Introduction to Reinforcement Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine

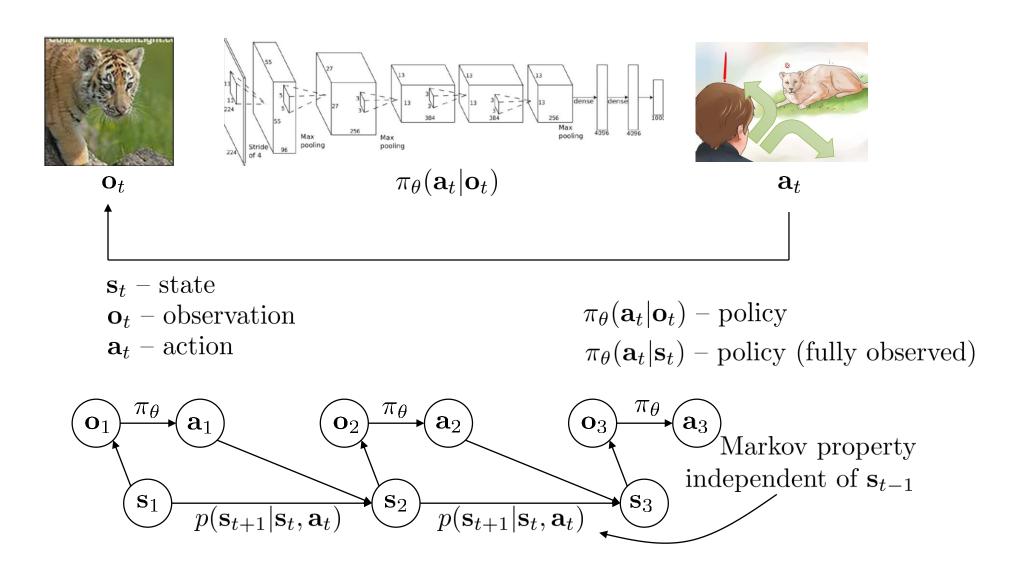
Class Notes

- 1. Homework 1 is due next Wednesday!
 - Remember that Monday is a holiday, so no office hours
- 2. Remember to start forming final project groups
 - Final project assignment document and ideas document released

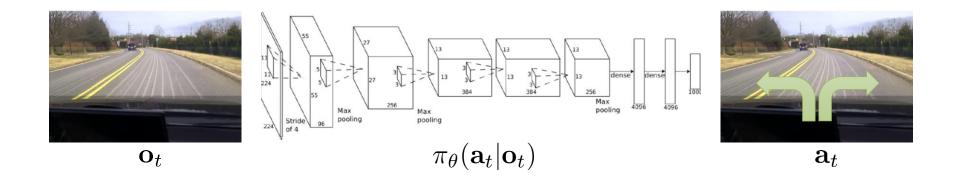
Today's Lecture

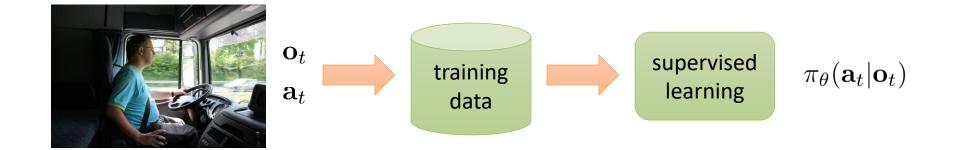
- 1. Definition of a Markov decision process
- 2. Definition of reinforcement learning problem
- 3. Anatomy of a RL algorithm
- 4. Brief overview of RL algorithm types
- Goals:
 - Understand definitions & notation
 - Understand the underlying reinforcement learning objective
 - Get summary of possible algorithms

Terminology & notation

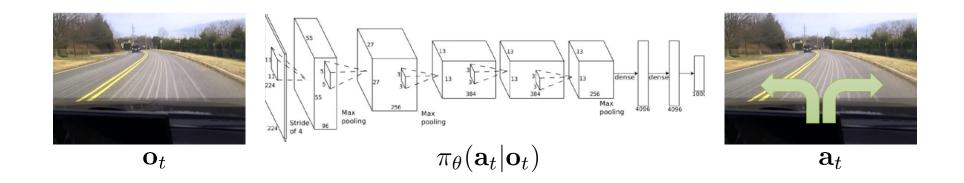


Imitation Learning





Reward functions



which action is better or worse?

 $r(\mathbf{s}, \mathbf{a})$: reward function

s, **a**, $r(\mathbf{s}, \mathbf{a})$, and $p(\mathbf{s}'|\mathbf{s}, \mathbf{a})$ define Markov decision process

tells us which states and actions are better

high reward

low reward

Markov chain

 $\mathcal{M} = \{\mathcal{S}, \mathcal{T}\}$

 \mathcal{S} – state space

states $s \in \mathcal{S}$ (discrete or continuous)

 \mathcal{T} – transition operator why "operator"?

