iteration y
7 p(Xpp1lxe,u) =
A, = i B, = i N)
t dxy ‘ du; u
p
p IMprove @ & =
¥ controller ~_

.

What controller to execute?

iLQR produces: x;, u;, K;, k;

IMProve _g g7 ©

11 N N
{ controller u, = Kt (Xt B Xt) 1 kt ¥ i

Version 0.5: p(ug|x;) = d(u; = 0y)

Doesn’t correct deviations or drift

Version 1.0: p(ut|Xt) — (S(llt — Kt(Xt — }A(t) —+ kt —+ flt)
Better, but maybe a little too good?

Version 2.0: p(ut\xt) — N(Kt(Xt — }A(t) -+ kt -+ ﬁt, Zt)
Add noise so that all samples don’t look the same!

Set Zt = —1

U ,Uyg

Local models

e N\
run p(ug|x;)
on robot
collect D = {7;}
\ J
P(Xt+1|Xt; ut) — N(f(xt, ut)v E) . p ~
nex .
f(x¢,ur) = Ayxy + Bruy [iteration] fit dynamics },@
p(Xpr1|xe,uy) =
A, — df B. — df D /
T dx, ¢ du, u

-
1mprove

p(ut|Xt)
_

—

How to fit the dynamics?

fit dynamics
p(Xeq1]xs, uy) =

{(Xt, Uy, Xt—{—l)z'}

fit p(xs11|x¢,uz) at each time step using linear regression

p(Xey1]xe, ur) = N(Aexy + Brug + ¢, Ny) A~ Y

What if we go too far?

How to stay close to old controller?

iHlpI‘Ove - fg_@;é ,

T
S~ p(T) = p(x1) Hp(ut|Xt
What if the new p(7) is “close” to the old one p(7)? =
If trajectory distribution is close, then dynamics will be close too!
What does “close” mean? Dxkr,(p(7)||p(7)) <€

This is easy to do if p(7) also came from linear controller!

For details, see: “Learning Neural Network Policies with Guided Policy
Search under Unknown Dynamics”

W TSEARIRRGE WL = -

autonomous execution

Global Policies from Local Models

What’s the solution?

* Use simpler policies than neural nets
e LQR with learned models (LQR-FLM - Fitted Local Models)
* Train local policies to solve simple tasks
* Combine them into global policies via supervised learning

What’s the solution?

* Use simpler policies than neural nets

* Combine them into global policies via supervised learning

Guided policy search: high-level idea

Guided policy search: algorithm sketch
e [X=0E

trajectory-centric RL supervised learning

\ — modified cost to keep m,qr.i close to my

/

1. optimize each local policy mr,qr i(u¢|x:) on initial state x¢ ; w.r.t. ¢ (X, 1)

2. use samples from step (1) to train mg(u;|x;) to mimic each mrqr i (u|x;)

3. update cost function ¢x41 ;(x¢, uy) = c(X¢, W) + Ag41.i 10g o (ue|xy)

\

For details, see: “End-to-End Training of Deep Visuomotor Policies” Lagrange multiplier

Underlying principle: distillation

Ensemble models: single models are often not the most robust —

instead train many models and average their predictions
this is how most ML competitions (e.g., Kaggle) are won
this is very expensive at test time

Can we make a single model that is as good as an ensemble?

Distillation: train on the ensemble’s predictions as “soft” targets

logit
exp(z/T)

P S exn(z/T)

Intuition: more knowledge in soft targets than hard labels!

temperature

Slide adapted from G. Hinton, see also Hinton et al. “Distilling the Knowledge in a Neural Network”

NN L WSO
v ONTUE Wy N0
S0 N Q WR W LNO
sty Bosa @y F iy Y@
D SYE L XRWUNO
NN LR W NQ
O N SR\
N VNG L VYOO

mdin SRV AL N N AU =
) NS~ A WP

Distillation for Multi-Task Transfer

L= Z T, (als) log man N (als)
a
(just supervised learning/distillation)

analogous to guided policy search, but
for multi-task learning

some other details
(e.g., feature regression objective)

— see paper
Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”

Combining weak policies into a strong policy

e) (B (B s (6 Divid dC
IEI=IE] (EIUE] Retoement o

|oaljsetomyl- cetipidiRies supervised learning Lea n | ng

—

Divide and conquer reinforcement learning algorithm sketch:

1. optimize each local policy my, (a¢|s;) on initial state sg; w.r.t. 7 ;(s¢, as)
2. use samples from step (1) to train mg(u|x;) to mimic each 7y, (us|xy)
3. update reward function 751 ;(X¢, Ur) = 7(X¢, W) + Ag41,5 log o (ue|xy)

For details, see: “Divide and Conquer Reinforcement Learning”

Readings: guided policy search & distillation

e L.*, Finn*, et al. End-to-End Training of Deep Visuomotor Policies. 2015.
* Rusu et al. Policy Distillation. 2015.

 Parisotto et al. Actor-Mimic: Deep Multitask and Transfer Reinforcement
Learning. 2015.

* Ghosh et al. Divide-and-Conquer Reinforcement Learning. 2017.
* Teh et al. Distral: Robust Multitask Reinforcement Learning. 2017.

