Variational Inference and Generative Models

CS 285: Deep Reinforcement Learning, Decision Making, and Control Sergey Levine

Class Notes

1. Homework 3 due next week!

Where we are in the course

Lecture 1: Introduction and Course Overview Lecture 2: Supervised Learning and Imitation Lecture 3: TensorFlow and Neural Nets Review Session (notebook) Lecture 4: Reinforcement Learning Introduction Lecture 5: Policy Gradients Introduction Lecture 6: Actor-Critic Introduction Lecture 7: Value Functions and Q-Learning Lecture 8: Advanced Q-Learning Algorithms Lecture 9: Advanced Policy Gradients Lecture 10: Optimal Control and Planning Lecture 11: Model-Based Reinforcement Learning Lecture 12: Advanced Model Learning and Images Lecture 13: Learning Policies by Imitating Other Policies Lecture 14: Probability and Variational Inference Primer

Lecture 15: Connection between Inference and Lecture 16: Inverse Reinforcement Learning Lecture 17: Exploration: Part 1 Lecture 18: Exploration: Part 2 Lecture 19: Transfer Learning and Multi-Task Learning Lecture 20: Meta-Learning Lecture 21: Parallelism and RL System Design Lecture 22: Advanced Imitation Learning and Open Lecture 23: Guest Lecture: Craig Boutilier Lecture 24: Guest Lecture: Kate Rakelly & Gregory Kahn Lecture 25: Guest Lecture: Quoc Le Lecture 26: Guest Lecture: Karol Hausman Lecture 27: Final Project Presentations: Part 1 Lecture 28: Final Project Presentations: Part 2

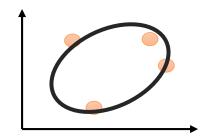
RL algorithms

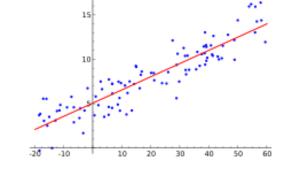
advanced topics

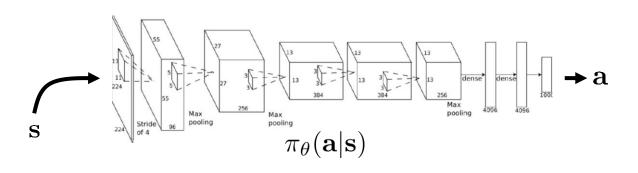
Today's Lecture

- 1. Probabilistic latent variable models
- 2. Variational inference
- 3. Amortized variational inference
- 4. Generative models: variational autoencoders
- Goals
 - Understand latent variable models in deep learning
 - Understand how to use (amortized) variational inference