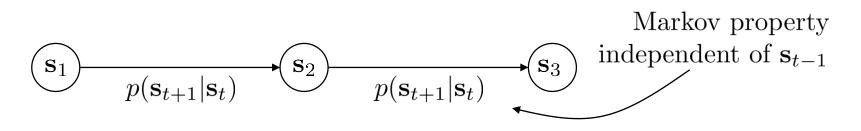
let $\mu_{t,i} = p(s_t = i)$

 $p(s_{t+1}|s_t)$

Andrey Markov

 $\vec{\mu}_t$ is a vector of probabilities

let $\mathcal{T}_{i,j} = p(s_{t+1} = i | s_t = j)$ then $\vec{\mu}_{t+1} = \mathcal{T}\vec{\mu}_t$



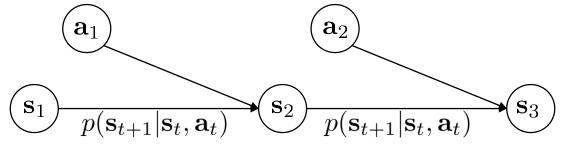
Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

 ${\cal S}$ – state space

states $s \in \mathcal{S}$ (discrete or continuous)

- \mathcal{A} action space actions $a \in \mathcal{A}$ (discrete or continuous)
- $\mathcal{T} \text{transition operator (now a tensor!)}$ let $\mu_{t,j} = p(s_t = j)$ let $\xi_{t,k} = p(a_t = k)$ let $\mathcal{T}_{i,j,k} = p(s_{t+1} = i | s_t = j, a_t = k)$ $\mathcal{T}_{i,j,k} \mu_{t,j} \xi_{t,k}$



Andrey Markov

Richard Bellman

Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

 ${\cal S}$ – state space

states $s \in \mathcal{S}$ (discrete or continuous)

 \mathcal{A} – action space actions $a \in \mathcal{A}$ (discrete or continuous)

 \mathcal{T} – transition operator (now a tensor!)

r – reward function

 $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$

 $r(s_t, a_t)$ – reward

Andrey Markov

Richard Bellman

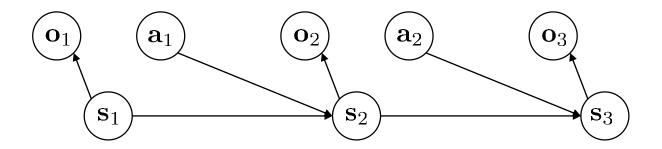
partially observed Markov decision process $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{E}, r\}$

 \mathcal{S} – state space states $s \in \mathcal{S}$ (discrete or continuous)

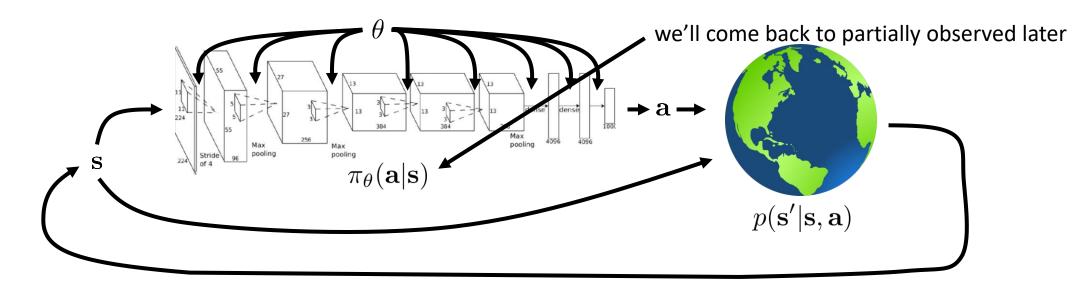
 \mathcal{A} – action space actions $a \in \mathcal{A}$ (discrete or continuous)

- \mathcal{O} observation space observations $o \in \mathcal{O}$ (discrete or continuous)
- \mathcal{T} transition operator (like before)
- \mathcal{E} emission probability $p(o_t|s_t)$

r - reward function $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$



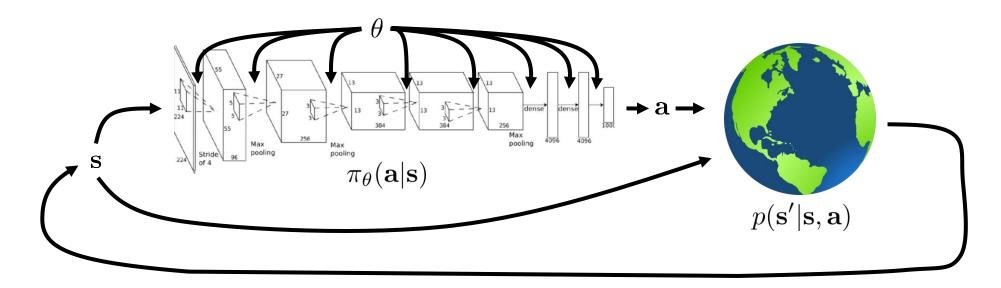
The goal of reinforcement learning

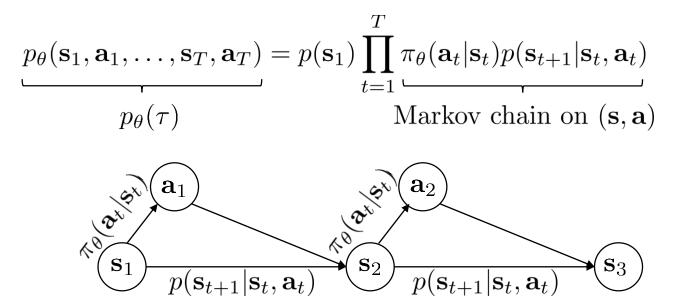


$$\underbrace{p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T})}_{p_{\theta}(\tau)} = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})$$

