
CS294-112 Deep Reinforcement Learning HW5:

Exploration

Due November 25th, 11:59 pm

1 Exploration

Exploration—how agents discover actions that lead to high rewards—is a key
component of reinforcement learning. In this homework, you will investigate
count-based exploration methods that modify the reward function to encourage
exploring novel parts of the state space:

R̃(st) = R(st) + α · B(N(st)). (1)

N(st) represents the number of times the agent has visited the state, and the
function B is a monotonically decreasing function of N(st), known as the ex-
ploration bonus. The intuition is that we would like to encourage the agent to
visit novel states. If the state s is novel or is rarely visited, then N(s) will be
low, and B(N(st)) will be high. Conversely, if the state s is visited often, then
N(s) will be high, and B(N(st)) will be low. Therefore, the exploration bonus
is an additional term to the reward function that encourages the agent to spend
more time visiting novel states. The hyperparameter α indicates how much to
reward novel states.

In the discrete case, we can use a histogram to keep track of the number of times
the agent visited state s, so the histogram directly gives us N(st). However,
when the state space is continuous, the probability of any two states being
equal is 0, so we cannot simply tally the number of times we’ve visited the
state. Instead, we must fit a density model fφ(st) over the state space and
derive the count N(st) from fφ. Intuitively, if similar states to st have been
visited many times, then fφ(st) will be high.

Given Eqn. 1, you can then run your standard reinforcement learning algorithms
with only a single additional step: computing B(N(st)) as your agent acts in
the environment. To do this we need to keep a replay buffer R that stores
the states the agent has visited so far (note that here we only store states,
not entire transitions). In the discrete case, the histogram can take place of
the replay buffer; in the continuous case, the replay buffer serves as the data

1

distribution with which we will fit the density model fφ(st). The algorithm is
summarized below:

Algorithm 1 Count-based exploration with reward bonuses

Initialize replay buffer R
while not done do

Sample trajectories {τj} from policy πi
Store the states from {τj} into the R
Fit a histogram or density model to the states in R
for s ∈ {τj} do

R′(s, a) = R(s, a) + αB(N(st))
end
Improve πi with respect to R′(s, a)

end

There are many possible ways to specify B(N(st)). In this homework, for dis-
crete states we will use

B(N(st)) = N(st)
− 1

2 .

For continuous states we will use a heuristic bonus

B(N(st)) = − log fφ(st)

which skips computing N(st) but is still a function that decreases the more
states similar to st have been visited.

1.1 Discrete States

The purpose of this section is to focus on modifying the rewards with the explo-
ration bonus without having to worry about fitting a density model. Therefore
we will modify the rewards like so:

R′(s, a) = R(s, a) + αN(st)
− 1

2 (2)

1.2 Continuous States

Now that we have implemented the framework for Algorithm 1 for discrete
states, we will now replace the histogram with a replay buffer and a density
model fφ, and our goal is to be able to compute fφ(s) for any state s such that
we modify the rewards like so:

R′(s, a) = R(s, a) + α (− log fφ(s)) (3)

2

1.2.1 Non-parametric density estimation: kernel density estimation
(KDE)

Kernel density estimation is a non-parametric method that estimates the density
model by maintaining a dataset of all encountered states (the replay buffer R
in our case and using a kernel function Kφ(s1, s2) to measure the similarity
between states.

Using an radial basis function kernel (https://en.wikipedia.org/wiki/Radial_
basis_function_kernel), we can to estimate the density of a new datapoint s
by plopping a Gaussian distribution centered around each of the datapoints in
R, evaluate the probability of s under each of these Gaussians, and average
these probabilities together (See https://en.wikipedia.org/wiki/Kernel_

density_estimation for some nice intuitive figures). Intuitively, if a lot of
the datapoints in R are close together, then the probability density of nearby
points are similar because each Gaussian contributes to the probability density
of these points. In particular, for a given state s, we can estimate its probability
density as

fφ(s) =
1

|R|
∑
s′∈R

Krbf(s, s
′)

=
1

|R|
∑
s′∈R

exp

(
−‖s− s

′‖2

2σ2

)
.

1.2.2 Parametric density estimation: exemplar models

The problem with kernel density estimators is that to every time we evaluate
the probability of a point, we have to apply the kernel to every point in the re-
play buffer, which becomes computationally intensive with a large replay buffer.
Alternatively, we can use a parametric density estimator, which does not require
a full pass through all the data to compute probabilities, but this comes at the
cost of training the density model from samples, which introduces another layer
of approximation.

