Transfer and Multi-Task
Learning

CS 285: Deep Reinforcement Learning, Decision Making, and Control

Sergey Levine

Today’s Lecture

1. Transfer from prior tasks to learn new tasks more quickly

N

Forward transfer: train on source task in such a way as to do
better on target task

Randomization of source tasks
Multi-task transfer
Contextual policies

o U kW

Modular policies

e Goals:

* Understand (at a high level) the landscape of research work on transfer
learning

What's the problem?

this is easy (mostly) this is impossible

Why?

Montezuma’s revenge

* Getting key = reward
* Opening door = reward
e Getting killed by skull = bad

Montezuma’s revenge

e We know what to do because we understand what
these sprites mean!

* Key: we know it opens doors!
e Ladders: we know we can climb them!

e Skull: we don’t know what it does, but we know it
can’t be good!

* Prior understanding of problem structure can help
us solve complex tasks quickly!

Can RL use the same prior knowledge as us?

< ",”'n‘ Ay "‘».».
5 » Hea T et i

* If we've solved prior tasks, we might acquire useful knowledge for
solving a new task

* How is the knowledge stored?
* Q-function: tells us which actions or states are good
* Policy: tells us which actions are potentially useful
* some actions are never useful!
* Models: what are the laws of physics that govern the world?

* Features/hidden states: provide us with a good representation
* Don’t underestimate this!

Aside: the representation

Pong

100}

score %

— original |
. - recovery
| 1 1 1 1

0 1 2 3 4 5 6
steps le7

100

Qbert

bottleneck

100
80

60 |
40|

20

Seaquest

160}
140+
120

100

Spacelnvaders

To decouple reinforcement learning from representation learning, we decapitate an
agent by destroying its policy and value outputs and then re-train end-to-end.

The representation remains and the policy is swiftly recovered. The gap between
Initial optimization and recovery shows a representation learning bottleneck.

slide adapted from E. Schelhamer, “Loss is its own reward”

Transfer learning terminology

transfer learning: using experience from for faster
learning and better performance on a new task

in RL, task = VIDP!

_ “shot”: number of attempts in the
targetdomain t4roet domain

0-shot: just run a policy trained in
the source domain

1-shot: try the task once
few shot: try the task a few times

How can we frame transfer learning problems?

1.

No single solution! Survey of various recent research papers

“Forward” transfer: train on one task, transfer to a new task
a) Justtry it and hope for the best

b) Finetune on the new task

c) Randomize source domain

Multi-task transfer: train on many tasks, transfer to a new task
a) Generate highly randomized source domains

b) Model-based reinforcement learning

c) Model distillation

d) Contextual policies

e) Modular policy networks

Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning

How can we frame transfer learning problems?

1. “Forward” transfer: train on one task, transfer to a new task
a) Justtry it and hope for the best
b) Finetune on the new task
c) Randomize source domain

Try it and hope for the best

Policies trained for one set of circumstances might just work in a new domain, but no promises or guarantees

Learned Visuomotor Policy: Bottle Task

Try it and hope for the best

Policies trained for one set of circumstances might just work in a new domain, but no promises or guarantees

real time autonomous execution

Levine®, Finn*, et al. ‘16 Devin et al. ‘17

Finetuning

The most popular transfer learning method in (supervised) deep learning!

‘i IMAGENET

nnnnnnnnnnnnnn

Where are the “ImageNet” features of RL?

Challenges with finetuning in RL

1. RL tasks are generally much less diverse
* Features are less general
 Policies & value functions become overly specialized

2. Optimal policies in fully observed MDPs are
deterministic
* Loss of exploration at convergence
* Low-entropy policies adapt very slowly to new settings

Finetuning with maximum-entropy policies

How can we increase diversity and entropy?

m(als) = exp(Qg¢(s,a)—V (s)) optimizes), Fr(s, a,)[7(St, ar)|+Ers) [H(m(ar]s))]

policy entropy

Act as randomly as possible while collecting high rewards!

Example: pre-training for robustness

Learning to solve a task in all possible ways provides for more robust
transfer!

Example: pre-training for diversity

Pretraining: reward = speed (any direction)

(one robot per trajectory)

‘ random pretrained with pretrained with
DDPG (policy 1) Soft Q-learning (fixed policy) initialization DDPG soft Q-learning

25 random seeds; noise addded to actions random seeds 0 - 24

Wide hallway 1000 Narrow hallway 2500 U-shaped maze

q 2000
A 1500 F--eommveee oo b DO A
s 1000 [S Rl L LT WA

1 L L 1 1
0 50 100 150 200 0 50 100 150 200 1} 50 100 150 200

—— MaxEnt init random init —— DDPG init

I o
.

