
Distributed RL
Richard Liaw

Common Computational Patterns for RL

Batch Optimization

Simulation

Simulation

Simulation

OptimizationOptimization

How can we
better utilize our
computational
resources
to accelerate RL
progress?

Original

History of large scale distributed RL

2013

DQN

Playing Atari with Deep
Reinforcement Learning

(Mnih 2013)

GORILA

Massively Parallel
Methods for Deep

Reinforcement Learning
(Nair 2015)

2015

A3C

Asynchronous Methods
for Deep Reinforcement

Learning
(Mnih 2016)

2016

Ape-X

Distributed Prioritized
Experience Replay

(Horgan 2018)

2018

IMPALA

IMPALA: Scalable
Distributed Deep-RL with

Importance Weighted
Actor-Learner
Architectures

(Espeholt 2018)

2018

R2D3

Making Efficient Use of
Demonstrations to Solve

Hard Exploration
Problems

(Le Paine 2019)

2019

2013/2015: DQN

for i in range(T):
 s, a, s_1, r = evaluate()
 replay.store((s, a, s_1, r))

 minibatch = replay.sample()
 q_network.update(mini_batch)

 if should_update_target():
 q_network.sync_with(target_net)

2015: General Reinforcement Learning Architecture (GORILA)

GORILA Performance

History of large scale distributed RL

2013

DQN

Playing Atari with Deep
Reinforcement Learning

(Mnih 2013)

GORILA

Massively Parallel
Methods for Deep

Reinforcement Learning
(Nair 2015)

2015

A3C

Asynchronous Methods
for Deep Reinforcement

Learning
(Mnih 2016)

2016

Ape-X

Distributed Prioritized
Experience Replay

(Horgan 2018)

2018

IMPALA

IMPALA: Scalable
Distributed Deep-RL with

Importance Weighted
Actor-Learner
Architectures

(Espeholt 2018)

2018

R2D3

Making Efficient Use of
Demonstrations to Solve

Hard Exploration
Problems

(Le Paine 2019)

2019

2016: Asynchronous Advantage Actor Critic (A3C)

Sends gradients
back

Each worker:

while True:
 sync_weights_from_master()

 for i in range(5):
 collect sample from env

 grad = compute_grad(samples)
 async_send_grad_to_master()

Each has different exploration -> more diverse samples!

A3C Performance

Changes to GORILA:

1. Faster updates
2. Removes the

replay buffer
3. Moves to

Actor-Critic (from Q
learning)

Importance Weighted Actor-Learner Architectures (IMPALA)

Motivated by progress in
distributed deep learning!

How to correct for Policy Lag? Importance Sampling!

Given an actor-critic model:

1. Apply importance-sampling to policy
gradient

 2. Apply importance sampling to critic update

Ape-X/R2D2 (2018)

Scaling Off-Policy learning...

Ape-X:
1. Distributed

DQN/DDPG/R2D2

2. Reintroduces replay

3. Distributed Prioritization:
Unlike Prioritized DQN, initial
priorities are not set to “max
TD”

Ape-X Performance

With Demonstrations: R2D3 (2019)

Other interesting distributed
architectures

QT-Opt

https://arxiv.org/pdf/1806.10293.pdf

https://arxiv.org/pdf/1806.10293.pdf

AlphaZero

Each model trained
on 64 GPUs and 19
parameter servers!

Evolution Strategies

Beyond RL: Population-based Training

Benefits of PBT

https://deepmind.com/blog/article/population-based-training-neural-networks

https://deepmind.com/blog/article/population-based-training-neural-networks

http://rllib.io

RLlib: Abstractions for Distributed
Reinforcement Learning (ICML'18)

21

Eric Liang*, Richard Liaw*, Philipp Moritz, Robert Nishihara, Roy Fox,
Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, Ion Stoica

http://rllib.io 22

Fig. courtesy OpenAI

Fig. courtesy NVidia Inc.

