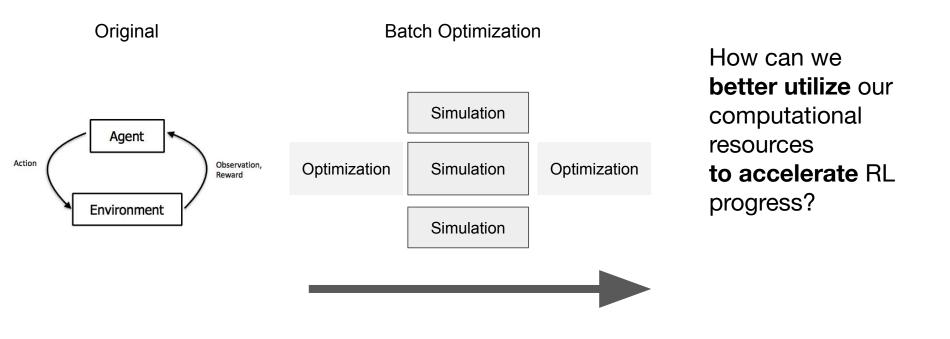
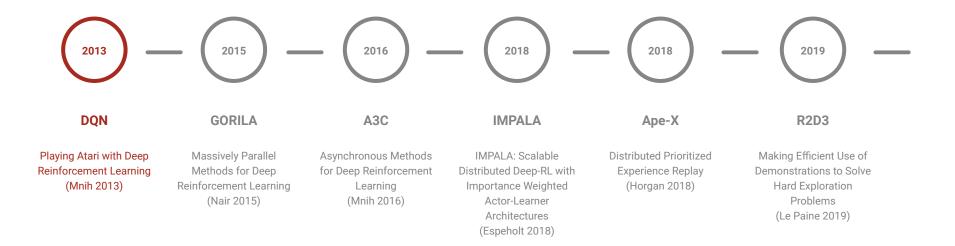
Distributed RL

Richard Liaw

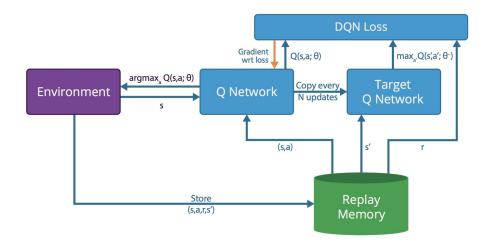
Common Computational Patterns for RL



History of large scale distributed RL



2013/2015: DQN

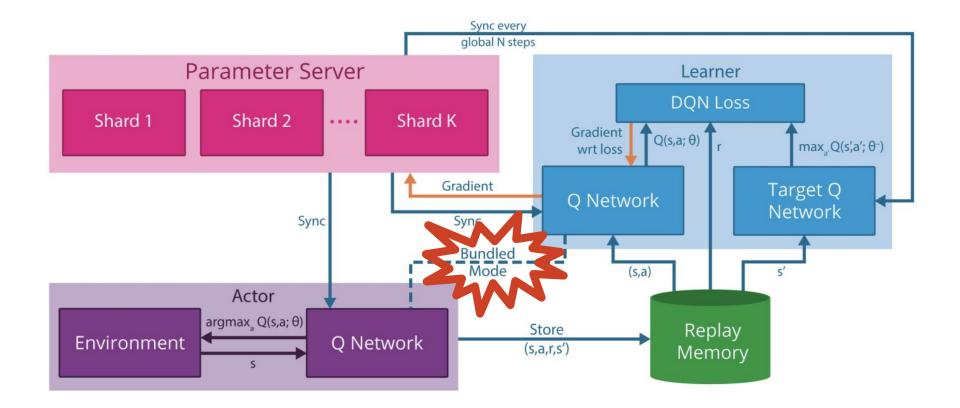


```
for i in range(T):
    s, a, s_1, r = evaluate()
    replay.store((s, a, s_1, r))
```

