Exploration: Part 2

CS 285: Deep Reinforcement Learning, Decision Making, and Control

Sergey Levine

Class Notes

1. Homework 4 due today!

Recap: what’s the problem?

this is easy (mostly) this is impossible

Why?

Recap: classes of exploration methods in deep RL

* Optimistic exploration:
* new state = good state
* requires estimating state visitation frequencies or novelty
e typically realized by means of exploration bonuses
e Thompson sampling style algorithms:
* |earn distribution over Q-functions or policies
* sample and act according to sample
* |nformation gain style algorithms
* reason about information gain from visiting new states

Posterior sampling in deep RL

Thompson sampling:

. What do we sample?
917"'79an(917"'79?’£) p
a = arg max Ep [r(a)] How do we represent the distribution?
bandit setting: p(#4,...,0,) is distribution over rewards

MDP analog is the ()-function!

1. sample Q-function @ from p(Q)

2. act according to () for one episode

) since Q-learning is off-policy, we don’t care
3. update p(Q)) which Q-function was used to collect data

how can we represent a distribution over functions?

Bootstrap

given a dataset D, resample with replacement /N times to get Dy,...,Dn
train each model fp, on D;

to sample from p(#), sample ¢ € [1,..., N| and use foy,

(b) Gaussian process posterior (c) Bootstrapped neural nets

training N big neural nets is expensive, can we avoid it?

Shared network

Frame

Osband et al. “Deep Exploration via Bootstrapped DQN”

Why does this work?

Exploring with random actions (e.g., epsilon-greedy): oscillate
back and forth, might not go to a coherent or interesting place

Exploring with random Q-functions: commit to a randomized
but internally consistent strategy for an entire episode

0e+00 le+08 2¢+08 Algorithm
— Bootstrapped DQN

- very good bonuses often do better

Average score per episode

0e+00 le+08 2e+08 0e+00 le+08 2e+08 0e+00 le+08 2e+08
Total training frames

Osband et al. “Deep Exploration via Bootstrapped DQN”

Reasoning about information gain (approximately)

Info gain: IG(z,y|a)

information gain about what?
information gain about reward r(s,a)? not very useful if reward is sparse
state density p(s)? a bit strange, but somewhat makes sense!

information gain about dynamics p(s’[s,a)? good proxy for learning the MDP, though still heuristic

Generally intractable to use exactly, regardless of what is being estimated!

Reasoning about information gain (approximately)

Generally intractable to use exactly, regardless of what is being estimated

A few approximations:

prediction gain: log pg:(s) — log pe(s) (Schmidhuber ‘91, Bellemare ‘16)

intuition: if density changed a lot, the state was novel

variational inference: (Houthooft et al. “VIME”)

IG can be equivalently written as Dy, (p(z|y)||p(2))

learn about transitions pg(s¢i1|se,a): z =0 Dx1(p(0|h, s¢,aq, si41)||p(0]R))
Y= (St’ @t St"'l) model parameters for pg(s¢i1|st, at) / [\

history of all prior transitions

newly observed transition

intuition: a transition is more informative if it causes belief over 6 to change
idea: use variational inference to estimate q(0|¢) ~ p(0|h)

given new transition (s, a,s’), update ¢ to get ¢’

Reasoning about information gain (approxmately)

VIME implementation:

IG can be equivalently written as Dkr,(p(0|h, s¢, az, si11)||p(0|h))
e [

history of all prior transitions

model parameters for pg(s;i1]ss, ay
newly observed transition

q(0)9) ~ p(0|h) specifically, optimize variational lower bound Dky,(q(0|®)||p(h|0)p(6))

represent q(6|¢) as product of independent Gaussian parameter distributions

with mean ¢ (see Blundell et al. “Weight uncertainty in neural networks”)

given new transition (s, a,s’), update ¢ to get ¢’ p(0|D) = Hp (60:|D)

this corresponds to updating the network weight means and variances
p(0:|D) = N(M,Ui)
use Dxkr,(q(0|9")||q(0]|¢)) as approximate bonus X/

Houthooft et al. “VIME”

Reasoning about information gain (approximately)

VIME implementation:

IG can be equivalently written as Dkr,(p(0|h, s¢, az, si11)||p(0|h))
q(0|¢) =~ p(6|h) specifically, optimize variational lower bound Dkr,(q(0|®)||p(h|0)p(8))

use Dk1,(q(0|¢")||q(0|0)) as approximate bonus

Approximate IG:

- models are more complex, generally
harder to use effectively

(a) CartPole (b) CartPoleSwingup (c) DoublePendulum (d) MountainCar

Houthooft et al. “VIME”

Exploration with model errors

Dx1,(q(0|9")||q(0|¢)) can be seen as change in network (mean) parameters ¢

A

if we forget about IG, there are many other ways to measure this
low novelty

Stadie et al. 2015: \1 I

* encode image observations using auto-encoder \
* build predictive model on auto-encoder latent states
* use model error as exploration bonus

high novelty

Schmidhuber et al. (see, e.g. “Formal Theory of Creativity, Fun, and Intrinsic Motivation):
» exploration bonus for model error

* exploration bonus for model gradient

* many other variations

Many others!

