Supervised Learning of Behaviors

CS 285: Deep Reinforcement Learning, Decision Making, and Control Sergey Levine

Class Notes

- 1. Homework 1 is out this evening
- 2. Remember to start forming final project groups
 - Final project assignment document is now out!
 - Proposal due Sep 25

Today's Lecture

- 1. Definition of sequential decision problems
- 2. Imitation learning: supervised learning for decision making
 - a. Does direct imitation work?
 - b. How can we make it work more often?
- 3. A little bit of theory
- 4. Case studies of recent work in (deep) imitation learning
- Goals:
 - Understand definitions & notation
 - Understand basic imitation learning algorithms
 - Understand tools for theoretical analysis

Terminology & notation


```
\mathbf{o}_t – observation
```

 \mathbf{s}_t – state

Terminology & notation

Aside: notation

 $\mathbf{s}_t - ext{state}$ $\mathbf{a}_t - ext{action}$

Richard Bellman

Lev Pontryagin

Imitation Learning

behavioral cloning

Does it work?

No!

Does it work? Yes!

Why did that work?

Can we make it work more often?

stability (more on this later)

Can we make it work more often?

Can we make it work more often?

can we make $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$?

idea: instead of being clever about $p_{\pi_{\theta}}(\mathbf{o}_t)$, be clever about $p_{\text{data}}(\mathbf{o}_t)$!

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ but need labels \mathbf{a}_t !

1. train $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

What's the problem?

Can we make it work without more data?

- DAgger addresses the problem of distributional "drift"
- What if our model is so good that it doesn't drift?
- Need to mimic expert behavior very accurately
- But don't overfit!

- 1. Non-Markovian behavior
- 2. Multimodal behavior

 $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$

behavior depends only on current observation

 $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_1, ..., \mathbf{o}_t)$

behavior depends on all past observations

If we see the same thing twice, we do the same thing twice, regardless of what happened before

Often very unnatural for human demonstrators

How can we use the whole history?

variable number of frames, too many weights

How can we use the whole history?

Typically, LSTM cells work better here

Aside: why might this work **poorly**?

"causal confusion"

see: de Haan et al., "Causal Confusion in Imitation Learning"

Question 1: Does including history exacerbate causal confusion?

Question 2: Can DAgger mitigate causal confusion?

- 1. Non-Markovian behavior
- 2. Multimodal behavior

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

- Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

Look up some of these:

- Conditional variational autoencoder
- Normalizing flow/realNVP
- Stein variational gradient descent

Imitation learning: recap

- Often (but not always) insufficient by itself
 - Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Samples from a stable trajectory distribution
 - Add more **on-policy** data, e.g. using Dagger
 - Better models that fit more accurately

Break

Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹

Imitation learning: what's the problem?

- Humans need to provide data, which is typically finite
 - Deep learning works best when data is plentiful
- Humans are not good at providing some kinds of actions

- Humans can learn autonomously; can our machines do the same?
 - Unlimited data from own experience
 - Continuous self-improvement

Terminology & notation

Aside: notation

$$\mathbf{s}_t$$
 - state
 \mathbf{a}_t - action
 $r(\mathbf{s}, \mathbf{a})$ - reward function

 $\mathbf{x}_t - ext{state}$ $\mathbf{u}_t - ext{action}$ $c(\mathbf{x}, \mathbf{u}) - ext{cost function}$

$$r(\mathbf{s}, \mathbf{a}) = -c(\mathbf{x}, \mathbf{u})$$

Lev Pontryagin

Richard Bellman

A cost function for imitation?

1. train $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Some analysis

How bad is it?

$$c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^{\star}(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$$

assume:
$$\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$$

for all $\mathbf{s} \in \mathcal{D}_{\text{train}}$

$$E\left[\sum_{t} c(\mathbf{s}_{t}, \mathbf{a}_{t})\right] \leq \epsilon T + O(\epsilon T^{2}) \qquad T \text{ terms, each } O(\epsilon T)$$