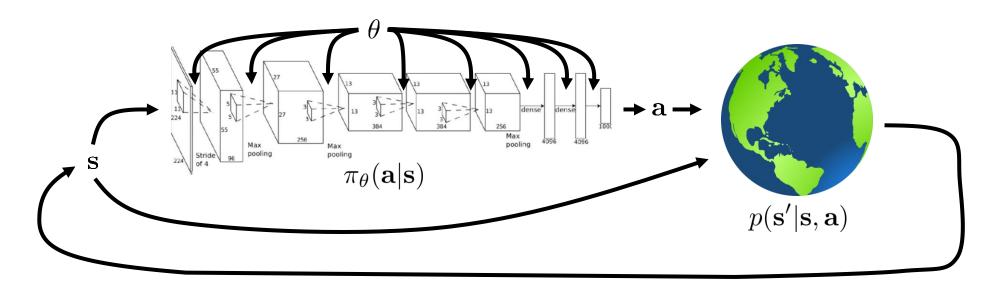
$$\theta^{\star} = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

The goal of reinforcement learning





The goal of reinforcement learning



$$p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T}) = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})$$

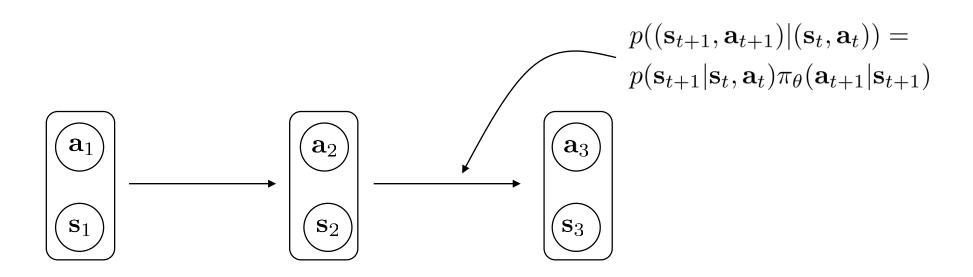
$$p_{\theta}(\tau) \qquad \text{Markov chain on } (\mathbf{s}, \mathbf{a})$$

$$p((\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) | (\mathbf{s}_{t}, \mathbf{a}_{t})) = \left(\begin{array}{c} \mathbf{a}_{1} \\ \mathbf{a}_{1} \\ \mathbf{s}_{1} \end{array} \right) \xrightarrow{\mathbf{a}_{t}} \left(\begin{array}{c} \mathbf{a}_{2} \\ \mathbf{s}_{2} \end{array} \right) \xrightarrow{\mathbf{a}_{t}} \left(\begin{array}{c} \mathbf{a}_{3} \\ \mathbf{s}_{3} \end{array} \right)$$

Finite horizon case: state-action marginal

$$\theta^{\star} = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
$$= \arg \max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})} [r(\mathbf{s}_{t}, \mathbf{a}_{t})]$$

$$p_{ heta}(\mathbf{s}_t, \mathbf{a}_t)$$
 state-action marginal



Infinite horizon case: stationary distribution

$$\theta^{\star} = \arg \max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_{t},\mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t},\mathbf{a}_{t})} [r(\mathbf{s}_{t},\mathbf{a}_{t})]$$

what if $T = \infty$?

 \mathbf{s}_1

does $p(\mathbf{s}_t, \mathbf{a}_t)$ converge to a *stationary* distribution?

 \mathbf{s}_2 '

$$\mu = \mathcal{T}\mu \qquad (\mathcal{T} - \mathbf{I})\mu = 0 \qquad \mu = p_{\theta}(\mathbf{s}, \mathbf{a}) \quad \text{stationary distribution}$$

$$\mu \text{ is eigenvector of } \mathcal{T} \text{ with eigenvalue 1!}$$
(always exists under some regularity conditions)
after transition
$$(\mathbf{a}_{1}) \qquad \mathbf{a}_{2} \qquad \mathbf{a}_{2} \qquad \mathbf{a}_{3} \qquad \mathbf{a}_{t+1} \qquad \mathbf{a}_{t+1}$$

 (\mathbf{S}_3)

Infinite horizon case: stationary distribution

$$\theta^{\star} = \arg \max_{\theta} \frac{1}{T} \sum_{t=1}^{T} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})} [r(\mathbf{s}_{t}, \mathbf{a}_{t})] \rightarrow E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})} [r(\mathbf{s}, \mathbf{a})]$$
(in the limit as $T \rightarrow \infty$)

what if $T = \infty$?

 \mathbf{S}_1

does $p(\mathbf{s}_t, \mathbf{a}_t)$ converge to a *stationary* distribution?