One way to estimate the probability density fφ(s) is to train a state-conditioned
noisy discriminator Ds(s

′) to output 1 if s = s′ and 0 if s 6= s′ (note that Ds is a
discriminator conditioned on the exemplar s, so Ds and Ds′ are not the same).
The output of the discriminator is the probability that a Bernoulli random
variable y takes the value 1: p(y = 1|s, s′) := p(s = s′). Then we can estimate
fφ(s) by evaluating Ds on its own state s:

fφ(s) =
1−Ds(s)

Ds(s)
(4)

the reasoning behind which you can find here: https://arxiv.org/abs/1703.
01260. With this discriminator, we can estimate a probability density model
over the states we’ve seen before (in the replay buffer) by training the discrimi-
nator to distinguish between exemplar states s and the states s′ from the replay

3

https://en.wikipedia.org/wiki/Radial_basis_function_kernel
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://arxiv.org/abs/1703.01260
https://arxiv.org/abs/1703.01260

buffer. Intuitively, if Ds(s
′) is high, then this means that s is easily distin-

guished from states s′ in R, which means the probability is low that a state
similar to s is in R, in which case fφ(s) is low. Conversely, if states similar to
s are very common in R, then the Ds will have a hard time distinguishing s
and s′, in which case Ds(s

′) will output a value close to 0.5, which would make
fφ(s) high.

To illustrate this, let’s consider an environment with states A, B for simplicity.
Assume following two scenarios:

Scenario 1 Scenario 2

New batch of data A A
Replay Buffer B,B,B,B A,A,B,B

In Scenario 1, A is a novel state, whereas in Scenario 2 it is not. In EX2 we use
examples from the new batch of data as positives and examples from the replay
buffer as negatives. In Scenario 1, DA would get perfect accuracy and output
1, whereas in Scenario 2, DA would output 0.5. By plugging these values in
Equation 4 one can see that in Scenario 1, fφ(A) = 0 is low, meaning that this
is a new state, and in Scenario 2, fφ(A) = 1 is high, meaning that this state has
been seen before.

Letting s1 := s and s2 := s′ for clarity, the discriminator can be viewed as a
graphical model decomposed as:

p(y|s1, s2) = Ez1∼qz1|s1 ,z2∼qz2|s2
[p(y|z1, z2)q1(z1|s1)q2(z2|s2)]

where z are latent Gaussian random variables and y is a Bernoulli variable. The
z’s introduce noise in the discriminator to prevent it from overfitting and encour-
age it to assign similar probability density to similar states. The discriminator
is trained to maximize the following objective:

max
p,q1,q2

Es∼p̃(s)
[
Ez1∼q1(z1|s1),z2∼q2(z2|s2) [log p(y|z1, z2)]−KL

]
where

KL := β (DKL (q(z1|s1)||p(z1)) +DKL (q(z2|s2)||p(z2)))

and where p(z) is a multivariate standard Gaussian, β is a weighting coefficient
that controls how much the discriminator overfits (tries to maximize the log
likelihood more) or underfits (tries to make the latent distribution as close to a

standard Gaussian as possible), and ˜p(s) is the data distribution the discrimi-
nator is trained on, which contains half exemplar states and half replay-buffer
states.

1.3 Code

1.3.1 Installation

Obtain the code from https://github.com/berkeleydeeprlcourse/homework_

fall2019/tree/master/hw5. In addition to the installation requirements from

4

https://github.com/berkeleydeeprlcourse/homework_fall2019/tree/master/hw5
https://github.com/berkeleydeeprlcourse/homework_fall2019/tree/master/hw5

previous homeworks, install additional required packages by running: pip install

-r requirements.txt. To setup the package run python setup.py develop

from the hw5 folder.

1.3.2 Overview

You will modify the following files:

• train ac exploration f18.py

• density model.py

• exploration.py

You should also familiarize yourself with the following files:

• replay.py

• pointmass.py

• sparse half cheetah.py

All other files are optional to look at.

1.4 Implementation

For problems 1 through 3, you will be working with a PointMass environment,
where the agent is a dot that tries to go from location (2,2) to (18,18) of a
(20,20) grid. After training has completed, you can run the following command
to plot a gif of the exploration progress.

python pointmass.py <dirname>

Problem 1

What you will implement: The reward modification (Eqn. 1), the count-based
reward bonus (Eqn. 1), and the histogram density model .

Where in the code to implement: All parts of the code where you find

PROBLEM 1

YOUR CODE HERE

Implementation details are in the code.

How to run: Run the commands under P1 Hist PointMass in run all.sh to
compare an agent with histogram-based exploration and an agent with no ex-
ploration. Then use plot.py to plot the returns of the runs.

What will be outputted: A plot with 2 curves comparing an agent with histogram-
based exploration and an agent with no exploration.

5

What will a correct implementation output: The table below shows what the
reference solution gets for the mean average return when run with 8 random
seeds.

Iteration Histogram No-Exploration

20 ≥ 5 ≥ 5
40 ≥ 65 ≥ 50
60 ≥ 90 ≥ 70

Peak ≥ 100 ≥ 78

The table below shows what the reference solution gets for the average return
one standard deviation below the mean when run with 8 random seeds.

Iteration Histogram No-Exploration

20 ≥ 2 ≥ 2
40 ≥ 55 ≥ 40
60 ≥ 85 ≥ 55

Peak ≥ 90 ≥ 60

You only need to run with the three random seeds given to you in the code.
Your curves should likely be comparable to the above.

