Meta Reinforcement Learning

Kate Rakelly 11/13/19

Questions we seek to answer

Motivation: What problem is meta-RL trying to solve?

Context: What is the connection to other problems in RL?

Solutions: What are solution methods for meta-RL and their limitations?

Open Problems: What are the open problems in meta-RL?

Meta-learning problem statement

supervised learning

reinforcement learning

Robot art by Matt Spangler, mattspangler.com

Meta-RL problem statement

Regular RL: learn policy for single task

$$\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}(\tau)}[R(\tau)]$$
$$= f_{\mathrm{RL}}(\mathcal{M})$$
$$\bigwedge_{\mathrm{MDP}}$$

Meta-RL: learn adaptation rule

 \mathcal{M}_1

 \mathcal{M}_{test}

Relation to goal-conditioned policies

Meta-RL can be viewed as a goal-conditioned policy where the task information is inferred from *experience*

Task information could be about the dynamics or reward functions

Rewards are a strict generalization of goals

Relation to goal-conditioned policies

Q: What is an example of a reward function that can't be expressed as a goal state?

A: E.g., seek while avoiding, action penalties

Adaptation

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where
$$\phi_i = f_{\theta}(\mathcal{M}_i)$$

What should the adaptation procedure do?

- **Explore**: Collect the most informative data
- Adapt: Use that data to obtain the optimal policy

General meta-RL algorithm outline

Different algorithms:

- Choice of function f
- Choice of loss function L

Solution Methods

Persist the hidden state across episode boundaries for continued adaptation!

Duan et al. 2016, Wang et al. 2016. Heess et al. 2015. Fig adapted from Duan et al. 2016

Solution #1: recurrence

while training: for *i* in tasks: initialize hidden state $h_0 = 0$ for *t* in timesteps:

1. sample 1 transition $\mathcal{D}_i = \mathcal{D}_i \cup \{(s_t, a_t, s_{t+1}, r_t)\}$ from π_{h_t}

2. update policy hidden state $\mathbf{h_{t+1}} = f_{\theta}(\mathbf{h_t}, s_t, a_t, s_{t+1}, r_t)$

update policy parameters $\theta \leftarrow \theta - \nabla_{\theta} \sum_{i} \mathcal{L}_{i}(\mathcal{D}_{i}, \pi_{\mathbf{h}})$

Solution #1: recurrence

Pro: general, expressive

There exists an RNN that can compute any function

Con: not consistent

What does it mean for adaptation to be "consistent"?

Will converge to the optimal policy given enough data

Solution #1: recurrence

(a) Labryinth I-maze

(b) Illustrative Episode

Duan et al 2016, Wang et al. 2016

Wait, what if we just fine-tune?

is pretraining a *type* of meta-learning? better features = faster learning of new task!

Sample inefficient, prone to overfitting, and is particularly difficult in RL

Slide adapted from Sergey Levine

 $abla \mathcal{L}_3$

 $abla \mathcal{L}_2$

Learn a parameter initialization from which fine-tuning for a new task works!

 $abla \mathcal{L}$

 θ_1^*

---- meta-learning ---- learning/adaptation

 θ^*

· 02

 θ^{\star}

=

n

where $\phi_i = f_{\theta}(\mathcal{M}_i)$

PG

argmax

 $E_{\pi_{\phi_i}(\tau)}[R(\tau)]$

while training: for *i* in tasks:

1. sample k episodes $\mathcal{D}_i = \{(s, a, s', r)\}_{1:k}$ from π_{θ}

2. compute adapted parameters $\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_i(\pi_{\theta}, \mathcal{D}_i)$

3. sample k episodes $\mathcal{D}'_i = \{(s, a, s', r)_{1:k}\}$ from π_{ϕ}

update policy parameters $\theta \leftarrow \theta - \nabla_{\theta} \sum_{i} \mathcal{L}_{i}(\mathcal{D}'_{i}, \pi_{\phi_{i}})$

Requires second order derivatives!

How exploration is learned automatically

Pre-update parameters receive credit for producing good exploration trajectories T π_{θ} U $\pi_{\theta'}$ $\pi_{\theta'}$ τ

Causal relationship between pre and post-update trajectories is taken into account

R'

View this as a "return" that encourages gradient alignment

Pro: consistent!

Con: not as expressive

Q: When could the optimization strategy be less expressive than the recurrent strategy?

Example: when no rewards are collected, adaptation will not change the policy, even though this data gives information about which states to avoid

Exploring in a sparse reward setting

Fig adapted from Rothfuss et al. 2018

Cheetah running forward and back after 1 gradient step

Fig adapted from Finn et al. 2017

Meta-RL on robotic systems

Meta-imitation learning

Demonstration

1-shot imitation

Figure adapted from BAIR Blog Post: One-Shot Imitation from Watching Videos

Meta-imitation learning

Test: perform task given single **robot demo** Training: run **behavior cloning** for adaptation

learn how to infer a policy _______ from one demonstration

Test time provide 1 demo with new object

$$\phi_i = heta - lpha
abla_ heta \sum_t ||\pi_ heta(o_t) - a_t^*||^2$$

Meta-imitation learning from human demos

demonstration

1-shot imitation

Figure adapted from BAIR Blog Post: One-Shot Imitation from Watching Videos

Meta-imitation learning from humans

Test: perform task given single **human demo** Training: **learn a loss function** that adapts policy

where $\phi_i = \underbrace{f_{\theta}}_{i} \mathcal{M}_i$

n

arg max

PG

Learned loss

 $E_{\pi_{\phi_i}(\tau)}[R(\tau)]$

$$\phi = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\psi}(\theta, \mathbf{d}^h)$$

Supervised by **paired robot-human demos** only during meta-training!