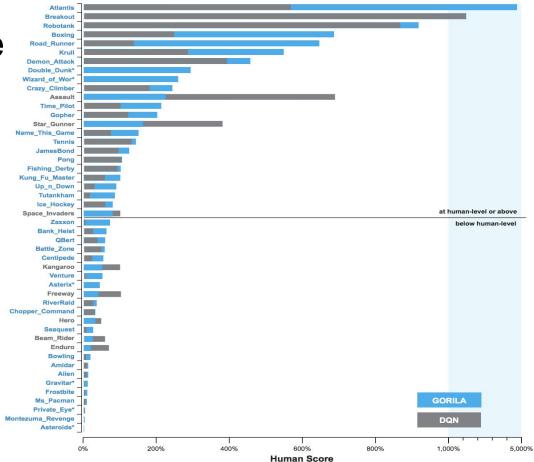
minibatch = replay.sample()
q network.update(mini batch)

if should_update_target():
 q_network.sync_with(target_net)

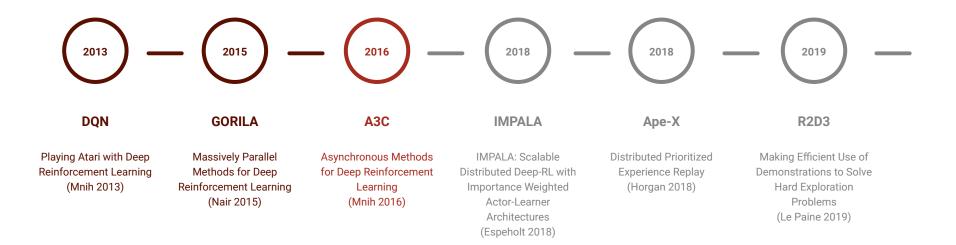
2015: General Reinforcement Learning Architecture (GORILA)



GORILA Performance



History of large scale distributed RL



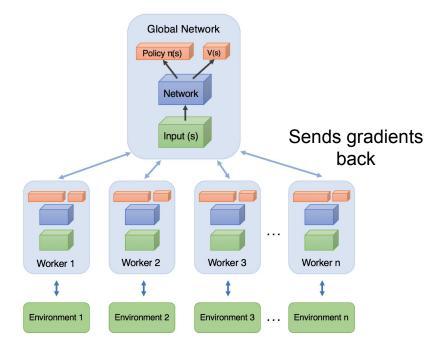
2016: Asynchronous Advantage Actor Critic (A3C)

Each worker:

```
while True:
    sync_weights_from_master()
```

```
for i in range(5):
    collect sample from env
```

grad = compute_grad(samples)
async_send_grad_to_master()



Each has different exploration -> more diverse samples!

A3C Performance

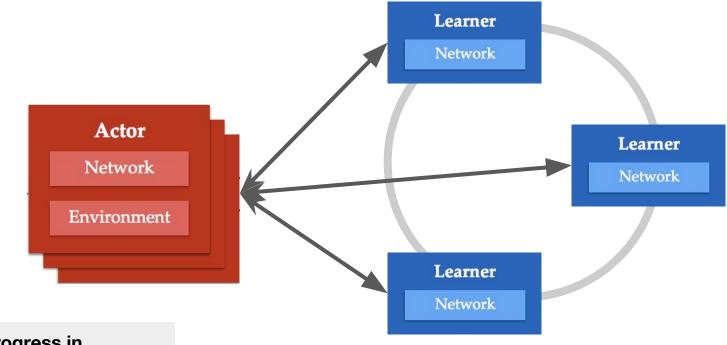
Changes to GORILA:

- 1. Faster updates
- 2. **Removes** the replay buffer
- **3. Moves** to Actor-Critic (from Q learning)

Method	Training Time	Mean	Median
DQN	8 days on GPU	121.9%	47.5%
Gorila	4 days, 100 machines	215.2%	71.3%
D-DQN	8 days on GPU	332.9%	110.9%
Dueling D-DQN	8 days on GPU	343.8%	117.1%
Prioritized DQN	8 days on GPU	463.6%	127.6%
A3C, FF	1 day on CPU	344.1%	68.2%
A3C, FF	4 days on CPU	496.8%	116.6%
A3C, LSTM	4 days on CPU	623.0%	112.6%

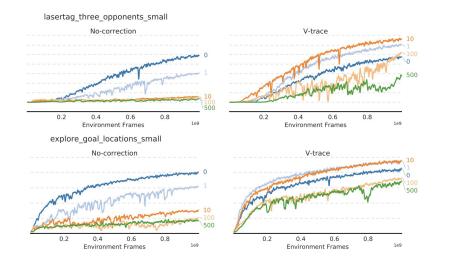
Table 1. Mean and median human-normalized scores on 57 Atari games using the human starts evaluation metric. Supplementary

Importance Weighted Actor-Learner Architectures (IMPALA)



Motivated by progress in distributed deep learning!