Haarnoja*, Tang*, et al. “Reinforcement Learning with Deep Energy-Based Policies”

Finetuning in RL: suggested readings

Finetuning via MaxEnt RL: Haarnoja*, Tang*, et al. (2017). Reinforcement Learning with Deep
Energy-Based Policies.

Finetuning from transferred visual features (via VAE): Higgins et al. DARLA: improving zero-shot
transfer in reinforcement learning. 2017.

Pretraining with hierarchical RL methods:
Andreas et al. Modular multitask reinforcement learning with policy sketches. 2017.

Florensa et al. Stochastic neural networks for hierarchical reinforcement learning. 2017.

...and many many others!

What if we can manipulate the source domain?

 So far: source domain (e.g., empty room) and target domain (e.g.,
corridor) are fixed

* What if we can design the source domain, and we have a difficult
target domain?

e Often the case for simulation to real world transfer

 Same idea: the more diversity we see at training time, the better we
will transfer!

EPOpt: randomizing physical parameters

4000

train test

L1

S

adapt

training on single torso mass

3500-
© 3000
g
€ 2500-
€ 2000+
o
€ 1500
& 1000

500

—_—m= —m = L] — m=

Friction

4

5

6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7

Torso Mass Torso Mass Torso Mass

2.4 4
2.2 1
2.0
1.8
1.6
1.4

1.0

2.4
2.2
2.0 1
1.8
1.6
1.4
1.2+

1.0

ensemble adaptation

lter0 | . Ilter 1

X

Ilter 2 : . lter3

5 10 15 20 0O 5 10 15 20

Torso Mass

Rajeswaran et al., “EPOpt: Learning robust neural network policies...”

8

9

training on model ensemble

Ensembl

3 4 5 6 7 8 9
Torso Mass

unmodeled effects

Hopper I o low high

o0 1.5 2.0 o0

Tass o B

ground friction 2.0 025 15 25
joint damping 2.5 1.0 1.0 4.0

armature 10 025 05 15
Half-Cheetah 4 o low high

TGass oo s O O

ground friction 0.5 01 03 07
joint damping 1.5 05 05 25

armature 0.125 0.04 0.05 0.2
4000
3500 4
3000 A
& 2500
[=
©
£ 2000 4
o
£
& 1500
1000 |
500 —— Ensemble (unmodeled)
—— Maximum-Likelihood
0 - - ; ; :
3 4 5 6 7 8 9

Torso Mass

Preparing for the unknown: explicit system ID

system identification RNN

Xt—1

Us—1 ¢) : (mt—h.:t: ut—h.:t—l) =
-
i i L LR et model parameters (e.g., mass)
7}

Xt—h .
policy 14
Ui —p . (:B,p)l—}u IR e s)

,

il [i u | fu(z,u] 10
0.8

Xt4+1

—— UP-true
—— Regular
—— UP-0SI

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
COM Offset

Yu et al., “Preparing for the Unknown: Learning a Universal Policy with Online System Identification”

Another example

Xue Bin Peng et al., “Sim-to-Real Transfer of Robotic Control with Dynamics Randomization”

CAD2RL: randomization for real-world control

also called domain randomization

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”

CAD2RL: randomization for real-world control

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”

Randomization for manipulation

L
N |
! Tobin, Fong, Ray, Schneider, Zaremba, Abbeel

ilil%l% James, Davison, Johns

. —. N;w.

What if we can peek at the target domain?

* So far: pure O-shot transfer: learn in source domain so that we can
succeed in unknown target domain

* Not possible in general: if we know nothing about the target domain,
the best we can do is be as robust as possible

* What if we saw a few images of the target domain?

Better transfer through domain adaptation

lllll taSK
loss

real-syn
weak : 5 : pairwise
pairs loss
lllll task
loss
H real-syn 5 5 | t :
real images nomaligned ! confusion
- - N pairs =

e]

pose regression convnet
(shared weights)

__gu'®

adversarial loss causes
internal CNN features to be
indistinguishable for sim and real

Tzeng*, Devin*, et al., “Adapting Visuomotor Representations with Weak Pairwise Constraints”

Domain adaptation at the pixel level

can we learn to turn synthetic images into realistic ones?

