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to accelerate RL 
progress?
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2013/2015: DQN

for i in range(T):
    s, a, s_1, r = evaluate()
    replay.store((s, a, s_1, r)) 

    minibatch = replay.sample()
    q_network.update(mini_batch)

    if should_update_target():
        q_network.sync_with(target_net)



2015: General Reinforcement Learning Architecture (GORILA)



GORILA Performance
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2016: Asynchronous Advantage Actor Critic (A3C)

Sends gradients 
back

# Each worker:

while True:
    sync_weights_from_master()

    for i in range(5):
        collect sample from env

    grad = compute_grad(samples)
    async_send_grad_to_master()
    

Each has different exploration -> more diverse samples!



A3C Performance

Changes to GORILA:

1. Faster updates
2. Removes the 

replay buffer
3. Moves to 

Actor-Critic (from Q 
learning)



Importance Weighted Actor-Learner Architectures (IMPALA)

Motivated by progress in 
distributed deep learning!



How to correct for Policy Lag? Importance Sampling!

Given an actor-critic model:

1. Apply importance-sampling to policy 
gradient

  2.     Apply importance sampling to critic update



Ape-X/R2D2 (2018)

Scaling Off-Policy learning...

Ape-X:
1. Distributed 

DQN/DDPG/R2D2

2. Reintroduces replay

3. Distributed Prioritization: 
Unlike Prioritized DQN, initial 
priorities are not set to “max 
TD”



Ape-X Performance



With Demonstrations: R2D3 (2019)



Other interesting distributed 
architectures



QT-Opt

https://arxiv.org/pdf/1806.10293.pdf

https://arxiv.org/pdf/1806.10293.pdf


AlphaZero

Each model trained 
on 64 GPUs and 19 
parameter servers!



Evolution Strategies 



Beyond RL: Population-based Training



Benefits of PBT

https://deepmind.com/blog/article/population-based-training-neural-networks

https://deepmind.com/blog/article/population-based-training-neural-networks


http://rllib.io

RLlib: Abstractions for Distributed 
Reinforcement Learning (ICML'18)
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Eric Liang*, Richard Liaw*, Philipp Moritz, Robert Nishihara, Roy Fox, 
Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, Ion Stoica
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Fig. courtesy OpenAI

Fig. courtesy NVidia Inc.

RL research scales with compute



http://rllib.io

How do we leverage this hardware?

23

scalable abstractions for RL?

(a) Supervised Learning (b) Reinforcement Learning



http://rllib.io

Systems for RL today
• Many implementations (16000+ repos on GitHub!)

– how general are they (and do they scale)?
PPO: multiprocessing, MPI               AlphaZero: custom systems

Evolution Strategies: Redis               IMPALA: Distributed TensorFlow

A3C: shared memory, multiprocessing, TF

• Huge variety of algorithms and distributed systems used to 
implement, but little reuse of components

24



http://rllib.io

Challenges to reuse

1. Wide range of physical execution strategies for one 
"algorithm"

25

single-node cluster

GPU

CPU
synchronous

asynchronous

send 
gradients

send experiences

MPI
multiprocessing

param-server
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Challenges to reuse

2. Tight coupling with deep learning frameworks

26

Different parallelism paradigms:
– Distributed TensorFlow vs TensorFlow + MPI?



http://rllib.io

Challenges to reuse

3. Large variety of algorithms with different structures

27



http://rllib.io

We need abstractions for RL

Good abstractions decompose RL algorithms into reusable 
components.

Goals:
– Code reuse across deep learning frameworks
– Scalable execution of algorithms
– Easily compare and reproduce algorithms

28
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Structure of RL computations

29

Agent Environment

action (ai+1)

Policy:
state → action state (si)(observation) 

reward (ri)



http://rllib.io

Structure of RL computations

30

Agent Environment

action (ai+1)

state (si)(observation) 

reward (ri)

Policy 
evaluation

(state → 
action)

Policy 
improvement 

(e.g., SGD)

trajectory X: s0, (s1, r1), …, (sn, rn)

policy



http://rllib.io

Many RL loop decompositions
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Actor-
Learner

Actor-
Learner

Actor-
Learner

Param
Server Learner

Replay

Async DQN (Mnih et al; 2016) Ape-X DQN (Horgan et al; 2018)

Actor

Actor

Actor

X <- rollout()
dθ <- grad(L, X)
sync(dθ)

θ <- sync()
rollout()

X <- replay()
apply(grad(L, X))
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Replay

Common components
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ActorActor

ActorActor
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Replay

Common components
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Structural differences

34

Async DQN (Mnih et al; 2016)
● Asynchronous optimization
● Replicated workers
● Single machine

Ape-X DQN (Horgan et al; 2018)
● Central learner
● Data queues between components
● Large replay buffers
● Scales to clusters

...and this is just one family!

➝ No existing system can 
effectively meet all the varied 
demands of RL workloads.

+ Population-Based Training 
(Jaderberg et al; 2017)

● Nested parallel computations
● Control decisions based on 

intermediate results



http://rllib.io

Requirements for a new system
Goal: Capture a broad range of RL workloads with high 
performance and substantial code reuse
1. Support stateful computations

- e.g., simulators, neural nets, replay buffers
- big data frameworks, e.g., Spark, are typically stateless

2. Support asynchrony
- difficult to express in MPI, esp. nested parallelism

3. Allow easy composition of (distributed) components

35



http://rllib.io

Ray System Substrate
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Hierarchical Task Model

• RLlib builds on Ray to provide higher-level RL abstractions
• Hierarchical parallel task model with stateful workers

– flexible enough to capture a broad range of RL workloads (vs specialized sys.)

single-node                                                            cluster

GPU

CPU
synchronous

asynchronous

send 
gradients

send experiences

MPI
multiprocessing

param-server



http://rllib.io

Ray Cluster

Hierarchical Parallel Task Model
1. Create Python class instances in the cluster (stateful workers)
2. Schedule short-running tasks onto workers

– Challenge: High performance: 1e6+ tasks/s, ~200us task 
overhead

37

Top-level worker
(Python process)

Sub-worker 
(process)

Sub-worker

Sub-worker

"collect 
experiences"

Sub-sub worker
processes

"do model-based 
rollouts"

"allreduce 
your 

gradients"

exchange weight shards 
through Ray object store

"run K steps 
of training"
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Unifying system enables RL Abstractions
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Policy Optimizer Abstraction

SyncSamples AsyncSamplesAsyncGradientsSyncReplay MultiGPU       ...

Policy Graph Abstraction
{πθ, ρθ, L(θ,X)}

{Q-func,
 n-step,
 Q-loss}

{LSTM,
 adv. calc,
 PG loss}

Examples:

Hierarchical Task Model

single-node                                                          cluster

GPU

CPU
synchronous

asynchronous

send 
gradients

send experiences
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RLlib Abstractions in Action
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Policy Optimizers

SyncSamples AsyncSamplesAsyncGradientsSyncReplay MultiGPU       ...

{Q-func,
 n-step,
 Q-loss}

{LSTM,
 adv. calc,
 PG loss}

DQN 
(2015)

Async DQN 
(2016)

Ape-X 
(2018)

Policy Gradient 
(2000)

+actor-critic
  loss, GAE

A2C (2016)

PPO (GPU-optimized)PPO (2017)+clipped obj.

IMPALA (2018)+V-trace

A3C (2016)

Policy
Graphs
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RLlib Reference Algorithms
• High-throughput architectures

– Distributed Prioritized Experience Replay (Ape-X)
– Importance Weighted Actor-Learner Architecture (IMPALA)

• Gradient-based
– Advantage Actor-Critic (A2C, A3C)
– Deep Deterministic Policy Gradients (DDPG)
– Deep Q Networks (DQN, Rainbow)
– Policy Gradients
– Proximal Policy Optimization (PPO)

• Derivative-free
– Augmented Random Search (ARS)
– Evolution Strategies

Community 
Contributions



http://rllib.io

Scale your algorithms with RLlib
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• Beyond a "collection of algorithms",
• RLlib's abstractions let you easily implement and scale new 

algorithms (multi-agent, novel losses, architectures, etc)



http://rllib.io

Code example: training PPO



http://rllib.io

Code example: hyperparam tuning



http://rllib.io

Code example: hyperparam tuning



http://rllib.io

RLlib is open source and available at http://rllib.io
Thanks!
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Summary: Ray and RLlib addresses challenges in providing 
scalable abstractions for reinforcement learning.

http://rllib.io
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Ray distributed execution engine

46

• Ray provides Task parallel and Actor APIs built on dynamic task graphs

• These APIs are used to build distributed applications, libraries and systems

 Ray execution modelDynamic Task Graphs

 Applications...Numerical 
computation

Third-party 
simulators

 Ray programming modelTask Parallelism Actors
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Ray distributed scheduler
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• Faster than 
Python multi-
processing on a 
single node

• Competitive with 
MPI in many 
workloads

WorkerDriver WorkerWorker WorkerWorker

Object Store Object Store Object Store

Local Scheduler Local Scheduler Local Scheduler

Global Scheduler

Global Scheduler

Global SchedulerGlobal 
Scheduler