Model-Based meta-RL

1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$

- 2. learn dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_i ||f(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i||^2$
- 3. plan through $f(\mathbf{s}, \mathbf{a})$ to choose actions

What if the system dynamics change?

- Low battery
- Malfunction
- Different terrain

Re-train model? :(

Figure adapted from Anusha Nagabandi

Model-Based meta-RL

Aside: POMDPs

Example: incomplete sensor data

"That Way We Go" by Matt Spangler

state is unobserved (hidden) h_t n_{t+2} n_{t+1} o_t o_{t+1} o_{t+2} observation gives a_{t+1} a_t incomplete information about the state

The POMDP view of meta-RL

...as a POMDP

$$h_t = (s_t, task)$$
 $o_t = (s_t, r_t)$

Two approaches to solve: 1) policy with memory (RNN)

2) explicit state estimation

Model belief over latent task variables

POMDP for unobserved state

POMDP for unobserved task

a = "left", s = S0, r = 0

a = "left", s = S0, r = 0

Model belief over latent task variables

POMDP for unobserved state

POMDP for unobserved task

a ="left", s = S0, r = 0

a = "left", s = S0, r = 0

Solution #3: posterior sampling in action

See Control as Inference (Levine 2018) for justification of thinking of Q as a pseudo-likelihood

Aside: Soft Actor-Critic (SAC)

"Soft": Maximize rewards *and* entropy of the policy (higher entropy policies explore better)

$$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right]$$

"Actor-Critic": Model *both* the actor (aka the policy) and the critic (aka the Q-function)

$$J_Q(\theta) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \mathcal{D}} \left[\frac{1}{2} \left(Q_\theta(\mathbf{s}_t, \mathbf{a}_t) - \hat{Q}(\mathbf{s}_t, \mathbf{a}_t) \right)^2 \right]$$
$$J_\pi(\phi) = \mathbb{E}_{s_t, a_t} [Q_\theta(s_t, a_t) + \alpha \mathcal{H}(\pi_\phi(\cdot | s_t))]$$

Much more **sample efficient** than on-policy algs.

Dclaw robot turns valve from pixels

SAC Haarnoja et al. 2018, Control as Inference Tutorial. Levine 2018, SAC BAIR Blog Post 2019

Soft Actor-Critic

Meta-RL experimental domains

Simulated via MuJoCo (Todorov et al. 2012), tasks proposed by (Finn et al. 2017, Rothfuss et al. 2019)

ProMP (Rothfuss et al. 2019), MAML (Finn et al. 2017), RL2 (Duan et al. 2016)

ProMP (Rothfuss et al. 2019), MAML (Finn et al. 2017), RL2 (Duan et al. 2016)

two views of meta-RL

Mechanistic view

- Deep neural network model that can read in an entire dataset and make predictions for new datapoints
- Training this network uses a meta-dataset, which itself consists of many datasets, each for a different task

Probabilistic view

- Extract prior information from a set of (metatraining) tasks that allows efficient learning of new tasks
- Learning a new task uses this prior and (small) training set to infer most likely posterior parameters

Summary

Slide adapted from Sergey Levine and Chelsea Finn

Frontiers

Where do tasks come from?

Idea: generate self-supervised tasks and use them during meta-training

Skills should be high entropy

Point robot learns to explore different areas after the hallway

states

Ant learns to run in different directions, jump, and flip

Limitations
Assumption that skills shouldn't depend on action not always valid
Distribution shift meta-train -> meta-test

How to explore efficiently in a new task?

Learn exploration strategies better...

Bias exploration with extra information...

human -provided demo

Robot attempt #1, w/ only demo info

Robot attempt #2, w/ demo + reward info

Gupta et al. 2018, Rakelly et al. 2019, Zhou et al. 2019

Online meta-learning

Meta-training tasks are presented in a sequence rather than a batch

Summary

Meta-RL finds an adaptation procedure that can quickly adapt the policy to a new task

Three main solution classes: RNN, optimization, task-belief and several learning paradigms: model-free (on and off policy), model-based, imitation learning

Connection to goal-conditioned RL and POMDPs

Some open problems (there are more!): better exploration, defining task distributions, meta-learning online

References

Recurrent meta-RL

Learning to Reinforcement Learn, Wang et al. 2016 Fast Reinforcement Learning by Slow Reinforcement Learning, Duan et al. 2016 Memory-Based Control with Recurrent Neural Networks, Heess et al. 2015

Optimization-based meta-RL

Model-Agnostic Meta-Learning, Finn et al. 2017 Proximal Meta-Policy Search, Rothfuss et al. 2018

Optimization-based meta-RL + imitation learning

One-Shot Visual Imitation Learning via Meta-Learning, Yu et al. 2017 One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning, Yu et al. 2018

Model-based meta-RL

Learning to Adapt in Dynamic, Real-World Environments through Meta-Reinforcement Learning, Nagabandi et al. 2019

Off-policy meta-RL

Soft Actor-Critic, Haarnoja et al. 2018 Control as Inference, Levine 2018. Efficient Off-Policy Meta-RL via Probabilistic Context Variables, Rakelly et al. 2019

References

Open Problems

Diversity is All You Need: Learning Skills without a Reward Function, Eysenbach et al. 2018 Unsupervised Meta-learning for RL, Gupta et al. 2018 Meta-Reinforcement Learning of Structured Exploration Strategies, Gupta et al. 2018 Watch, Try, Learn, Meta-Learning from Demonstrations and Reward, Zhou et al. 2019 Online Meta-Learning, Finn et al. 2019

Slides and Figures

Some slides adapted from Meta-Learning Tutorial at ICML 2019, Finn and Levine Robot illustrations by Matt Spangler, mattspangler.com