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Course logistics



Class Information & Resources

Sergey Levine Frederik Ebert Anusha Nagabandi Avi Singh
Instructor Head GSI GSI GSI

Course website: http://rail.eecs.berkeley.edu/deepricourse
Piazza: UC Berkeley, CS285
Gradescope: UC Berkeley, CS285

Subreddit (for non-enrolled students): www.reddit.com/r/berkeleydeepricourse/

Office hours: check course website (mine are after class on Wed)

Kelvin Xu
GSI


http://rail.eecs.berkeley.edu/deeprlcourse
http://www.reddit.com/r/berkeleydeeprlcourse/

Prerequisites & Enrollment

e All enrolled students must have taken CS189, CS289, CS281A, or an
equivalent course at your home institution

* Please contact Sergey Levine if you haven’t

* If you are not eligible to enroll directly into the class, fill out the
enrollment application form:
http://rail.eecs.berkeley.edu/deeprlcourse/

* We will enroll subject to availability based on responses to this form
* We will not use the official CalCentral wait list!
* Fill out an application before Friday!

* Lectures are recorded and live streamed (link on course website)


http://rail.eecs.berkeley.edu/deeprlcourse/

What you should know

* Assignments will require training neural networks with standard
automatic differentiation packages (TensorFlow by default)

 Review Section

e Kelvin Xu will review TensorFlow on Mon in week 3 (Sep 9)

* You should be able to understand the overview here:
https://www.tensorflow.org/guide/low level intro

* If not, make sure to attend Kelvin’s lecture and ask questions!



https://www.tensorflow.org/guide/low_level_intro

What we’ll cover

* Material will be similar to previous year:
http://rail.eecs.berkeley.edu/deeprlcourse-fal8/

From supervised learning to decision making

Model-free algorithms: Q-learning, policy gradients, actor-critic
Advanced model learning and prediction

Transfer and multi-task learning, meta-learning

Exploration

o Uk wh =

Open problems, research talks, invited lectures


http://rail.eecs.berkeley.edu/deeprlcourse-fa18/

Lecture 1: Introduction and Course Qverview Lecture 15: Connection between Inference and

Lecture 2: Supervised Learning and Imitation —  ZILnn
Lecture 16: Inverse Reinforcement Learning

Lecture 3: TensorFlow and Neural Nets Review

Session (notebook) Lecture 17. Exploration: Part 1

Lecture 4. Reinforcement Learning Introduction Lecture 18: Exploration: Part 2

Lecture 5: Policy Gradients Introduction Lecture 19: Transfer Learning and Multi-Task Learning
Lecture 6: Actor-Critic Introduction Lecture 20: Meta-Learning

Lecture 7: Value Functions and Q-Learning Lecture 21. Parallelism and RL System Design
Lecture 8: Advanced Q-Learning Algorithms Lecture 22: Advanced Imitation Learning and Open

Lecture 9: Advanced Policy Gradients ~ LoZEIEE

Lecture 10: Optimal Control and Planning

Lecture 11: Model-Based Reinforcement Learning

Lecture 12: Advanced Model Learning and Images

Lecture 13: Learning Policies by Imitating Other
Policies

Lecture 14: Probability and Variational Inference
Primer




Assignments

Homework 1: Imitation learning (control via supervised learning)
Homework 2: Policy gradients (“REINFORCE”)

Homework 3: Q learning and actor-critic algorithms

Homework 4: Model-based reinforcement learning

Homework 5: Advanced model-free RL algorithms

Final project: Research-level project of your choice (form a group of
up to 2-3 students, you're welcome to start early!)

ok wbheE

Grading: 50% homework (10% each), 50% project
5 late days total



Your “Homework” Today

1. Sign up for Piazza (UC Berkeley CS285)

2. Start forming your final project groups, unless you want to work
alone, which is fine

3. Review this: https://www.tensorflow.org/guide/low level intro



https://www.tensorflow.org/guide/low_level_intro

What is reinforcement learning, and why
should we care?



How do we build intelligent machines?

HAL 9000




Intelligent machines must be able to adapt




Deep learning helps us handle unstructured
environments
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Reinforcement learning provides a formalism for
behavior

decisions (actions)
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What is deep RL, and why should we care?
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What does end-to-end learning mean for
sequential decision making?



perception
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Example: robotics
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decisions (actions)
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Deep models are what allow reinforcement
learning algorithms to solve complex problems
end to end!

TGOGGVVVUT AJI

Actions: what to purchase
Observations: inventory levels
Rewards: profit

The reinforcement learning problem is the Al problem!



Complex physical tasks...

oo ]

Rajeswaran, et al. 2018



Unexpected solutions...

Mnih, et al. 2015



In the real world...

Kalashnikov et al. ‘18



In the real world...

Kalashnikov et al. ‘18




Not just games and robots!

Cathy Wu



Why should we study this now?
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1. Advances in deep learning

2. Advances in reinforcement learning

3. Advances in computational capability



Why should we study this now?
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L.-J. Lin, “Reinforcement learning for robots using neural networks.” 1993



Why should we study this now?

Atari games: Real-world robots:

Q-learning: Guided policy search:

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. S. Levine*, C. Finn*, T. Darrell, P. Abbeel. “End-to-end
Antonoglou, et al. “Playing Atari with Deep training of deep visuomotor policies”. (2015).
Reinforcement Learning”. (2013). Q-learning:

Policy gradients: D. Kalashnikov et al. “QT-Opt: Scalable Deep

J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Reinforcement Learning for Vision-Based Robotic
Abbeel. “Trust Region Policy Optimization”. (2015). Manipulation”. (2018).