How to correct for Policy Lag? Importance Sampling!



Given an actor-critic model:

1. Apply importance-sampling to policy gradient

$$\mathbb{E}_{a_s \sim \mu(\cdot|x_s)} \Big[\frac{\pi_{\bar{\rho}}(a_s|x_s)}{\mu(a_s|x_s)} \nabla \log \pi_{\bar{\rho}}(a_s|x_s) q_s \big| x_s \Big]$$

2. Apply importance sampling to critic update

4.1. V-trace target

Consider a trajectory $(x_t, a_t, r_t)_{t=s}^{t=s+n}$ generated by the actor following some policy μ . We define the *n*-steps V-trace target for $V(x_s)$, our value approximation at state x_s , as:

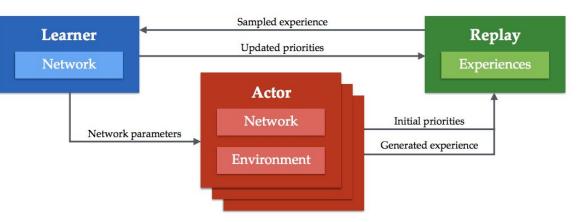
$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \Big(\prod_{i=s}^{t-1} c_i \Big) \delta_t V, \quad (1)$$

Ape-X/R2D2 (2018)

Scaling Off-Policy learning...

Ape-X:

- 1. Distributed DQN/DDPG/R2D2
- 2. Reintroduces replay
- 3. **Distributed Prioritization:** Unlike Prioritized DQN, initial priorities are not set to "max TD"



Ape-X Performance

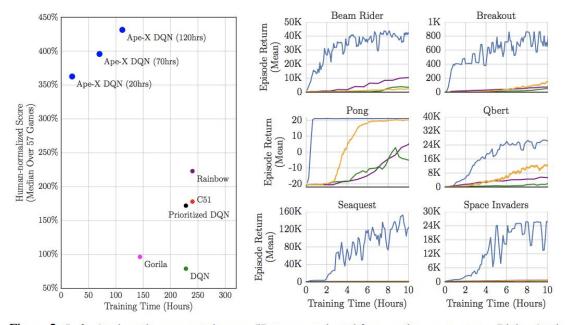
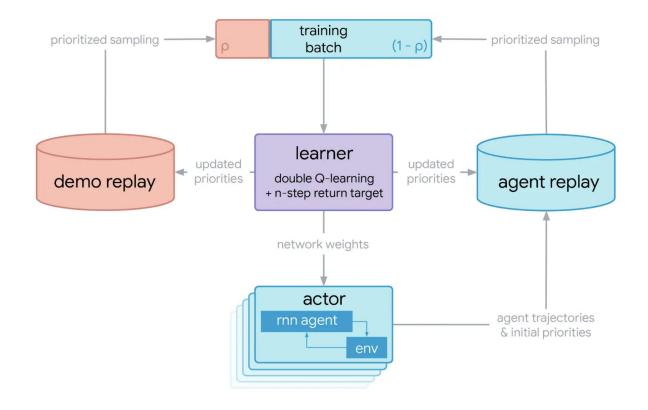


Figure 2: Left: Atari results aggregated across 57 games, evaluated from random no-op starts. Right: Atari training curves for selected games, against baselines. Blue: Ape-X DQN with 360 actors; Orange: A3C; Purple: Rainbow; Green: DQN. See appendix for longer runs over all games.

With Demonstrations: R2D3 (2019)