Problem 2

What you will implement: The heuristic reward bonus (Eqn. 1), and the kernel
density estimator with the radial basis function kernel.

Where in the code to implement: All parts of the code where you find

PROBLEM 2

YOUR CODE HERE

Implementation details are in the code.

How to run: Run the commands under P2 RBF PointMass in run all.sh Then
use plot.py to plot the returns of the runs to compare an agent with KDE-
based exploration and an agent with no exploration (the run of which you can
reuse from Problem 1)

What will be outputted: A plot with 2 curves comparing an agent with KDE-
based exploration and an agent with no exploration.

What will a correct implementation output: The table below shows what the
reference solution gets for the mean average return when run with 8 random
seeds.

6

Iteration RBF No-Exploration

20 ≥ 5 ≥ 5
40 ≥ 60 ≥ 50
60 ≥ 70 ≥ 79

Peak ≥ 75 ≥ 75

The table below shows what the reference solution gets for the average return
one standard deviation below the mean when run with 8 random seeds.

Iteration RBF No-Exploration

20 ≥ 2 ≥ 2
40 ≥ 50 ≥ 40
60 ≥ 55 ≥ 55

Peak ≥ 60 ≥ 60

You only need to run with the three random seeds given to you in the code.
Your curves should likely be comparable to the above.

Problem 3

What you will implement: The EX2 discriminator.

Where in the code to implement: All parts of the code where you find

PROBLEM 3

YOUR CODE HERE

Implementation details are in the code.

How to run: Run the commands under P3 EX2 PointMass in run all.sh Then
use plot.py to plot the returns of the runs to compare an agent with EX2-based
exploration and an agent with no exploration (the run of which you can reuse
from Problem 1)

What will be outputted: A plot with 2 curves comparing an agent with EX2-
based exploration and an agent with no exploration.

What will a correct implementation output:

The table below shows what the reference solution gets for the mean average
return when run with 8 random seeds.

Iteration EX2 No-Exploration

20 ≥ 5 ≥ 5
40 ≥ 55 ≥ 50
60 ≥ 70 ≥ 70

Peak ≥ 75 ≥ 78

The table below shows what the reference solution gets for the average return
one standard deviation below the mean when run with 8 random seeds.

7

Iteration EX2 No-Exploration

20 ≥ 2 ≥ 2
40 ≥ 42 ≥ 40
60 ≥ 58 ≥ 55

Peak ≥ 60 ≥ 60

You only need to run with the three random seeds given to you in the code.
Your curves should likely be comparable to the above.

Problem 4

What you will implement: Nothing! Nothing at all!

How to run: Run the commands under P4 HalfCheetah in run all.sh. We
have two hyperparameter settings for the EX2-based exploration. One uses the
bonus coefficient α = 0.0001 and trains the density model for 10000 iterations.
The other uses a bonus coefficient α = 0.001 and trains the density model for
1000 iterations. Use plot.py to plot the returns of the runs to compare the two
agents with EX2-based exploration and an agent with no exploration.

What will be outputted: A plot with 3 curves comparing the agents with EX2-
based exploration and an agent with no exploration.

What will a correct implementation output:

In the reference solutions (run with 8 random seeds), the peak mean average
return for α = 0.0001 EX2-based exploration is ≥ 10, the peak mean average
return for α = 0.001 EX2-based exploration is ≥ 7, and the peak mean average
return for no exploration is ≥ 1.

There may be considerable variability between seeds and machines. Your solu-
tion may not necessarily match the reference solutions. We will take this into
account when grading. If you get any surprising results, it would be useful to
include an analysis in your report.

Short answer: Compare the two learning curves for EX2 and hypothesize a pos-
sible reason for (1) the shape of each learning curve and (2) the difference in
performance between the learning curves.

1.5 PDF Deliverable

You can generate all results needed for the deliverables by running:

./run_all.sh

and then calling python plot.py to produce the appropriate plots Please pro-
vide the following plots and responses on the specified pages.

Problem 1 (page 1)

8

(a) A plot with 2 curves comparing an agent with histogram-based exploration
and an agent with no exploration for PointMass.

Problem 2 (page 2)

(a) A plot with 2 curves comparing an agent with KDE-based exploration and
an agent with no exploration for PointMass.

Problem 3 (page 3)

(a) A plot with 2 curves comparing an agent with EX2-based exploration and
an agent with no exploration for PointMass.

Problem 4 (page 4)

(a) A plot with 3 curves comparing an agent with EX2-based exploration and
an agent with no exploration for HalfCheetah.

(b) Your short answer response comparing the Ex2 learning curves for HalfChee-
tah.

1.6 Submission

Turn in both parts of the assignment on Gradescope as one submission. Upload
the zip file with your code to HW5 Code Exploration, and upload the PDF
of your report to HW5 Exploration.

9

	Exploration
	Discrete States
	Continuous States
	Non-parametric density estimation: kernel density estimation (KDE)
	Parametric density estimation: exemplar models

	Code
	Installation
	Overview

	Implementation
	PDF Deliverable
	Submission