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
et al. “Asynchronous methods for deep reinforcement
learning”. (2016).

00:01:00

Beating Go champions:
Supervised learning + policy
gradients + value functions +

Monte Carlo tree search:

D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, et al. “Mastering the game of Go
with deep neural networks and tree
search”. Nature (2016).



What other problems do we need to solve to
enable real-world sequential decision making?



Beyond learning from reward

* Basic reinforcement learning deals with maximizing rewards

* This is not the only problem that matters for sequential decision
making!

* We will cover more advanced topics

* Learning reward functions from example (inverse reinforcement learning)
* Transferring knowledge between domains (transfer learning, meta-learning)
* Learning to predict and using prediction to act



Where do rewards come from?

reward

loo= 41 Gershral saria

W Basal ganglia
(movement, reward)

M Thalamus
(sensory gateway)

M Hippocampus

Forebrain (memory)

Hypothalamus
(regulates body
function)

Amygdala
Mnih et al.’15 (emotion)

reinforcement learning agent

[-] LazyOptimist 32 points 5 days ago
As human agents, we are accustomed to operating with
rewards that are so sparse that we only experience them
once or twice in a lifetime, if at all.




Are there other forms of supervision?

* Learning from demonstrations
* Directly copying observed behavior
* Inferring rewards from observed behavior (inverse reinforcement learning)

* Learning from observing the world
* Learning to predict
* Unsupervised learning

* Learning from other tasks
* Transfer learning
* Meta-learning: learning to learn



Imitation learning

Bojarski et al. 2016



More than imitation: inferring intentions

Warneken & Tomasello



Inverse RL examples

Demo 1 (of20).

Finn et al. 2016



Prediction

“the idea that we predict the consequences of our motor
commands has emerged as an important theoretical
concept in all aspects of sensorimotor control”

Prediction Precedes Control in Motor Learning

J. Randall Flanagan,"* Philipp Vetter, Procedures for detaile). Figure 1 shows, for a sEngle
Roland 5. Johamsson,” and Danisl M. Wolpert! subiject, the hand path {fop trace) and the grg (middie)

Predicting the Consequences of Our Own Actions: The Role of
Sensorimotor Context Estimation

Sarah J. Blakemore, Susan J. Goodbody, and Danisl M. Waolpert
Sabal Dapartment of Neurophysiology, instiiule of Newralogy, Linhars®y Collage London, Landan WCTN 3806,

Predictive coding in the visual cortex:
a functional interpretation of some
extra-classical receptive-field effects

Rajesh P N, Rao' and Dana H. Ballard®



Prediction for real-world control
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Ebert et al. 2017



Jsing tools with
oredictive models

Xie et al. 2019



Playing games with predictive models

But sometimes there are issues...

predicted real

Kaiser et al. 2019



How do we build intelligent machines?



How do we build intelligent machines?

* Imagine you have to build an intelligent machine, where do you start?

Anatomy and Functional Areas of the Brain
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Learning as the basis of intelligence

* Some things we can all do (e.g. walking)
e Some things we can only learn (e.g. driving a car)
* We can learn a huge variety of things, including very difficult things

* Therefore our learning mechanism(s) are likely powerful enough to do
everything we associate with intelligence

e But it may still be very convenient to “hard-code” a few really important bits



A single algorithm?

* An algorithm for each “module”?
* Or a single flexible algorithm?

[BrainPort; Martinez et al; Roe et al.]
adapted from A. Ng



What must that single algorithm do?

* Interpret rich sensory inputs \M\ 9 (
)

* Choose complex actions




Why deep reinforcement learning?

* Deep = can process complex sensory input
= ...and also compute really complex functions

* Reinforcement learning = can choose complex actions



Some evidence in favor of deep learning

Unsupervised learning models of primary cortical
receptive fields and receptive field plasticity

Andrew Saxe, Maneesh Bhand, Ritvik Mudur, Bipin Suresh, Andrew Y. Ng
Department of Computer Science
Stanford University
{asaxe, mbhand, rmudur, bipins, ang}@cs.stanford.edu
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Some evidence for reinforcement learning

* Percepts that anticipate reward
become associated with similar
firing patterns as the reward
itself

e Basal ganglia appears to be
related to reward system

* Model-free RL-like adaptation is
often a good fit for experimental
data of animal adaptation

* But not always...

Reinforcement learning in the brain

Yael Niv

Psychology Department & Princeton Neuroscience Institute, Princeton University



What can deep learning & RL do well now?

* Acquire high degree of proficiency in
domains governed by simple, known
rules

e Learn simple skills with raw sensory
inputs, given enough experience

* Learn from imitating enough human-
provided expert behavior




What has proven challenging so far?

* Humans can learn incredibly quickly
* Deep RL methods are usually slow

* Humans can reuse past knowledge
* Transfer learning in deep RL is an open problem

* Not clear what the reward function should be
* Not clear what the role of prediction should be



Instead of trying to produce a
program to simulate the adult
mind, why not rather try to
produce one which simulates the
child's? If this were then subjected
to an appropriate course of
education one would obtain the
adult brain.

- Alan Turing

general learning
algorithm

environment