Other interesting distributed architectures

QT-Opt

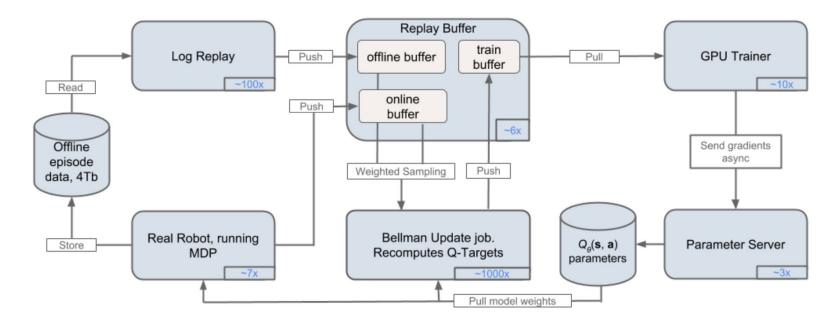
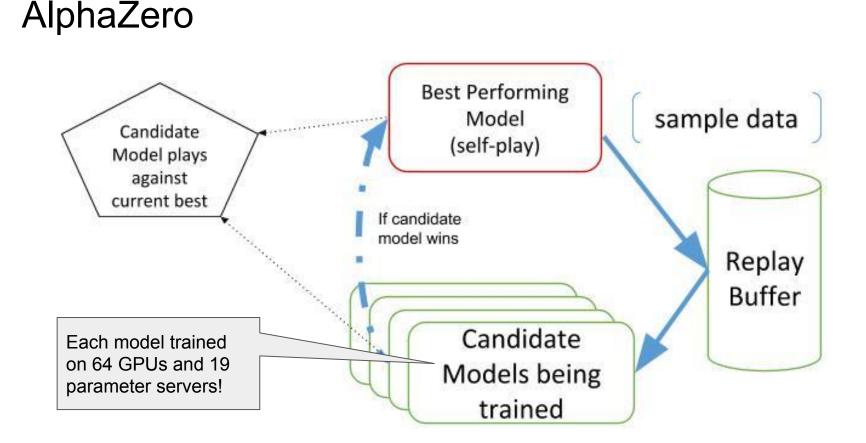


Figure 14: Architecture of the QT-Opt distributed reinforcement learning algorithm.

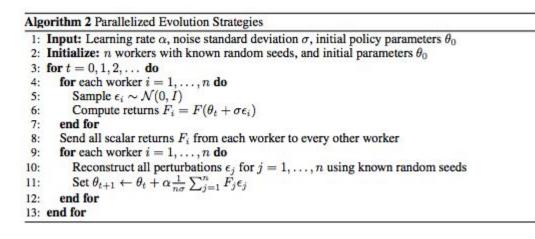
https://arxiv.org/pdf/1806.10293.pdf

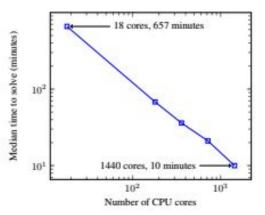


Evolution Strategies

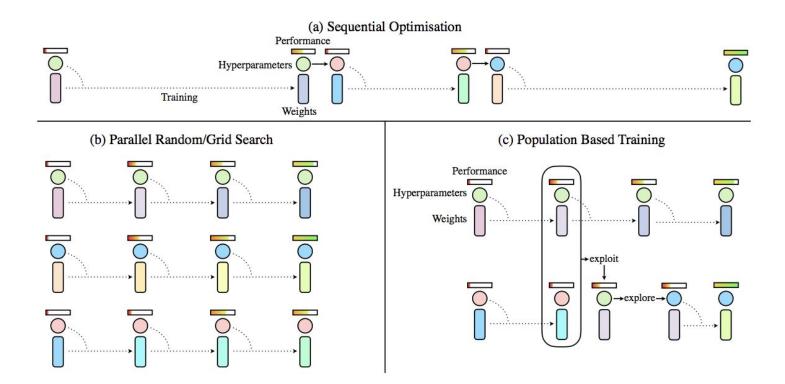
Evolution Strategies as a Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever OpenAI

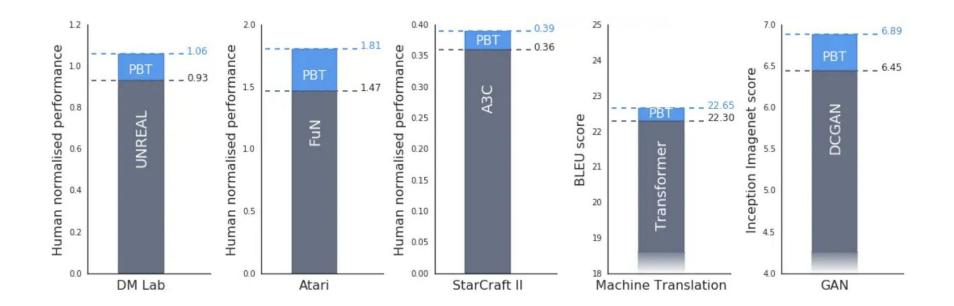




Beyond RL: Population-based Training



Benefits of PBT



https://deepmind.com/blog/article/population-based-training-neural-networks

RLlib: Abstractions for Distributed Reinforcement Learning (ICML'18)

Eric Liang*, **Richard Liaw***, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, Ion Stoica

RL research scales with compute

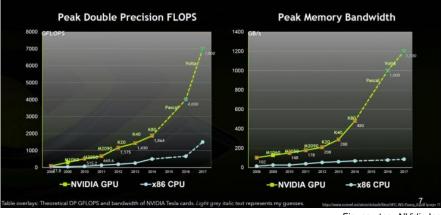


Fig. courtesy NVidia Inc.