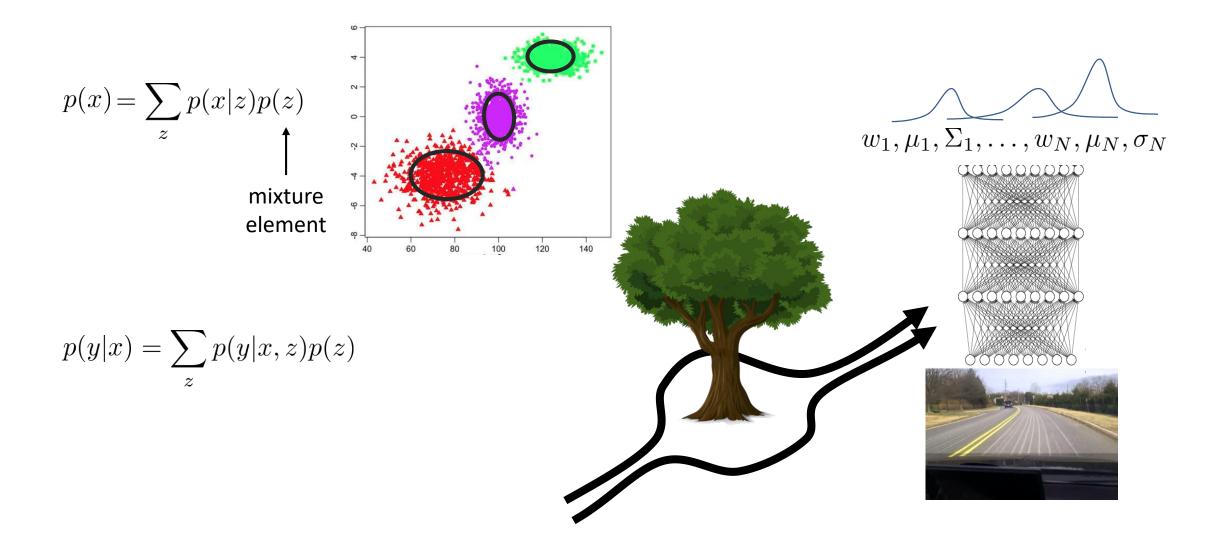
Probabilistic models



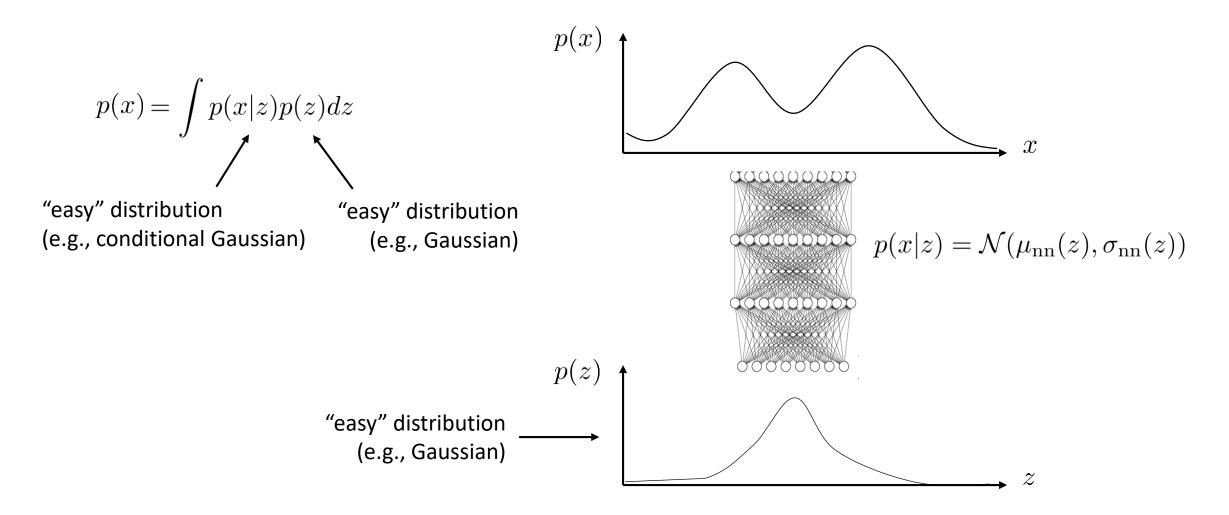




Latent variable models



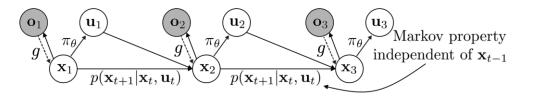
Latent variable models in general

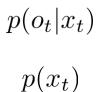


Latent variable models in RL

conditional latent variable models for multi-modal policies JAGOOODDD p(y|x,z)p(z)10000000 ******** 00000 XXXXXXXXX $z \sim \mathcal{N}(0, \mathbf{I})$

latent variable models for model-based RL



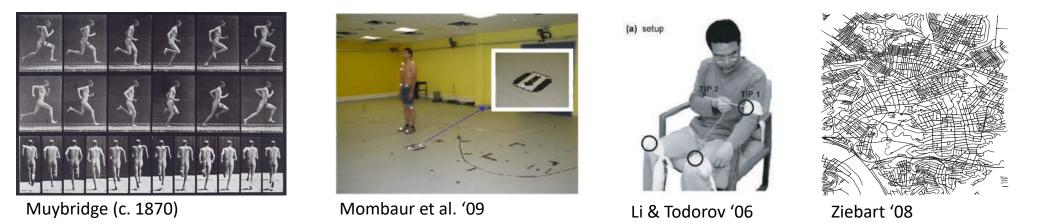


actually models $p(x_{t+1}|x_t)$ and $p(x_1)$

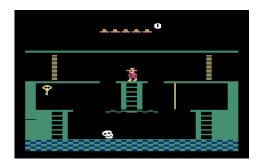
latent space has *structure*

Other places we'll see latent variable models

Using RL/control + variational inference to model human behavior



Using generative models and variational inference for exploration



How do we train latent variable models?

the model: $p_{\theta}(x)$

the data:
$$\mathcal{D} = \{x_1, x_2, x_3, \dots, x_N\}$$

$$\theta \leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i} \log p_{\theta}(x_i)$$

$$p(x) = \int p(x|z)p(z)dz$$

$$\theta \leftarrow \arg \max_{\theta} \frac{1}{N} \sum_{i} \log \left(\int p_{\theta}(x_i|z) p(z) dz \right)$$

completely intractable

Estimating the log-likelihood

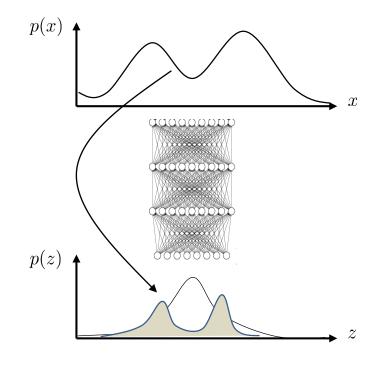
alternative: *expected* log-likelihood:

 $\theta \leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i} E_{z \sim p(z|x_i)} [\log p_{\theta}(x_i, z)]$

but... how do we calculate $p(z|x_i)$?

intuition: "guess" most likely z given x_i , and pretend it's the right one

...but there are many possible values of z so use the distribution $p(z|x_i)$



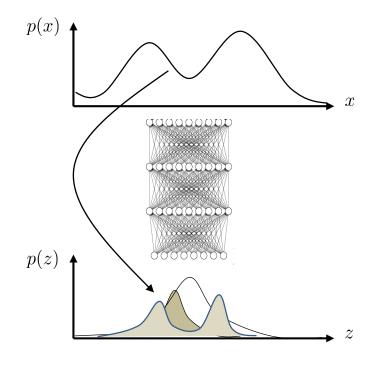
The variational approximation

but... how do we calculate $p(z|x_i)$?

what if we approximate with $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$

can bound $\log p(x_i)!$

$$\log p(x_i) = \log \int_z p(x_i|z)p(z)$$
$$= \log \int_z p(x_i|z)p(z)\frac{q_i(z)}{q_i(z)}$$
$$= \log E_{z \sim q_i(z)} \left[\frac{p(x_i|z)p(z)}{q_i(z)}\right]$$



The variational approximation

but... how do we calculate $p(z|x_i)$?

can bound $\log p(x_i)!$

$$\log p(x_i) = \log \int_z p(x_i|z)p(z)$$

$$= \log \int_z p(x_i|z)p(z)\frac{q_i(z)}{q_i(z)}$$

$$= \log E_{z \sim q_i(z)} \left[\frac{p(x_i|z)p(z)}{q_i(z)} \right]$$

$$\geq E_{z \sim q_i(z)} \left[\log \frac{p(x_i|z)p(z)}{q_i(z)} \right] = E_{z \sim q_i(z)} [\log p(x_i|z) + \log p(z)] + \mathcal{H}_x(q_{ij_i(z)}[\log q_i(z)]$$

Jensen's inequality

 $\log E[y] \ge E[\log y]$

A brief aside...

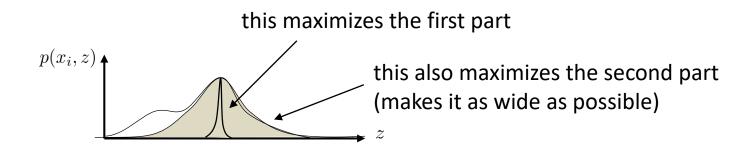
Entropy:

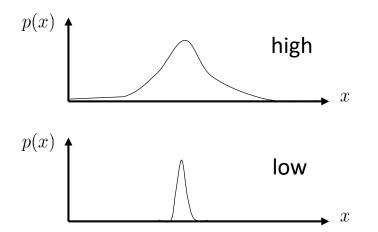
$$\mathcal{H}(p) = -E_{x \sim p(x)}[\log p(x)] = -\int_{x} p(x)\log p(x)dx$$

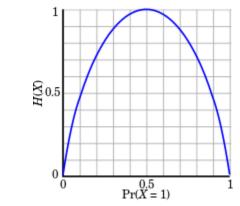
Intuition 1: how random is the random variable?

Intuition 2: how large is the log probability in expectation under itself

what do we expect this to do? $E_{z \sim q_i(z)}[\log p(x_i|z) + \log p(z)] + \mathcal{H}(q_i)$







A brief aside...

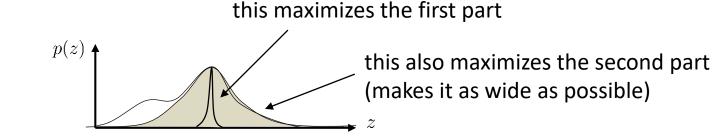
KL-Divergence:

$$D_{\mathrm{KL}}(q||p) = E_{x \sim q(x)} \left[\log \frac{q(x)}{p(x)} \right] = E_{x \sim q(x)} [\log q(x)] - E_{x \sim q(x)} [\log p(x)] = -E_{x \sim q(x)} [\log p(x)] - \mathcal{H}(q)$$

Intuition 1: how *different* are two distributions?

Intuition 2: how small is the expected log probability of one distribution under another, minus entropy?

why entropy?