 \mathbf{S}_2

 $\mu = \mathcal{T}\mu \qquad (\mathcal{T} - \mathbf{I})\mu = 0 \qquad \mu = p_{\theta}(\mathbf{s}, \mathbf{a}) \quad \text{stationary distribution}$ $\mu \text{ is eigenvector of } \mathcal{T} \text{ with eigenvalue 1!}$ (always exists under some regularity conditions) $after transition \qquad state-action \text{ transition operator}$ $\left(\begin{array}{c} \mathbf{a}_{1} \\ \mathbf{a}_{1} \\ \mathbf{a}_{2} \\ \mathbf{a}_{2} \end{array}\right) \longrightarrow \left(\begin{array}{c} \mathbf{a}_{2} \\ \mathbf{a}_{2} \\ \mathbf{a}_{2} \end{array}\right) \longrightarrow \left(\begin{array}{c} \mathbf{a}_{3} \\ \mathbf{a}_{3} \\ \mathbf{a}_{1} \end{array}\right) = \mathcal{T}\left(\begin{array}{c} \mathbf{s}_{t} \\ \mathbf{a}_{t} \end{array}\right) \left(\begin{array}{c} \mathbf{s}_{t+k} \\ \mathbf{a}_{t+k} \end{array}\right) = \mathcal{T}^{k}\left(\begin{array}{c} \mathbf{s}_{t} \\ \mathbf{a}_{t} \end{array}\right)$

 \mathbf{S}_3

Expectations and stochastic systems

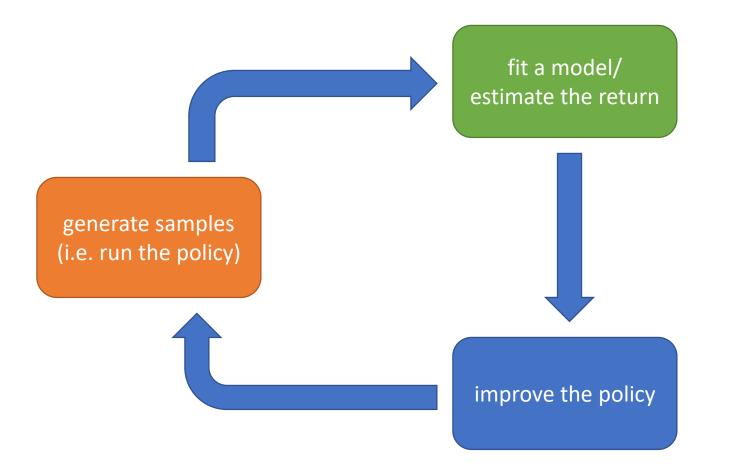
In RL, we almost always care about expectations

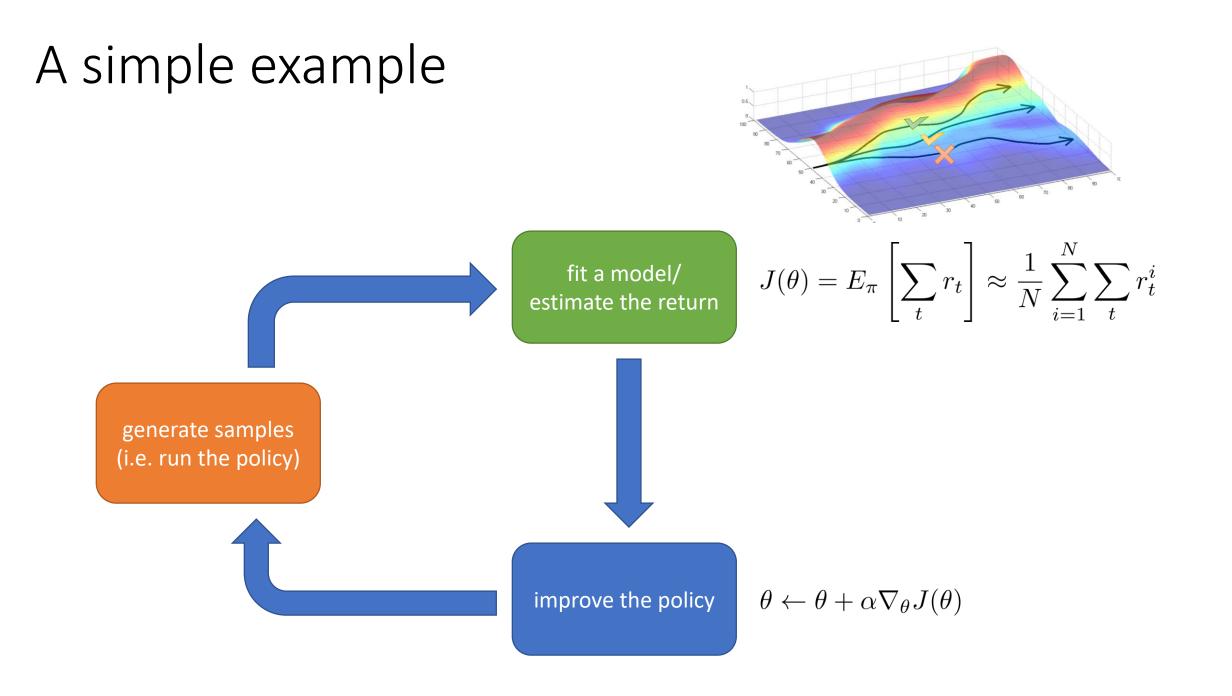
 $p_{\theta}(\text{fall}) = \theta$ r(fall) - not smooth $E_{p_{\theta}}[r(\text{fall})] - smooth \text{ in } \theta!$