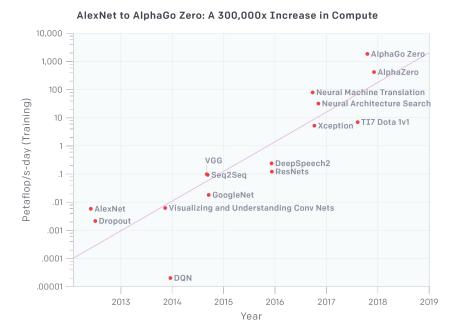
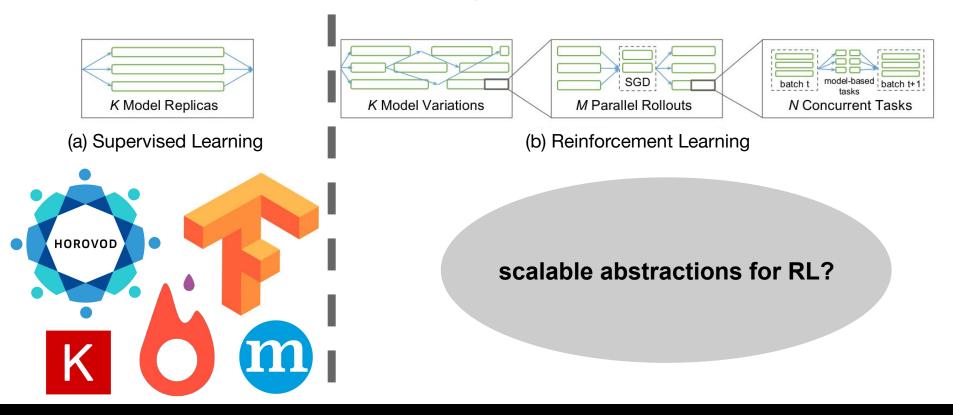


Fig. courtesy OpenAl

How do we leverage this hardware?



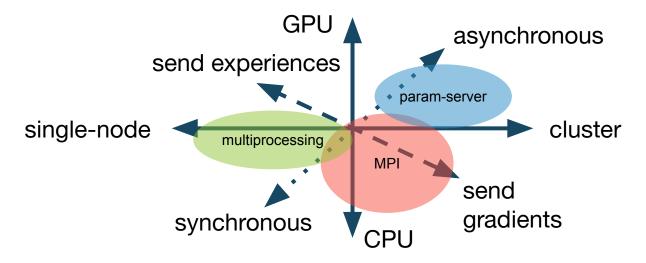
Systems for RL today

≡	O
reinforcement learning	
Repositories (16K)	16,538 repository results

- Many implementations (16000+ repos on GitHub!)
 - how general are they (and do they scale)?
 - PPO: multiprocessing, MPIAlphaZero: custom systemsEvolution Strategies: RedisIMPALA: Distributed TensorFlowA3C: shared memory, multiprocessing, TF
- Huge variety of algorithms and distributed systems used to implement, but little reuse of components

Challenges to reuse

1. Wide range of physical execution strategies for one "algorithm"



Challenges to reuse

2. Tight coupling with deep learning frameworks

Different parallelism paradigms:

– Distributed TensorFlow vs TensorFlow + MPI?

Challenges to reuse

3. Large variety of algorithms with different structures

Algorithm Family	Policy Evaluation	Replay Buffer	Gradient-Based Optimizer	Other Distributed Components
DQNs	Х	Х	Х	
Policy Gradient	Х		Х	
Off-policy PG	Х	X	Х	
Model-Based/Hybrid	Х		Х	Model-Based Planning
Multi-Agent	Х	X	Х	
Evolutionary Methods	Х			Derivative-Free Optimization
AlphaGo	X	X	Х	MCTS, Derivative-Free Optimizati

We need abstractions for RL

Good abstractions decompose RL algorithms into reusable components.