~ =

Generator G s|s||e
— skip connection i £l Z2ll>
3 5 S 2 2|2l |2
> Q| = 4 5 (§ ® |2 c| c ~
AEERERE T - E
| — .. [] : — w
2] — b 8 A o - e s> b= |l m m
g v | 8 & il = - - @ Ol N 313 <
c||3 |~ re) » I . A= 2| P &
N~ c | = N Q = 8 c 9 x £
x c = |l =) Z | Z2 -
~ 1 -~ |1 @&
L J 172] & [
[) S| |%
S) G c = ~
_ A=

)

Discriminator D

W,

Patches
70x70x6

{ real/fake]

n64s2::relu
n128s2:IN:relu
n256s2:IN:relu
n256s2:IN:relu
n1s1:sigmoid

xfzﬂ
=
. =) KL J\)L L k) /

Bousmalis et al., “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”

Bousmalis et al., “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”

Forward transfer summary

* Pretraining and finetuning
 Standard finetuning with RL is hard
* Maximum entropy formulation can help

* How can we modify the source domain for transfer?
* Randomization can help a lot: the more diverse the better!

* How can we use modest amounts of target domain data?

 Domain adaptation: make the network unable to distinguish observations
from the two domains

 ...or modify the source domain observations to look like target domain

* Only provides invariance — assumes all differences are functionally irrelevant;
this is not always enough!

Source domain randomization and domain
adaptation suggested readings

Rajeswaran, et al. (2017). EPOpt: Learning Robust Neural Network Policies Using Model Ensembles.
Yu et al. (2017). Preparing for the Unknown: Learning a Universal Policy with Online System Identification.
Sadeghi & Levine. (2017). CAD2RL: Real Single Image Flight without a Single Real Image.

Tobin et al. (2017). Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real
World.

James et al. (2017). Transferring End-to-End Visuomotor Control from Simulation to Real World for a Multi-Stage
Task.

Tzeng*, Devin*, et al. (2016). Adapting Deep Visuomotor Representations with Weak Pairwise Constraints.

Bousmalis et al. (2017). Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping.

... and many many others!

Break

How can we frame transfer learning problems?

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Model-based reinforcement learning
b) Model distillation
c) Contextual policies
d) Modular policy networks

Multiple source domains

* So far: more diversity = better transfer

* Need to design this diversity
e E.g., simulation to real world transfer: randomize the simulation

 What if we transfer from multiple different tasks?
* In a sense, closer to what people do: build on a lifetime of experience

e Substantially harder: past tasks don’t directly tell us how to solve the task in
the target domain!

Model-based reinforcement learning

* If the past tasks are all different, what do they have in common?

 |dea 1: the laws of physics
* Same robot doing different chores
* Same car driving to different destinations
* Trying to accomplish different things in the same open-ended video game

e Simple version: train model on past tasks, and then use it to solve
new tasks

* More complex version: adapt or finetune the model to new task

e Easier than finetuning the policy if task is very different but physics are mostly
the same

Model-based reinforcement learning

Example: 1-shot learning with model priors

Fu et al., “One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation...”

1x Speed (real-time) autonomous execution

Fu et al., “One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation...”

Can we solve multiple tasks at once?

 Sometimes learning a model is very hard

e Can we learn a multi-task policy that can simultaneously perform
many tasks?

* This policy might then be easier to finetune to new tasks
* |dea 1: construct a joint MDP

mian|so
/\ a7 S0 () > S > etc. MDPO

pick MDP randomly o (a0]s0)