 \mathbf{T}

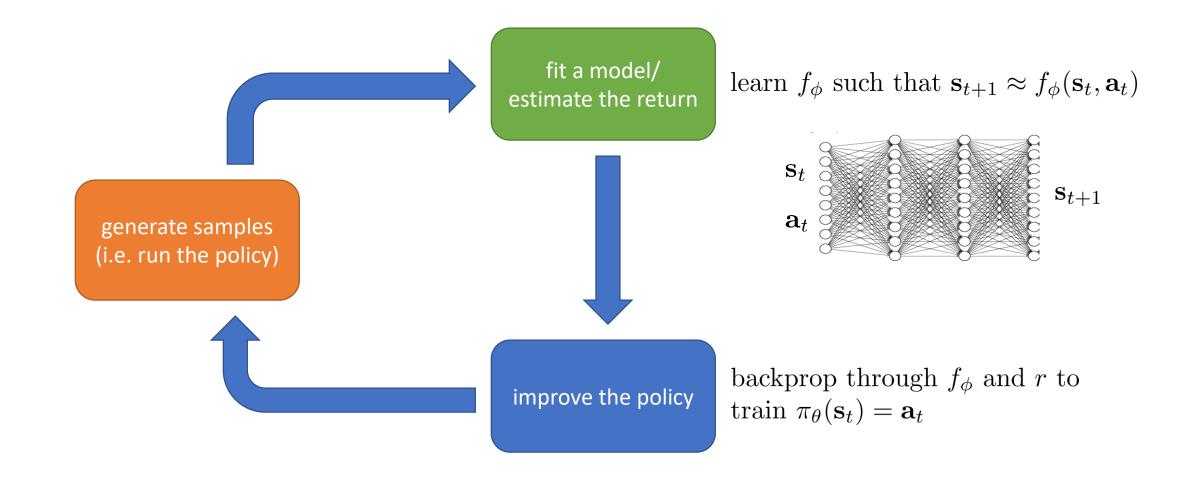
Algorithms

The anatomy of a reinforcement learning algorithm

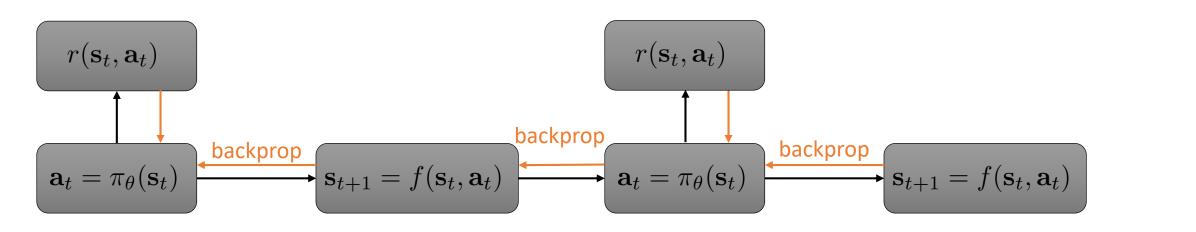




Another example: RL by backprop



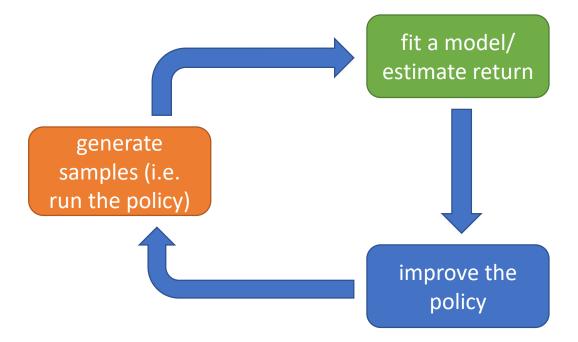
Simple example: RL by backprop

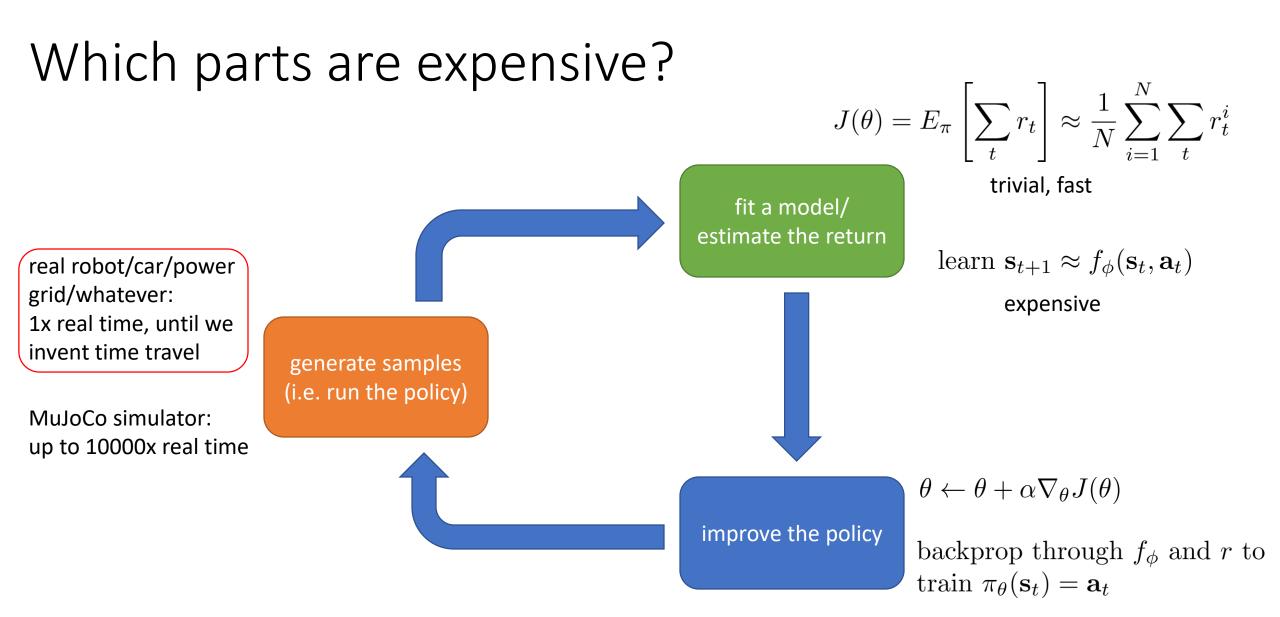


collect data

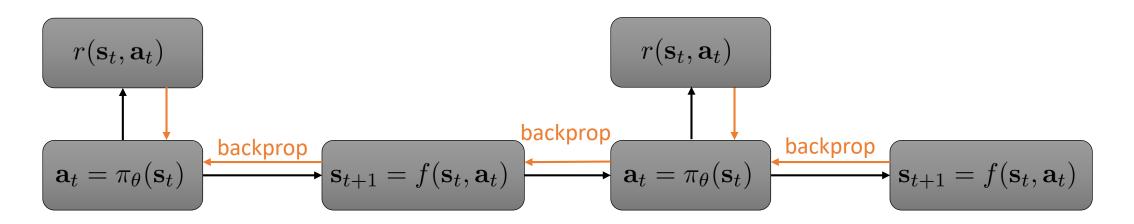
update the model f

update the policy with backprop





Why is this not enough?



- Only handles deterministic dynamics
- Only handles deterministic policies
- Only continuous states and actions
- Very difficult optimization problem
- We'll talk about this more later!

How can we work with *stochastic* systems?

Conditional expectations

$$\sum_{t=1}^{T} E_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)} [r(\mathbf{s}_t, \mathbf{a}_t)]$$

 $E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)}$

what if we knew this part? $Q(\mathbf{s}_{1}, \mathbf{a}_{1}) = r(\mathbf{s}_{1}, \mathbf{a}_{1}) + E_{\mathbf{s}_{2} \sim p(\mathbf{s}_{2}|\mathbf{s}_{1}, \mathbf{a}_{1})} \left[E_{\mathbf{a}_{2} \sim \pi(\mathbf{a}_{2}|\mathbf{s}_{2})} \left[r(\mathbf{s}_{2}, \mathbf{a}_{2}) + \dots |\mathbf{s}_{2} \right] |\mathbf{s}_{1}, \mathbf{a}_{1} \right]$ $E_{\mathbf{s}_{1} \sim p(\mathbf{s}_{1})} \left[E_{\mathbf{a}_{1} \sim \pi(\mathbf{a}_{1}|\mathbf{s}_{1})} \left[Q(\mathbf{s}_{1}, \mathbf{a}_{1}) |\mathbf{s}_{1} \right] \right]$ $easy to modify \pi_{\theta}(\mathbf{a}_{1}|\mathbf{s}_{1}) \text{ if } Q(\mathbf{s}_{1}, \mathbf{a}_{1}) \text{ is known!}$ $example: \pi(\mathbf{a}_{1}|\mathbf{s}_{1}) = 1 \text{ if } \mathbf{a}_{1} = \arg \max_{\mathbf{a}_{1}} Q(\mathbf{s}_{1}, \mathbf{a}_{1})$

Definition: Q-function

 $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right]: \text{ total reward from taking } \mathbf{a}_t \text{ in } \mathbf{s}_t$

Definition: value function

 $V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t]$: total reward from \mathbf{s}_t

 $V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$

 $E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)}[V^{\pi}(\mathbf{s}_1)]$ is the RL objective!