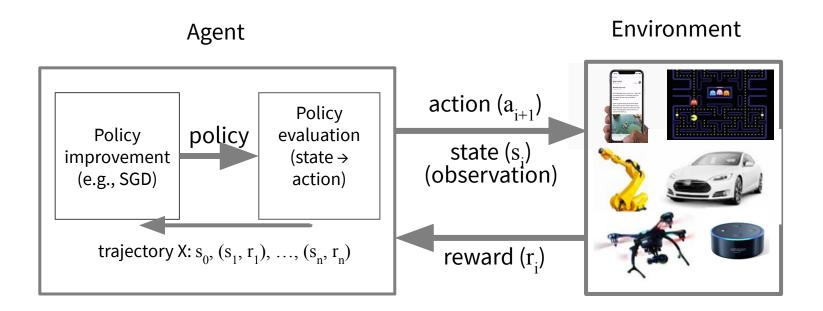
Goals:

- Code reuse across deep learning frameworks
- Scalable execution of algorithms
- Easily compare and reproduce algorithms

Structure of RL computations

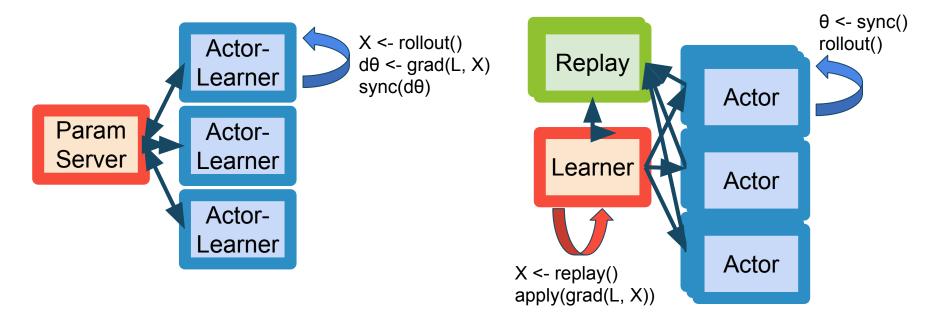
Environment Agent action (a_{i+1}) Policy: state \rightarrow action state (s_i) (observation) reward (r_i)

Structure of RL computations



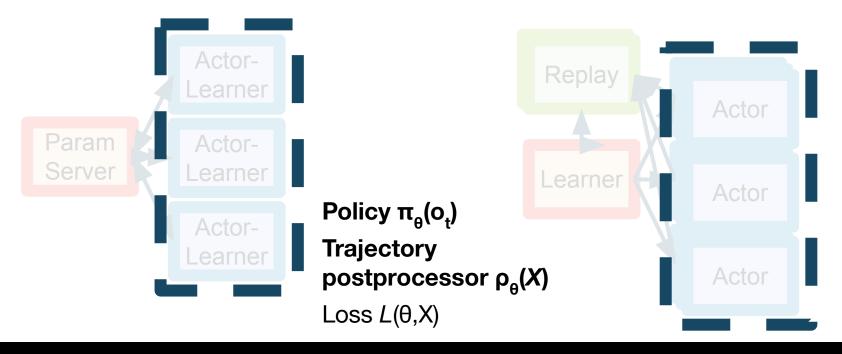
Many RL loop decompositions

Async DQN (Mnih et al; 2016)



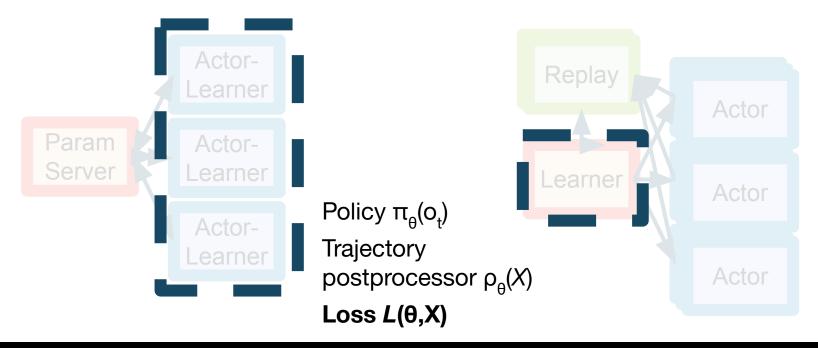
Common components

Async DQN (Mnih et al; 2016)



Common components

Async DQN (Mnih et al; 2016)



Structural differences

Async DQN (Mnih et al; 2016)

- Asynchronous optimization
- Replicated workers
- Single machine

...and this is just one family!