The variational approximation

 $\mathcal{L}_i(p, q_i)$ $\log p(x_i) \ge E_{z \sim q_i(z)}[\log p(x_i|z) + \log p(z)] + \mathcal{H}(q_i)$

what makes a good $q_i(z)$? approximate in what sense? why? intuition: $q_i(z)$ should approximate $p(z|x_i)$ compare in terms of KL-divergence: $D_{\text{KL}}(q_i(z)||p(z|x))$

 $D_{\mathrm{KL}}(q_i(x_i) \| p(z|x_i)) = E_{z \sim q_i(z)} \left[\log \frac{q_i(z)}{p(z|x_i)} \right] = E_{z \sim q_i(z)} \left[\log \frac{q_i(z)p(x_i)}{p(x_i,z)} \right]$

 $= -E_{z \sim q_i(z)} [\log p(x_i|z) + \log p(z)] + E_{z \sim q_i(z)} [\log q_i(z)] + E_{z \sim q_i(z)} [\log p(x_i)]$ $= -E_{z \sim q_i(z)} [\log p(x_i|z) + \log p(z)] - \mathcal{H}(q_i) + \log p(x_i)$ $= -\mathcal{L}_i(p, q_i) + \log p(x_i)$ $\log p(x_i) = D_{\mathrm{KL}}(q_i(x_i) || p(z|x_i)) + \mathcal{L}_i(p, q_i)$ $\log p(x_i) \ge \mathcal{L}_i(p, q_i)$

The variational approximation

 $\mathcal{L}_i(p, q_i)$ $\log p(x_i) \ge \boxed{E_{z \sim q_i(z)}[\log p(x_i|z) + \log p(z)] + \mathcal{H}(q_i)}$

 $\log p(x_i) = D_{\mathrm{KL}}(q_i(x_i) || p(z|x_i)) + \mathcal{L}_i(p, q_i)$ $\log p(x_i) \ge \mathcal{L}_i(p, q_i)$

$$D_{\mathrm{KL}}(q_i(x_i)||p(z|x_i)) = E_{z \sim q_i(z)} \left[\log \frac{q_i(z)}{p(z|x_i)} \right] = E_{z \sim q_i(z)} \left[\log \frac{q_i(z)p(x_i)}{p(x_i,z)} \right]$$
$$= -E_{z \sim q_i(z)} [\log p(x_i|z) + \log p(z)] - \mathcal{H}(q_i) + \log p(x_i)$$
$$-\mathcal{L}_i(p,q_i) \qquad \text{independent of } q_i!$$

 \Rightarrow maximizing $\mathcal{L}_i(p, q_i)$ w.r.t. q_i minimizes KL-divergence!

How do we use this?

$$\mathcal{L}_i(p, q_i)$$

$$\log p(x_i) \ge E_{z \sim q_i(z)}[\log p_\theta(x_i|z) + \log p(z)] + \mathcal{H}(q_i)$$

$$\theta \leftarrow \arg \max_{\theta} \frac{1}{N} \sum_{i} \log p_{\theta}(x_i) \qquad \qquad \theta \leftarrow \arg \max_{\theta} \frac{1}{N} \sum_{i} \mathcal{L}_i(p, q)$$

for each x_i (or mini-batch):

calculate $\nabla_{\theta} \mathcal{L}_{i}(p, q_{i})$: sample $z \sim q_{i}(x_{i})$ $\nabla_{\theta} \mathcal{L}_{i}(p, q_{i}) \approx \nabla_{\theta} \log p_{\theta}(x_{i}|z)$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_{i}(p, q_{i})$ how? update q_{i} to maximize $\mathcal{L}_{i}(p, q_{i})$ let's say $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$ use gradient $\nabla_{\mu_i} \mathcal{L}_i(p, q_i)$ and $\nabla_{\sigma_i} \mathcal{L}_i(p, q_i)$ gradient ascent on μ_i, σ_i

 $q_i)$

What's the problem?

for each x_i (or mini-batch):

calculate $\nabla_{\theta} \mathcal{L}_i(p, q_i)$: sample $z \sim q_i(x_i)$ $\nabla_{\theta} \mathcal{L}_i(p, q_i) \approx \nabla_{\theta} \log p_{\theta}(x_i | z)$

 $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_i(p, q_i)$

How many parameters are there?

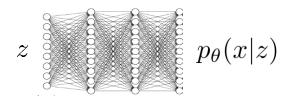
update q_i to maximize $\mathcal{L}_i(p, q_i)$

let's say $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$ use gradient $\nabla_{\mu_i} \mathcal{L}_i(p, q_i)$ and $\nabla_{\sigma_i} \mathcal{L}_i(p, q_i)$ gradient ascent on μ_i, σ_i

what if we learn a network $q_i(z) = q(z|x_i) \approx p(z|x_i)$?

 $|\theta| + (|\mu_i| + |\sigma_i|) \times N$

intuition: $q_i(z)$ should approximate $p(z|x_i)$



$$q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x))$$

Break

What's the problem?

for each x_i (or mini-batch):

calculate $\nabla_{\theta} \mathcal{L}_i(p, q_i)$: sample $z \sim q_i(x_i)$ $\nabla_{\theta} \mathcal{L}_i(p, q_i) \approx \nabla_{\theta} \log p_{\theta}(x_i | z)$

 $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_i(p, q_i)$

How many parameters are there?