Using Q-functions and value functions

Idea 1: if we have policy π , and we know $Q^{\pi}(\mathbf{s}, \mathbf{a})$, then we can *improve* π :

set $\pi'(\mathbf{a}|\mathbf{s}) = 1$ if $\mathbf{a} = \arg \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})$

this policy is at least as good as π (and probably better)!

and it doesn't matter what π is

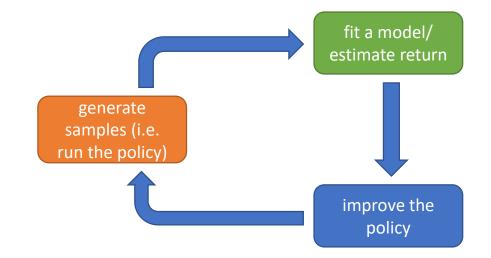
Idea 2: compute gradient to increase probability of good actions **a**: if $Q^{\pi}(\mathbf{s}, \mathbf{a}) > V^{\pi}(\mathbf{s})$, then **a** is *better than average* (recall that $V^{\pi}(\mathbf{s}) = E[Q^{\pi}(\mathbf{s}, \mathbf{a})]$ under $\pi(\mathbf{a}|\mathbf{s})$)

modify $\pi(\mathbf{a}|\mathbf{s})$ to increase probability of \mathbf{a} if $Q^{\pi}(\mathbf{s}, \mathbf{a}) > V^{\pi}(\mathbf{s})$

These ideas are *very* important in RL; we'll revisit them again and again!

Review

- Definitions
 - Markov chain
 - Markov decision process
- RL objective
 - Expected reward
 - How to evaluate expected reward?
- Structure of RL algorithms
 - Sample generation
 - Fitting a model/estimating return
 - Policy Improvement
- Value functions and Q-functions



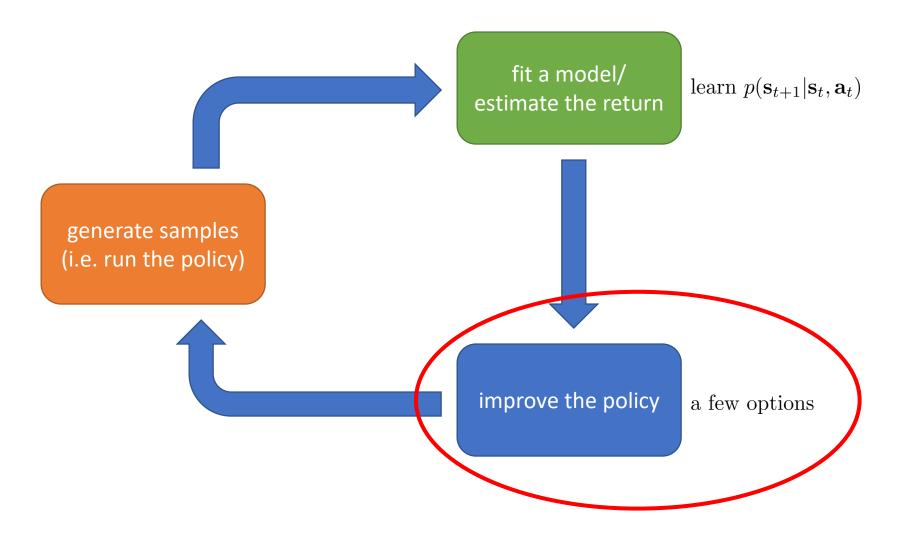
Break

Types of RL algorithms

$$\theta^{\star} = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

- Policy gradients: directly differentiate the above objective
- Value-based: estimate value function or Q-function of the optimal policy (no explicit policy)
- Actor-critic: estimate value function or Q-function of the current policy, use it to improve policy
- Model-based RL: estimate the transition model, and then...
 - Use it for planning (no explicit policy)
 - Use it to improve a policy
 - Something else