→ No existing system can effectively meet all the varied demands of RL workloads.

- Central learner
- Data queues between components
- Large replay buffers
- Scales to clusters
- + Population-Based Training (Jaderberg et al; 2017)
- Nested parallel computations
- Control decisions based on intermediate results

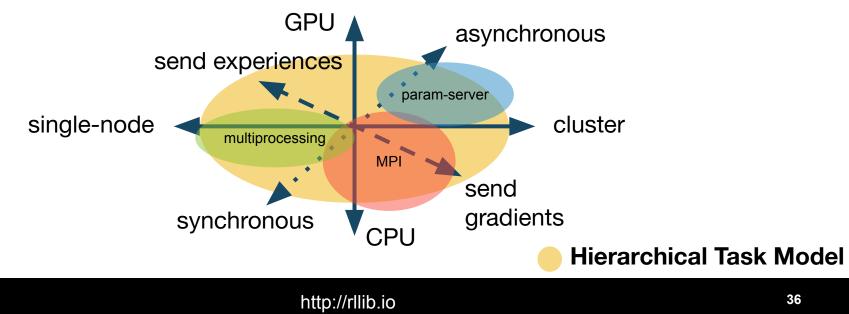
Requirements for a new system

Goal: Capture a broad range of RL workloads with high performance and substantial code reuse

- 1. Support stateful computations
 - e.g., simulators, neural nets, replay buffers
 - big data frameworks, e.g., Spark, are typically stateless
- 2. Support asynchrony
 - difficult to express in MPI, esp. nested parallelism
- 3. Allow easy composition of (distributed) components

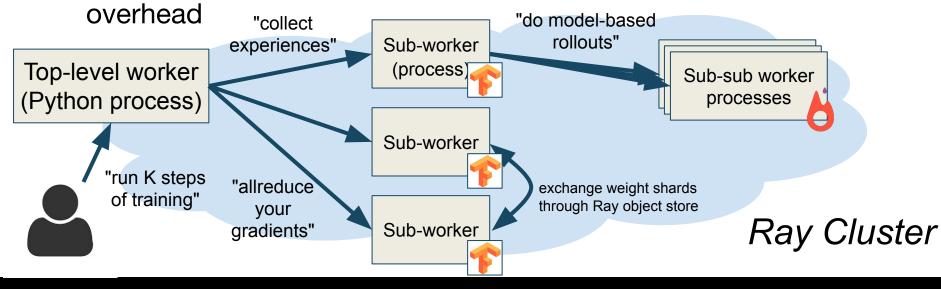
Ray System Substrate

- RLlib builds on Ray to provide higher-level RL abstractions
- Hierarchical parallel task model with stateful workers
 - flexible enough to capture a broad range of RL workloads (vs specialized sys.)



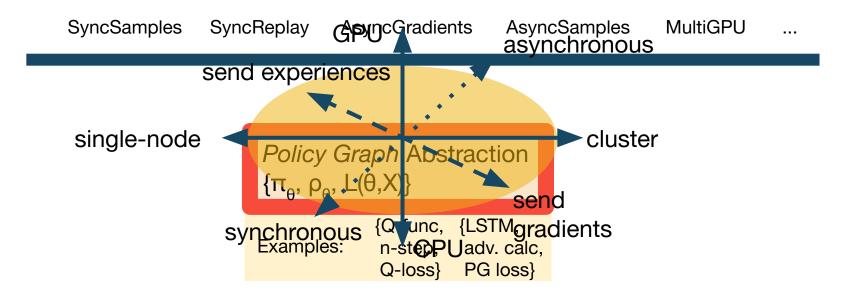
Hierarchical Parallel Task Model

- 1. Create Python class instances in the cluster (stateful workers)
- 2. Schedule short-running tasks onto workers
 - Challenge: High performance: 1e6+ tasks/s, ~200us task