. L - /s
in first state p(so) samele Lo, 01%0) , s » etc. MDP1
‘‘‘‘ amp),

~~~~~ . W(ao So)

S » S > etc. MDP2

* |dea 2: train in each MDP separately, and then combine the policies



Actor-mimic and policy distillation

Goal: learn a single policy that can play all Atari games

POLICY DISTILLATION

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Giilcehre; Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu & Raia Hadsel

Google DeepMind
ACTOR-MIMIC
DEEP MULTITASK AND TRANSFER REINFORCEMENT
LEARNING

Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov
Department of Computer Science
University of Toronto



Distillation for Multi-Task Transfer

L= Z T, (als) log man N (als)

(just supervised learning/distillation)

analogous to guided policy search, but
for transfer learning

some other details
(e.g., feature regression objective)

— see paper
Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”



Distillation Transfer Results

%10% ATLANTIS - BOXING I BREAKOUT . %104 CRAZY CLIMBER
(e} T 8 T 8 w T
—AMN
DQN a me "”/| ‘ | .ﬁl| ,
DQN-MaX ﬂ f rlll |1|II|‘|I ll "' I' | 1" f\ I1|J'\I|II[\‘| '. !||\ | ' i
" _F‘)QN'Mean ‘ ‘ 8 - B | ‘ J||I|| I||| || | |'|[ i “I ‘ - | ‘-'I” I||| ||LJ ||| || || |LJII| ||| |I I|| |||I
| ﬂ i ‘ 1] S| |"||| || o | |I *L l Al
i WWM ""1 Bl | i W’ i AS
| R di |
;“.,J /N W | ﬁwl'.ﬁ- I Idr |‘*||I |'| i|"'|1||| | | |/ |
d | ||II\”..II fl 1 I ! I — I | | /
o W T T |[ gl ol . ol .
= ENDURO ~ PONG 24 SEAQUEST ~ SPACE INVADERS
o T o y o T o T
o o o
i
| ﬁ | &l rrw T A |"'.
iy M L |'| L If |||I|%V{,WJ || | I J | | A '“
. 1 |/ | | N | - b Al |
% L | I?y‘ | \A P "h I|r!l4|ll|I ”l' ,ﬂ'”' P“ L\l b = |'|!I'III | | ’ JI l||I|1 'l'l III }
o III:_& lrw\ v |rl|| vl]! n'llﬁ' |“I|-'||‘,'| T\f\rﬁ ||M|:|! I'..}iff\q:rflhili\wﬁ'{ &ql'uf o | N 8 I |"II I\J r‘|lll| % N q W[ '. A WVW W/ ||
II| I ' {f |1 \ I ." | |
'i If I A -
I M
o L : é : o ! ;
0 50 100 0 50 100 100 0 50 100

Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”



How does the model know what to do?

 So far: what to do is apparent from the input (e.g., which game is
being played)

 What if the policy can do multiple things in the same environment?




Contextual policies

standard policy: mg(als) Y

contextual policy: mg(als,w)

e.g., do dishes or laundry

formally, simply defines augmented state space: s = [ i ] S=8x0

w: stack location w: walking direction w: where to hit puck

images: Peng, van de Panne, Peters



Contextual policies

standard policy: mg(als)

contextual policy: m(als. w)

will discuss more in the context
of meta-learning!

w: where to hit puck

w: stack location w: walking direction

images: Peng, van de Panne, Peters



Architectures for multi-task transfer

* So far: single neural network for all tasks (in the end)

* What if tasks have some shared parts and some distinct parts?

* Example: two cars, one with camera and one with LIDAR, driving in two
different cities

* Example: ten different robots trying to do ten different tasks

* Can we design architectures with reusable components?



Modular networks in deep learning

Where is
the dog? e
I
Parser Layout
|
I

where

CNN

Andreas et al. “Neural Module Networks.” 2015

attend[tie]

A J

) 4

classify[color] (—{ yellow )

(a) NMN for answering the question What color is his
tie? The attend[tie] module first predicts a heatmap
corresponding to the location of the tie. Next, the
classify[color] module uses this heatmap to pro-
duce a weighted average of image features, which are
finally used to predict an output label.




Modular networks in RL

2 i

bl

Robots

k&

.
(B

action

/

\

Robot
Specific

Devin*, Gupta™, et al. “Learning Modular Neural Network Policies...”

\_

e

Task
Specific

4/

state



Modular networks in RL

Robots
3link 3link different config 4link
Tasks
Reach
Push Unseen World

Peg insert




Multi-task learning summary

* More tasks = more diversity = better transfer
e Often easier to obtain multiple different but relevant prior tasks
* Model-based RL: transfer the physics, not the behavior

* Distillation: combine multiple policies into one, for concurrent multi-
task learning (accelerate all tasks through sharing)

* Contextual policies: policies that are told what to do
* Architectures for multi-task learning: modular networks



Suggested readings

Fu etal. (2016). One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and
Neural Network Priors.

Rusu et al. (2016). Policy Distillation.
Parisotto et al. (2016). Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning.

Devin*, Gupta*, et al. (2017). Learning Modular Neural Network Policies for Multi-Task and
Multi-Robot Transfer.



How can we frame transfer learning problems?

more on this next time!

3. Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning