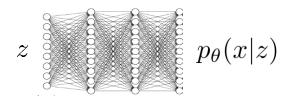
update q_i to maximize $\mathcal{L}_i(p, q_i)$

let's say $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$ use gradient $\nabla_{\mu_i} \mathcal{L}_i(p, q_i)$ and $\nabla_{\sigma_i} \mathcal{L}_i(p, q_i)$ gradient ascent on μ_i, σ_i

what if we learn a network $q_i(z) = q(z|x_i) \approx p(z|x_i)$?

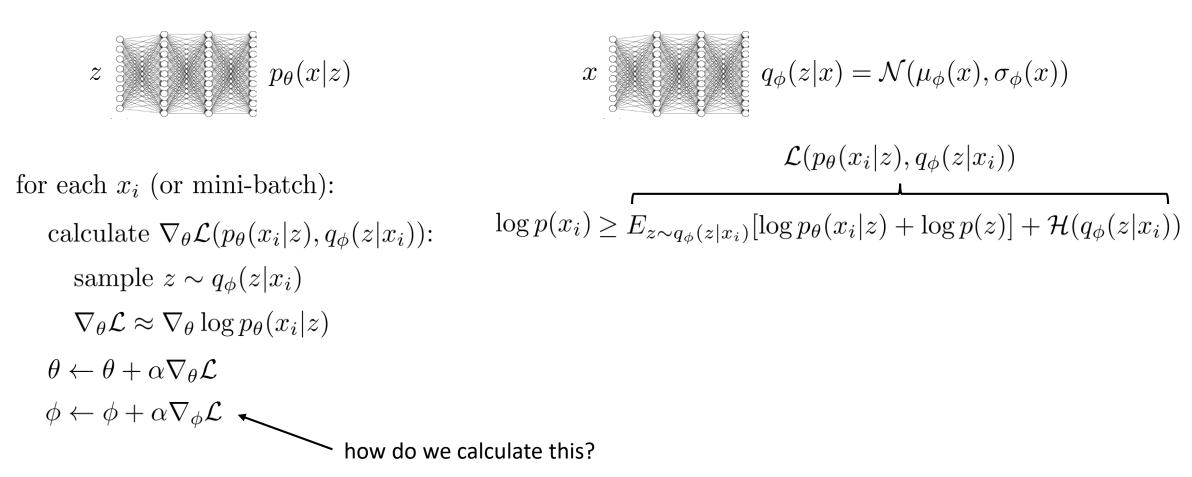
 $|\theta| + (|\mu_i| + |\sigma_i|) \times N$

intuition: $q_i(z)$ should approximate $p(z|x_i)$



$$q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x))$$

Amortized variational inference



Amortized variational inference

for each x_i (or mini-batch):

calculate $\nabla_{\theta} \mathcal{L}(p_{\theta}(x_i|z), q_{\phi}(z|x_i))$: sample $z \sim q_{\phi}(z|x_i)$ $Q_{\theta} \mathcal{L} \approx \nabla_{\theta} \log p_{\theta}(x_i|z)$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}$ $\mathcal{L}_i = E_{z \sim \theta}$ $\phi \leftarrow \phi + \alpha \nabla_{\phi} \mathcal{L}$

can just use policy gradient!

What's wrong with this gradient?

$$\nabla J(\phi) \approx \frac{1}{M} \sum_{j} \nabla_{\phi} \log q_{\phi}(z_j | x_i) r(x_i, z_j)$$

The reparameterization trick

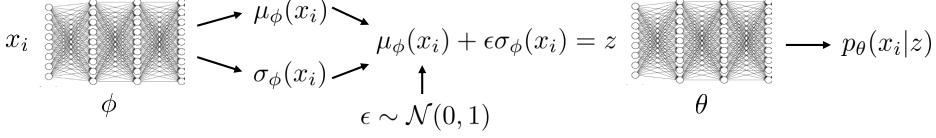
Is there a better way?

$$\begin{split} J(\phi) &= E_{z \sim q_{\phi}(z|x_{i})}[r(x_{i},z)] & q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x),\sigma_{\phi}(x)) \\ &= E_{\epsilon \sim \mathcal{N}(0,1)}[r(x_{i},\mu_{\phi}(x_{i}) + \epsilon\sigma_{\phi}(x_{i}))] & z = \mu_{\phi}(x) + \epsilon\sigma_{\phi}(x) \\ &\text{estimating } \nabla_{\phi}J(\phi): & & & & & & \\ &\text{sample } \epsilon_{1}, \dots, \epsilon_{M} \text{ from } \mathcal{N}(0,1) & (\text{a single sample works well!}) & \epsilon \sim \mathcal{N}(0,1) \\ &\nabla_{\phi}J(\phi) \approx \frac{1}{M} \sum_{j} \nabla_{\phi}r(x_{i},\mu_{\phi}(x_{i}) + \epsilon_{j}\sigma_{\phi}(x_{i})) & \text{independent of } \phi! \end{split}$$

most autodiff software (e.g., TensorFlow) will compute this for you!

Another way to look at it...

$$\begin{aligned} \mathcal{L}_{i} &= E_{z \sim q_{\phi}(z|x_{i})}[\log p_{\theta}(x_{i}|z) + \log p(z)] + \mathcal{H}(q_{\phi}(z|x_{i})) \\ &= E_{z \sim q_{\phi}(z|x_{i})}[\log p_{\theta}(x_{i}|z)] + \underbrace{E_{z \sim q_{\phi}(z|x_{i})}[\log p(z)] + \mathcal{H}(q_{\phi}(z|x_{i}))}_{-D_{\mathrm{KL}}(q_{\phi}(z|x_{i})||p(z))} & \qquad \text{this often has a convenient analytical form (e.g., KL-divergence for Gaussians)} \\ &= E_{z \sim q_{\phi}(z|x_{i})}[\log p_{\theta}(x_{i}|z)] - D_{\mathrm{KL}}(q_{\phi}(z|x_{i})||p(z)) \\ &= E_{\epsilon \sim \mathcal{N}(0,1)}[\log p_{\theta}(x_{i}|\mu_{\phi}(x_{i}) + \epsilon \sigma_{\phi}(x_{i}))] - D_{\mathrm{KL}}(q_{\phi}(z|x_{i})||p(z)) \\ &\approx \log p_{\theta}(x_{i}|\mu_{\phi}(x_{i}) + \epsilon \sigma_{\phi}(x_{i})) - D_{\mathrm{KL}}(q_{\phi}(z|x_{i})||p(z)) \end{aligned}$$



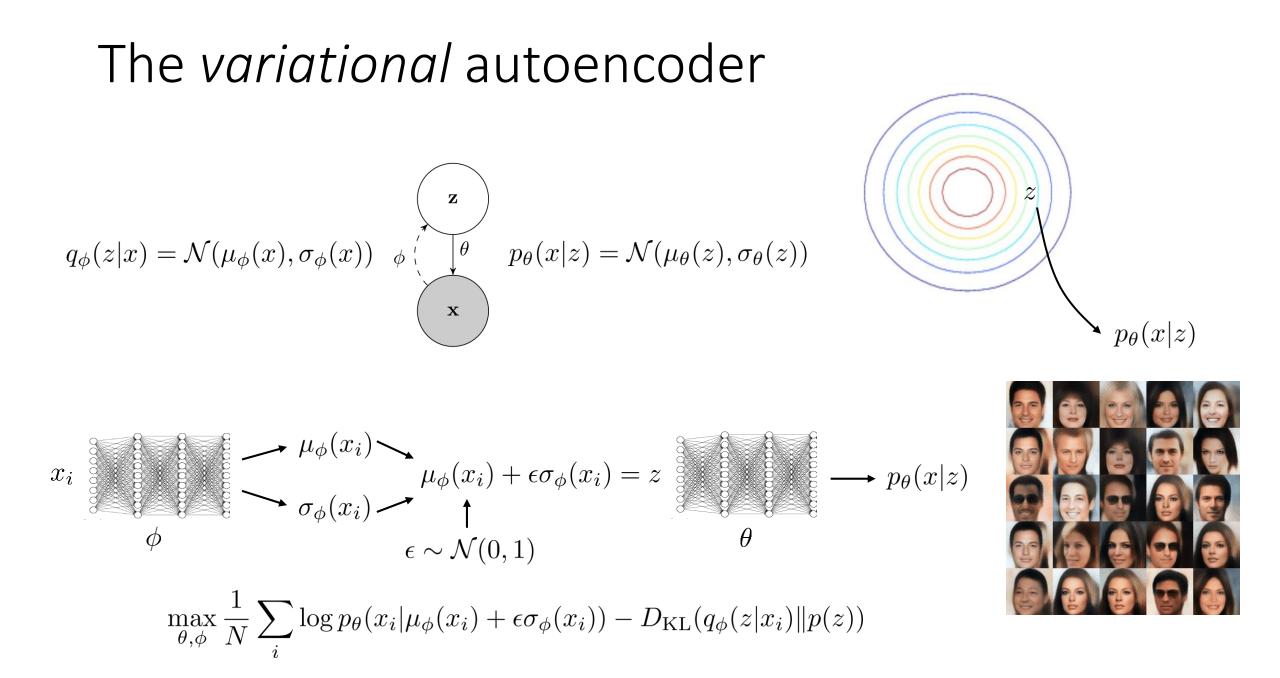
Reparameterization trick vs. policy gradient

Policy gradient

- Can handle both discrete and continuous latent variables
- High variance, requires multiple samples & small learning rates
- Reparameterization trick
 - Only continuous latent variables
 - Very simple to implement
 - Low variance

$$J(\phi) \approx \frac{1}{M} \sum_{j} \nabla_{\phi} \log q_{\phi}(z_j | x_i) r(x_i, z_j)$$

$$\nabla_{\phi} J(\phi) \approx \frac{1}{M} \sum_{j} \nabla_{\phi} r(x_i, \mu_{\phi}(x_i) + \epsilon_j \sigma_{\phi}(x_i))$$



Using the variational autoencoder

$$q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x)) \quad \phi \underbrace{ \begin{array}{c} \\ \downarrow \\ \downarrow \\ \mathbf{x} \end{array}}^{\mathbf{z}} p_{\theta}(x|z) = \mathcal{N}(\mu_{\theta}(z), \sigma_{\theta}(z))$$

$$p(x) = \int p(x|z)p(z)dz$$

why does this work?

sampling: $z \sim p(z)$

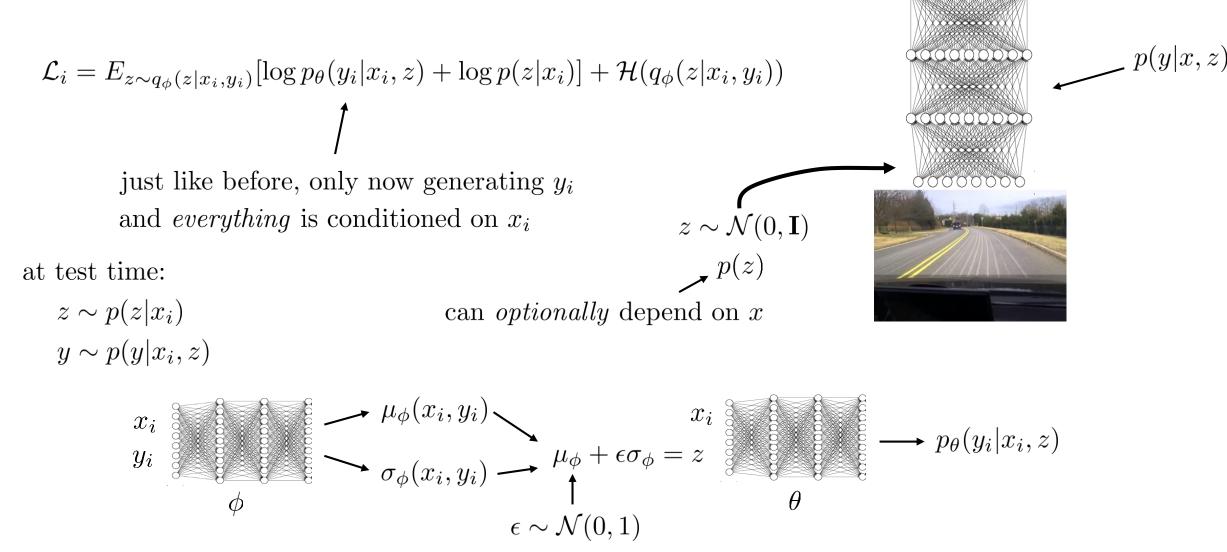
$$\mathcal{L}_i = E_{z \sim q_\phi(z|x_i)} [\log p_\theta(x_i|z)] - D_{\mathrm{KL}}(q_\phi(z|x_i) || p(z))$$

 $x \sim p(x|z)$

 $p_{\theta}(x|z)$

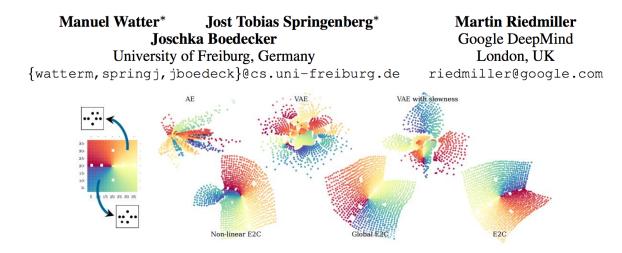
 \boldsymbol{z}

Conditional models



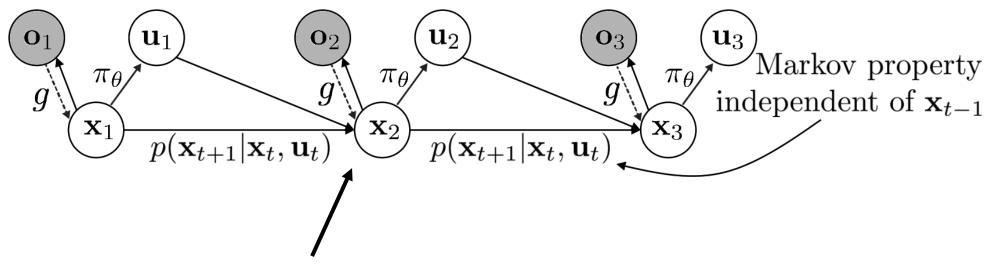
Examples

Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images



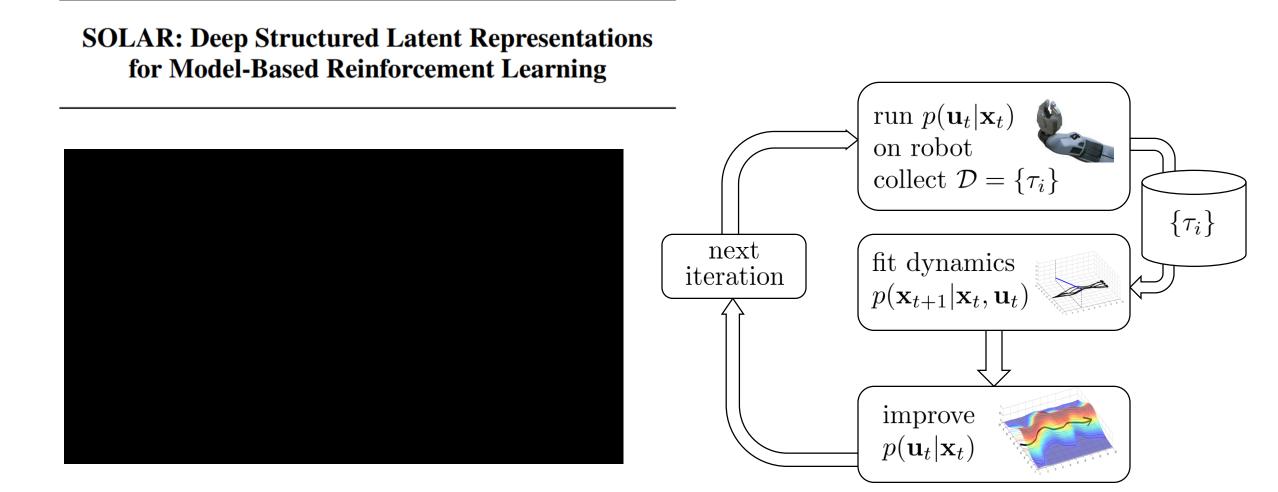
Swing-up with the E2C algorithm

- 1. collect data
- 2. learn embedding of image & dynamics model (**jointly**)
- 3. run iLQG to learn to reach image of goal

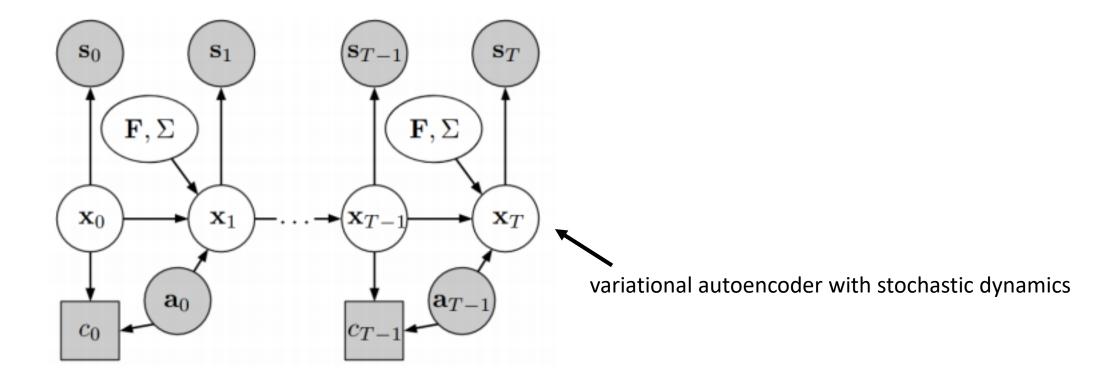


a type of variational autoencoder with temporally decomposed latent state!

Local models with images

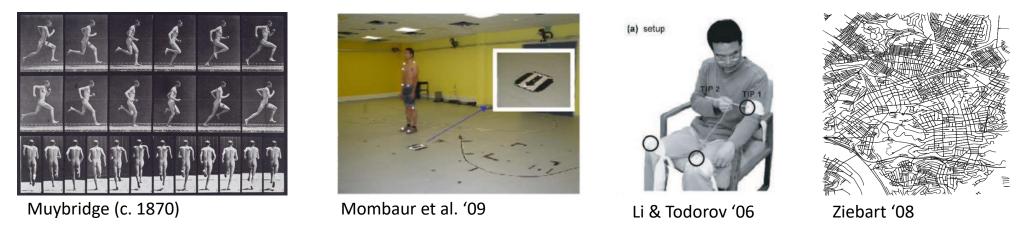


Local models with images



We'll see more of this for...

Using RL/control + variational inference to model human behavior



Using generative models and variational inference for exploration