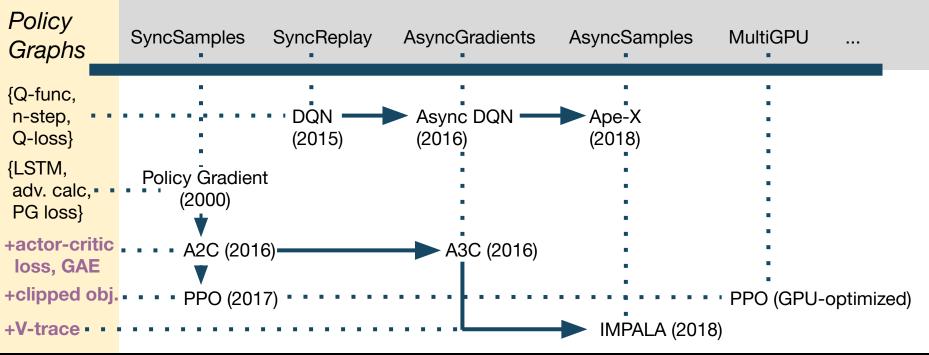
Unifying system enables RL Abstractions

Policy Optimizer Abstraction



RLlib Abstractions in Action

Policy Optimizers



RLlib Reference Algorithms

• High-throughput architectures

- Distributed Prioritized Experience Replay (Ape-X)
- Importance Weighted Actor-Learner Architecture (IMPALA)
- Gradient-based
 - Advantage Actor-Critic (A2C, A3C)
 - Deep Deterministic Policy Gradients (DDPG)
 - Deep Q Networks (DQN, Rainbow)
 - Policy Gradients
 - Proximal Policy Optimization (PPO)

Derivative-free

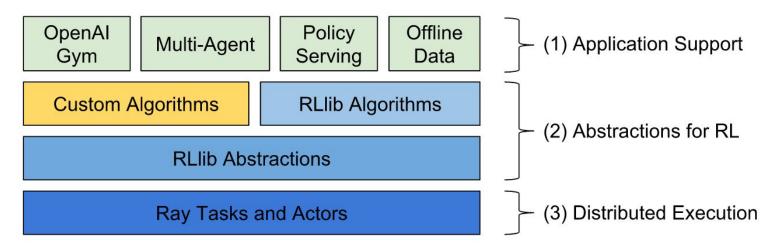
- Augmented Random Search (ARS)
- Evolution Strategies

Community Contributions

♥ FLOW Lab

Scale your algorithms with RLlib

- Beyond a "collection of algorithms",
- RLlib's abstractions let you easily implement and scale new algorithms (multi-agent, novel losses, architectures, etc)



Code example: training PPO

import ray
import ray.rllib.agents.ppo as ppo
from ray.tune.logger import pretty_print

```
ray.init()
config = ppo.DEFAULT_CONFIG.copy()
config["num_gpus"] = 0
config["num_workers"] = 1
config["eager"] = False
trainer = ppo.PPOTrainer(config=config, env="CartPole-v0")
```

Can optionally call trainer.restore(path) to load a checkpoint.

```
for i in range(1000):
    # Perform one iteration of training the policy with PPO
    result = trainer.train()
    print(pretty_print(result))
```

```
if i % 100 == 0:
    checkpoint = trainer.save()
    print("checkpoint saved at", checkpoint)
```

Code example: hyperparam tuning

```
import ray
import ray.tune as tune
ray.init()
tune.run_experiments({
    "my_experiment": {
        "run": "PPO",
        "env": "CartPole-v0",
        "stop": {"episode_reward_mean": 200},
        "config": {
            "num_gpus": 0,
            "num_workers": 1,
            "sgd_stepsize": tune.grid_search([0.01, 0.001, 0.0001]),
        },
   },
})
```

Code example: hyperparam tuning

- PPO CartPole-v0 1 sqd stepsize=0.001:

TensorBoard

Smoothing

Horizontal Axis

Runs

Summary: Ray and RLlib addresses challenges in providing scalable abstractions for reinforcement learning.

RLlib is open source and available at <u>http://rllib.io</u> Thanks!

Ray distributed execution engine

• Ray provides Task parallel and Actor APIs built on dynamic task graphs

 Numerical computation		Third-party simulators	Applications
 Task Parallelism		Actors	Ray programming model
Dynamic Task Graphs			Ray execution model

• These APIs are used to build distributed **applications**, **libraries** and **systems**

Ray distributed scheduler

- Faster than Python multiprocessing on a single node
- Competitive with MPI in many workloads