RL research scales with compute

http://rllib.io

How do we leverage this hardware?

23

scalable abstractions for RL?

(a) Supervised Learning (b) Reinforcement Learning

http://rllib.io

Systems for RL today
• Many implementations (16000+ repos on GitHub!)

– how general are they (and do they scale)?
PPO: multiprocessing, MPI AlphaZero: custom systems

Evolution Strategies: Redis IMPALA: Distributed TensorFlow

A3C: shared memory, multiprocessing, TF

• Huge variety of algorithms and distributed systems used to
implement, but little reuse of components

24

http://rllib.io

Challenges to reuse

1. Wide range of physical execution strategies for one
"algorithm"

25

single-node cluster

GPU

CPU
synchronous

asynchronous

send
gradients

send experiences

MPI
multiprocessing

param-server

http://rllib.io

Challenges to reuse

2. Tight coupling with deep learning frameworks

26

Different parallelism paradigms:
– Distributed TensorFlow vs TensorFlow + MPI?

http://rllib.io

Challenges to reuse

3. Large variety of algorithms with different structures

27

http://rllib.io

We need abstractions for RL

Good abstractions decompose RL algorithms into reusable
components.

Goals:
– Code reuse across deep learning frameworks
– Scalable execution of algorithms
– Easily compare and reproduce algorithms

28

http://rllib.io

Structure of RL computations

29

Agent Environment

action (ai+1)

Policy:
state → action state (si)(observation)

reward (ri)

http://rllib.io

Structure of RL computations

30

Agent Environment

action (ai+1)

state (si)(observation)

reward (ri)

Policy
evaluation

(state →
action)

Policy
improvement

(e.g., SGD)

trajectory X: s0, (s1, r1), …, (sn, rn)

policy

http://rllib.io

Many RL loop decompositions

31

Actor-
Learner

Actor-
Learner

Actor-
Learner

Param
Server Learner

Replay

Async DQN (Mnih et al; 2016) Ape-X DQN (Horgan et al; 2018)

Actor

Actor

Actor

X <- rollout()
dθ <- grad(L, X)
sync(dθ)

θ <- sync()
rollout()

X <- replay()
apply(grad(L, X))

http://rllib.io

Replay

Common components

32

Actor-
Learner

Actor-
Learner

Actor-
Learner

Param
Server

Actor

Actor

Actor

Learner

Replay

Async DQN (Mnih et al; 2016) Ape-X DQN (Horgan et al; 2018)

ActorActor

ActorActor

ActorActor

Policy πθ(ot)

Trajectory
postprocessor ρθ(X)

Loss L(θ,X)

http://rllib.io

Replay

Common components

33

Actor-
Learner

Actor-
Learner

Actor-
Learner

Param
Server

Actor

Actor

Actor

Learner

Replay

Async DQN (Mnih et al; 2016) Ape-X DQN (Horgan et al; 2018)

ActorActor

ActorActor

ActorActor

Policy πθ(ot)

Trajectory
postprocessor ρθ(X)

Loss L(θ,X)

http://rllib.io

Structural differences

34

Async DQN (Mnih et al; 2016)
● Asynchronous optimization
● Replicated workers
● Single machine

Ape-X DQN (Horgan et al; 2018)
● Central learner
● Data queues between components
● Large replay buffers
● Scales to clusters

...and this is just one family!

➝ No existing system can
effectively meet all the varied
demands of RL workloads.

+ Population-Based Training
(Jaderberg et al; 2017)

● Nested parallel computations
● Control decisions based on

intermediate results

http://rllib.io

Requirements for a new system
Goal: Capture a broad range of RL workloads with high
performance and substantial code reuse
1. Support stateful computations

- e.g., simulators, neural nets, replay buffers
- big data frameworks, e.g., Spark, are typically stateless

2. Support asynchrony
- difficult to express in MPI, esp. nested parallelism

3. Allow easy composition of (distributed) components

35

http://rllib.io

Ray System Substrate

36

Hierarchical Task Model

• RLlib builds on Ray to provide higher-level RL abstractions
• Hierarchical parallel task model with stateful workers

– flexible enough to capture a broad range of RL workloads (vs specialized sys.)

single-node cluster

GPU

CPU
synchronous

asynchronous

send
gradients

send experiences

MPI
multiprocessing

param-server

http://rllib.io

Ray Cluster

Hierarchical Parallel Task Model
1. Create Python class instances in the cluster (stateful workers)
2. Schedule short-running tasks onto workers

– Challenge: High performance: 1e6+ tasks/s, ~200us task
overhead

37

Top-level worker
(Python process)

Sub-worker
(process)

Sub-worker

Sub-worker

"collect
experiences"

Sub-sub worker
processes

"do model-based
rollouts"

"allreduce
your

gradients"

exchange weight shards
through Ray object store

"run K steps
of training"

http://rllib.io

Unifying system enables RL Abstractions

38

Policy Optimizer Abstraction

SyncSamples AsyncSamplesAsyncGradientsSyncReplay MultiGPU ...

Policy Graph Abstraction
{πθ, ρθ, L(θ,X)}

{Q-func,
 n-step,
 Q-loss}

{LSTM,
 adv. calc,
 PG loss}

Examples:

Hierarchical Task Model

single-node cluster

GPU

CPU
synchronous

asynchronous

send
gradients

send experiences

http://rllib.io

RLlib Abstractions in Action

39

Policy Optimizers

SyncSamples AsyncSamplesAsyncGradientsSyncReplay MultiGPU ...

{Q-func,
 n-step,
 Q-loss}

{LSTM,
 adv. calc,
 PG loss}

DQN
(2015)

Async DQN
(2016)

Ape-X
(2018)

Policy Gradient
(2000)

+actor-critic
 loss, GAE

A2C (2016)

PPO (GPU-optimized)PPO (2017)+clipped obj.

IMPALA (2018)+V-trace

A3C (2016)

Policy
Graphs

http://rllib.io

RLlib Reference Algorithms
• High-throughput architectures

– Distributed Prioritized Experience Replay (Ape-X)
– Importance Weighted Actor-Learner Architecture (IMPALA)

• Gradient-based
– Advantage Actor-Critic (A2C, A3C)
– Deep Deterministic Policy Gradients (DDPG)
– Deep Q Networks (DQN, Rainbow)
– Policy Gradients
– Proximal Policy Optimization (PPO)

• Derivative-free
– Augmented Random Search (ARS)
– Evolution Strategies

Community
Contributions

http://rllib.io

Scale your algorithms with RLlib

41

• Beyond a "collection of algorithms",
• RLlib's abstractions let you easily implement and scale new

algorithms (multi-agent, novel losses, architectures, etc)

http://rllib.io

Code example: training PPO

http://rllib.io

Code example: hyperparam tuning

http://rllib.io

Code example: hyperparam tuning

http://rllib.io

RLlib is open source and available at http://rllib.io
Thanks!

45

Summary: Ray and RLlib addresses challenges in providing
scalable abstractions for reinforcement learning.

http://rllib.io

http://rllib.io

Ray distributed execution engine

46

• Ray provides Task parallel and Actor APIs built on dynamic task graphs

• These APIs are used to build distributed applications, libraries and systems

 Ray execution modelDynamic Task Graphs

 Applications...Numerical
computation

Third-party
simulators

 Ray programming modelTask Parallelism Actors

http://rllib.io

Ray distributed scheduler

47

• Faster than
Python multi-
processing on a
single node

• Competitive with
MPI in many
workloads

WorkerDriver WorkerWorker WorkerWorker

Object Store Object Store Object Store

Local Scheduler Local Scheduler Local Scheduler

Global Scheduler

Global Scheduler

Global SchedulerGlobal
Scheduler