Recap: classes of exploration methods in deep RL

* Optimistic exploration:
 Exploration with counts and pseudo-counts
 Different models for estimating densities

e Thompson sampling style algorithms:
 Maintain a distribution over models via bootstrapping
e Distribution over Q-functions

* |nformation gain style algorithms

 Generally intractable
 (Can use variational approximation to information gain

Suggested readings

Schmidhuber. (1992). A Possibility for Implementing Curiosity and Boredom in Model-Building
Neural Controllers.

Stadie, Levine, Abbeel (2015). Incentivizing Exploration in Reinforcement Learning with Deep
Predictive Models.

Osband, Blundell, Pritzel, Van Roy. (2016). Deep Exploration via Bootstrapped DQN.

Houthooft, Chen, Duan, Schulman, De Turck, Abbeel. (2016). VIME: Variational Information
Maximizing Exploration.

Bellemare, Srinivasan, Ostroviski, Schaul, Saxton, Munos. (2016). Unifying Count-Based
Exploration and Intrinsic Motivation.

Tang, Houthooft, Foote, Stooke, Chen, Duan, Schulman, De Turck, Abbeel. (2016). #Exploration:
A Study of Count-Based Exploration for Deep Reinforcement Learning.

Fu, Co-Reyes, Levine. (2017). EX2: Exploration with Exemplar Models for Deep Reinforcement
Learning.

Break

Imitation vs. Reinforcement Learning

imitation learning reinforcement learning
* Requires demonstrations * Requires reward function
* Must address distributional shift * Must address exploration

e Simple, stable supervised learning ¢ Potentially non-convergent RL
* Only as good as the demo * Can become arbitrarily good

Can we get the best of both?

e.g., what if we have demonstrations and rewards?

Imitation Learning

training SlIJ:aerrr:lilrizd} 7o (at|os)

Reinforcement Learning

AR RR

2 2R
2 8s2e9

T e
|

KA A

Addressing distributional shift with RL?

initial human
policy 1t demonstrations
generate policy ©) DN
) samples from 1t % o L =G
j;-hge’,,e’,-ato'a ! Q D (By) [sesseeeeeeee) /

Update reward using

\/Samples & demos

policy Tt reward r

Addressing distributional shift with RL?

IRL already addresses distributional shift via RL

human
demonstrations
generate policy (©) sz (@ v ’@ N
samples from Tt I | o D)
g nerator @ L ﬁl.y G\J /

Update reward using
_/sa(nples & demos

policy reward r

\)
|

this part is regular “forward” RL

But it doesn’t use a known reward function!

Simplest combination: pretrain & finetune

 Demonstrations can overcome exploration: show us how to do the task
* Reinforcement learning can improve beyond performance of the demonstrator

* |dea: initialize with imitation learning, then finetune with reinforcement learning!

collected demonstration data (s;,a;)
initialize 7y as maxy Y . log mo(a;|s;)

. Tun 7y to collect experience

S

improve mg with any RL algorithm

Simplest combination: pretrain & finetune

Muelling et al. ‘13

Simplest combination: pretrain & finetune

Pretrain & finetune

. collected demonstration data (s;,a;)
initialize mg as maxy) . logmg(a;s;)

run g to collect experience

B~ W N

improve my with any RL algorithm

vs. DAgger

1. train my(as|os) from human data D = {o1,a;,...,0n,an}
2. run mg(a;|oy) to get dataset D = {01,...,05}

3. Ask human to label D, with actions a;

4. Aggregate: D < DU D,

What’s the problem?

Pretrain & finetune

1. collected demonstration data (s;,a;)

2. initialize mp as maxg), log mg(ay|s;)

3. run mp to collect experience « can be very bad (due to distribution shift)
4. improve mp with any RL algorithm < first batch of (very) bad data can

destroy initialization

Can we avoid forgetting the demonstrations?