More general analysis $c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^*(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$

with DAgger, $p_{\text{train}}(\mathbf{s}) \rightarrow p_{\theta}(\mathbf{s})$ assume: $\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$ for all $\mathbf{s} \in \mathcal{D}_{\text{train}}$ for $\mathbf{s} \sim p_{\text{train}}(\mathbf{s})$ $E\left|\sum_{t} c(\mathbf{s}_t, \mathbf{a}_t)\right| \leq \epsilon T$ if $p_{\text{train}}(\mathbf{s}) \neq p_{\theta}(\mathbf{s})$: $p_{\theta}(\mathbf{s}_t) = (1-\epsilon)^t p_{\text{train}}(\mathbf{s}_t) + (1-(1-\epsilon)^t)) p_{\text{mistake}}(\mathbf{s}_t)$ probability we made no mistakes some other distribution $|p_{\theta}(\mathbf{s}_t) - p_{\text{train}}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\text{train}}(\mathbf{s}_t)| \le 2(1 - (1 - \epsilon)^t)$ $\leq 2\epsilon t$ useful identity: $(1-\epsilon)^t \ge 1-\epsilon t$ for $\epsilon \in [0,1]$ $\sum_{t} E_{p_{\theta}(\mathbf{s}_{t})}[c_{t}] = \sum_{t} \sum_{s_{t}} p_{\theta}(\mathbf{s}_{t})c_{t}(\mathbf{s}_{t}) \leq \sum_{t} \sum_{s_{t}} p_{\text{train}}(\mathbf{s}_{t})c_{t}(\mathbf{s}_{t}) + |p_{\theta}(\mathbf{s}_{t}) - p_{\text{train}}(\mathbf{s}_{t})|c_{\max}|$ $\leq \sum \epsilon + 2\epsilon t$ $O(\epsilon T^2)$

For more analysis, see Ross et al. "A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning"

Another imitation idea

Goal-conditioned behavioral cloning

training time:

demo 1:
$$\{\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}, \mathbf{s}_T\}$$
 successful demo for reaching \mathbf{s}_T
demo 2: $\{\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}, \mathbf{s}_T\}$ learn $\pi_{\theta}(\mathbf{a}|\mathbf{s}, \mathbf{g})$
demo 3: $\{\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}, \mathbf{s}_T\}$
for each demo $\{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_{T-1}^i, \mathbf{a}_{T-1}^i, \mathbf{s}_T^i\}$ goal state
maximize $\log \pi_{\theta}(\mathbf{a}_t^i | \mathbf{s}_t^i, \mathbf{g} = \mathbf{s}_T^i)$

Learning Latent Plans from Play

 COREY LYNCH
 MOHI KHANSARI
 TED XIAO
 VIKASH KUMAR
 JONATHAN TOMPSON
 SERGEY LEVINE
 PIERRE SERMANET

 Google Brain
 Google Brain

Unsupervised Visuomotor Control through Distributional Planning Networks

Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, Chelsea Finn

Stanford University

Learning Latent Plans from Play

 COREY LYNCH
 MOHI KHANSARI
 TED XIAO
 VIKASH KUMAR
 JONATHAN TOMPSON
 SERGEY LEVINE
 PIERRE SERMANET

 Google Brain
 Google Brain

1. Collect data

2. Train goal conditioned policy

Learning Latent Plans from Play

TED XIAO VIKASH KUMAR COREY LYNCH MOHI KHANSARI JONATHAN TOMPSON SERGEY LEVINE PIERRE SERMANET Google Brain Google Brain Google Brain Google Brain Google Brain Google X Google Brain

3. Reach goals

Single Play-LMP policy

Terminology & notation

- \mathbf{o}_t observation
- \mathbf{a}_t action

 $c(\mathbf{s}_t, \mathbf{a}_t) - \text{cost function}$ $r(\mathbf{s}_t, \mathbf{a}_t) - \text{reward function}$

$$\min_{\theta} E_{\mathbf{s}_{1:T},\mathbf{a}_{1:T}} \left[\sum_{t} c(\mathbf{s}_{t},\mathbf{a}_{t}) \right]$$

Cost/reward functions in theory and practice

 $r(\mathbf{s}, \mathbf{a}) = \begin{cases} 1 \text{ if object at target} \\ 0 \text{ otherwise} \end{cases}$

$$r(\mathbf{s}, \mathbf{a}) = -w_1 \| p_{\text{gripper}}(\mathbf{s}) - p_{\text{object}}(\mathbf{s}) \|^2 + \\ -w_2 \| p_{\text{object}}(\mathbf{s}) - p_{\text{target}}(\mathbf{s}) \|^2 + \\ -w_3 \| \mathbf{a} \|^2$$

$$r(\mathbf{s}, \mathbf{a}) = \begin{cases} 1 \text{ if walker is running} \\ 0 \text{ otherwise} \end{cases}$$

$$r(\mathbf{s}, \mathbf{a}) = w_1 v(\mathbf{s}) + w_2 \delta(|\theta_{\text{torso}}(\mathbf{s})| < \epsilon) + w_3 \delta(h_{\text{torso}}(\mathbf{s}) \ge h)$$