Off-policy reinforcement learning

e Off-policy RL can use any data

* |f we let it use demonstrations as off-policy samples, can that mitigate the
exploration challenges?

* Since demonstrations are provided as data in every iteration, they are never forgotten
e But the policy can still become better than the demos, since it is not forced to mimic them

off-policy policy gradient (with importance sampling)

off-policy Q-learning

Policy gradient with demonstrations

Vol (0) =)

T€D

\

includes demonstrations and experience

t=1

t'=1

Why is this a good idea? Don’t we want on-policy
samples?

best sampling distribution should have high reward!

.

at/ |Stf

T {
T\ Ay Sy
ng log mg(a|s¢) (H o(ay st

()

optimal importance sampling

say we want Fp [f(z)]
By lf (@) = % X, 258 £ ()

which q(x) gives lowest variance?

answer: ¢(z) o< p(z)|f ()]

Policy gradient with demonstrations

t

T

T\ A |Syr
ZV@logﬂg(at|st) (H gat||st) (Zr S/, Ay)]
t:1 tf t/

t'=1 t'=t

VoJ(0) = Z

T€D

How do we construct the sampling distribution?

standard IS

_ : e : : 5 .
problem 1: which distribution did the demonstrations come from? E, (x)[f(z)] ~ % Zz ggw : Flx:)

option 1: use supervised behavior cloning to approximate Tgemo self-normalized IS

option 2: assume Diract delta: mTgemo(7) = %5(7‘ € D) By f(x)] = (m F D ggxz)f(x’)
\ ZJ Z(w t ol

this works best with self-normalized importance sampling

problem 2: what to do if we have multiple distributions?

fusion distribution: q(z) = 57 >, ¢:(z)

Example: importance sampling with demos

T t
e atz |Stf
VQJ(Q) — E E VQ logvrg(at|st) | I E T Str at,
atr |Stf
TeD Lt=1 t'=1 t'=t
swimmer, learned policy hopper, learne dp olicy
50 ‘hldden units \ 50 hidden test terrain 1
learned policy
i
walker, I ned policy varied terrain, learned policy
50 hidde lts test terrain 1

Levine, Koltun "13. “Guided policy search”

Q-learning with demonstrations

* Q-learning is already off-policy, no need to bother with
importance weights!

e Simple solution: drop demonstrations into the replay buffer

full Q-learning with replay buffer:
initialize B to contain the demonstration data

1. collect dataset {(s;,a;, s}, r;)} using some policy, add it to B

2. sample a batch (sz, a;,s;,r;) from B

3. ¢ < Qb—ofzz A = (si,a:)(Qp(si, a;) — [r(si; a;) +y maxa Qu(s],aj)])

K X

Q-learning with demonstrations

(a) Peg Insertion Task. (b) Hard-drive Task.

o

(c) Clip Insertion Task (d) Cable Insertion Task.

Vecerik et al., ‘17, “Leveraging Demonstrations for Deep Reinforcement Learning...”

What’s the problem?

Importance sampling: recipe for getting stuck

:cosp

Vol (0) =)

€D

T at |S 4 state
E Vi log my(ay|s;) H E r(sy,ay)

Q-learning: just good data is not enough

PN Q(s,a)
Q*(s,a)

More problems with Q learning

Q(s,a) < r(s,a) + maxQ(s’,a’) Q(s,a) is trained on (s,a) ~ (s, a)

\ Q(s,a)]

what action will this pick?

if a* = argmax, (s, a) makes 3(s,a*) small

we end up training on garbage!

v

(S? a? SIJ Ir) 010
dataset of transitions
(“replay buffer”)
off-policy

f .\0\. Q-learning

x/ See, e.g.

7r(a|s) (With exploration) Riedmiller, Neural Fitted Q-Iteration ‘05
Ernst et al., Tree-Based Batch Mode RL ‘05

More problems with Q learning

I (s, a) is trained on (s,a) ~ (s, a)

) J a8/ 9
only use

Q(s,a) < r(s,a) + Earor,.. [Q(s',a")] e
how to pick mpew(als)? Q(s,a) / support region

option 1: stay close to 3
e.g. Dxr(Tuew(+[8)[|B(+s)) < €

v

issue 1: we don’t know (3 random data a
issue 2: this is way too conservative - Walker2d-v2
BEAR —_— BCQ
200 - BEAR-QL
key idea: constrain to support of . “
. - pessimistic w.r.t. 600 / naive RL
max Eanr(1s)[Qr(s,a)] — /\\/\-'ark Eonr(]s)[Qr(s, a)] — epistemic uncertainty
o 00 distrib.
s.t. Equp[MMD(D(s),7(:|s))] <& <« support constraint __ matching
200 / (BCQ)
See: Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. " E ; s ‘i"_’ __‘_f et -
0.0K 0.2K 0.4K 0.6K 0.8K 1.OK

See also: Fujimoto, Meger, Precup. Off-Policy Deep Reinforcement Learning without Exploration. TrainSteps

So far...

e Pure imitation learning
e Easy and stable supervised learning
* Distributional shift
* No chance to get better than the demonstrations

Pure reinforcement learning
* Unbiased reinforcement learning, can get arbitrarily good
e Challenging exploration and optimization problem

Initialize & finetune
e Almost the best of both worlds
 ...but can forget demo initialization due to distributional shift

Pure reinforcement learning, with demos as off-policy data
* Unbiased reinforcement learning, can get arbitrarily good
 Demonstrations don’t always help

Can we strike a compromise? A little bit of supervised, a little bit of RL?

Imitation as an auxiliary loss function

imitation objective: Z(s,a)eDdemo log mg(als) (Or some variant of thiS)

RL objective: Er,[r(s,a)] (or some variant of this)

hybrid objective: Ex,[r(s,a)l + A) g ayep,.... logmo(als)

need to be careful in choosing this weight

Example: hybrid policy gradient

. _ Acceleration via Demo Augmented Policy Gradient
standard policy gradient

/ o
. L == A - "_ y
Jaug — Z VQ In ’}‘TQ(G;|S)A"'T(3’ (I)+ = l’@i 4 - ‘\\ﬁ.: 1

(s,a)€Epx P) | N} *
> Vel * * | ;
o Inmy(a™|s)w(s,a”) ¥ .~

(s,a*)€pp / \ h |
\ A
o il .\

~
S
increase demo likelihood A'

demonstration

=

Rajeswaran et al., ‘17, “Learning Complex Dexterous Manipulation...”

Example: hybrid Q-learning

J(Q) = Jpq(Q) + M Jn(Q) + A2 JE(Q) + A3 J12(Q).

Q-learning loss

n-step Q-learning loss

Loss Ablations: Montezuma Revenge
QD

No L2 regularization loss
No Supervised Loss

Mo n-step TD loss

2000

7000

6000

L
=
=
(=]

4000

NEPARSY

=

Training Episode Returns

-
R
Fary

ammprs=z

CI- 50 100 150 200

Training Iteration

Hester et al., ‘17, “Learning from Demonstrations...”

JE(Q) = max

Loss Ablations: Qbert

25000

20000

@

E

2

[}

< 15000

@

E ol ' H

a Mgt .

= ry .

2 10000 f 1 . :

— = = 5

= " WA ' -

= b v a -& u

e g * ey)

y L '
5000 £ 1 — :
T No L2 regularization loss «
¥ === o Supervised Loss :
?' === No n-step TD loss H
. ! |- | 7 _____

0 50 100 150

Training Iteration

_— regularization loss

because why not...

ac A

[Q(S: ﬂ) + E(aEa (I)] — Q(Sa a‘E)

margin-based loss on example action

8000 Related Work: Montezuma Revenge

ADET
— DOfD

- Human Experience Replay
- Replay Buffer Spiking

J000

6000

3000

Training Episede Returns
45 w
(=] (=]
(=] (=]
(=] (=]

[N
(=]
=
=

Training Iteration

Training Episode Returns

Related Work: Qbert

25000

20000
15000
10000

5000 K - Abé_‘r'-__"._.'-,;- oty Bt
3 — DOfD

- Human Experience Replay
Replay Buffer Spiking .

100 200
Training lteration

0 50 150

What’s the problem?

hybrid objective: Ex,[r(s,a)] + A) g ayep,.... l0gmo(als)

* Need to tune the weight
* The design of the objective, esp. for imitation, takes a lot of care

* Algorithm becomes problem-dependent

Pure imitation learning
e Easy and stable supervised learning
 Distributional shift
* No chance to get better than the demonstrations

Pure reinforcement learning
e Unbiased reinforcement learning, can get arbitrarily good
e Challenging exploration and optimization problem

Initialize & finetune
* Almost the best of both worlds
 ...but can forget demo initialization due to distributional shift

Pure reinforcement learning, with demos as off-policy data
* Unbiased reinforcement learning, can get arbitrarily good
 Demonstrations don’t always help

Hybrid objective, imitation as an “auxiliary loss”
* Like initialization & finetuning, almost the best of both worlds
* No forgetting
e But no longer pure RL, may be biased, may require lots of tuning