Model-based RL algorithms



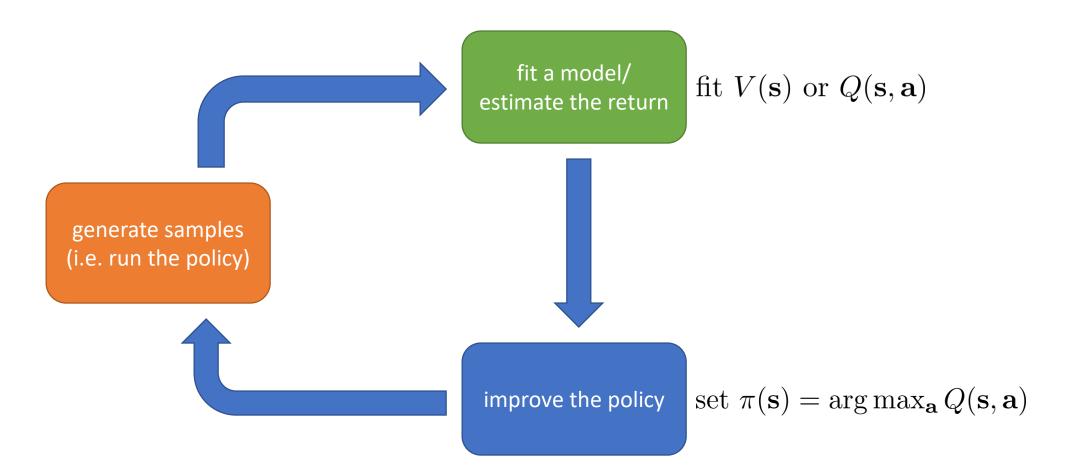
Model-based RL algorithms

improve the policy

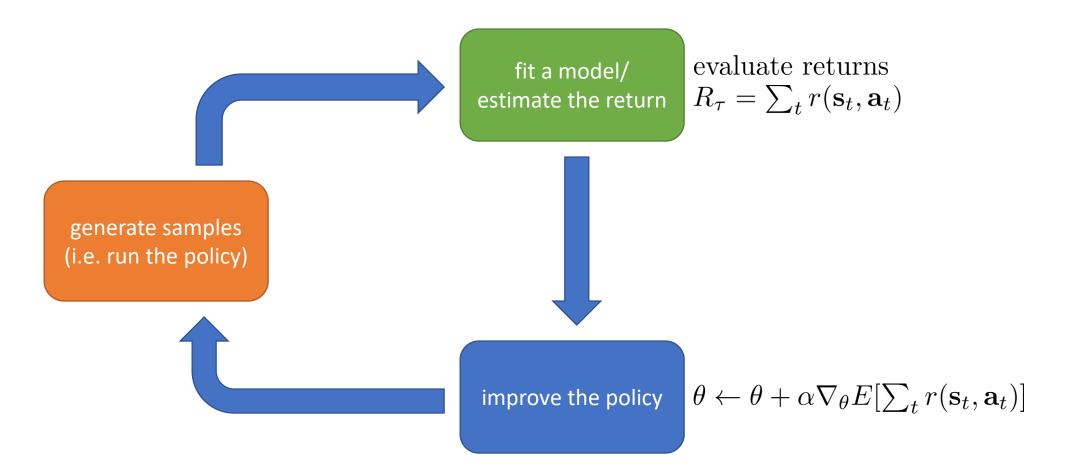
a few options

- 1. Just use the model to plan (no policy)
 - Trajectory optimization/optimal control (primarily in continuous spaces) essentially backpropagation to optimize over actions
 - Discrete planning in discrete action spaces e.g., Monte Carlo tree search
- 2. Backpropagate gradients into the policy
 - Requires some tricks to make it work
- 3. Use the model to learn a value function
 - Dynamic programming
 - Generate simulated experience for model-free learner (Dyna)

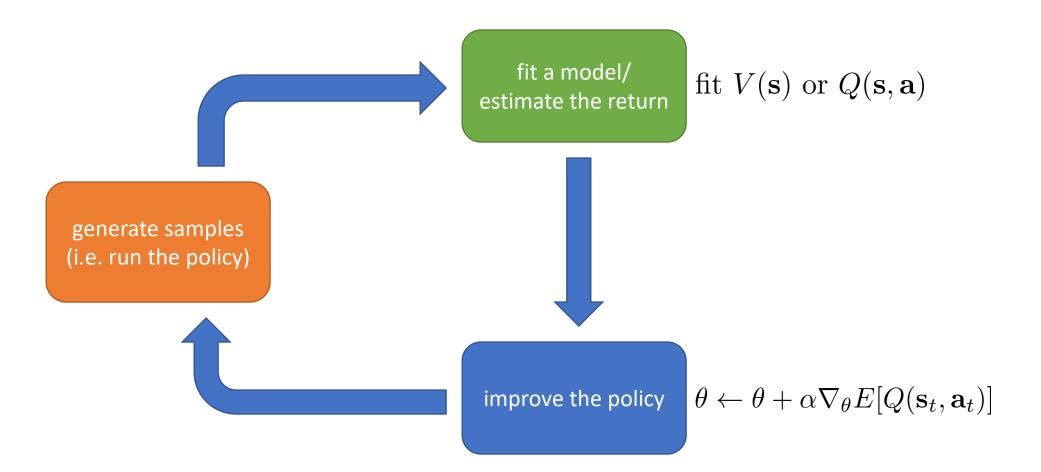
Value function based algorithms



Direct policy gradients



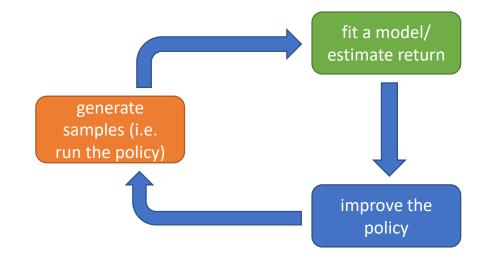
Actor-critic: value functions + policy gradients



Tradeoffs

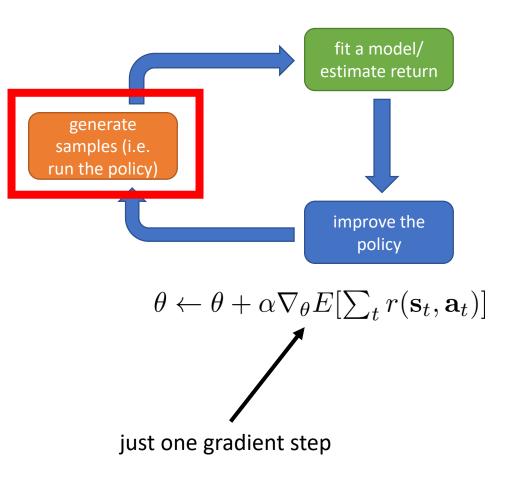
Why so many RL algorithms?

- Different tradeoffs
 - Sample efficiency
 - Stability & ease of use
- Different assumptions
 - Stochastic or deterministic?
 - Continuous or discrete?
 - Episodic or infinite horizon?
- Different things are easy or hard in different settings
 - Easier to represent the policy?
 - Easier to represent the model?

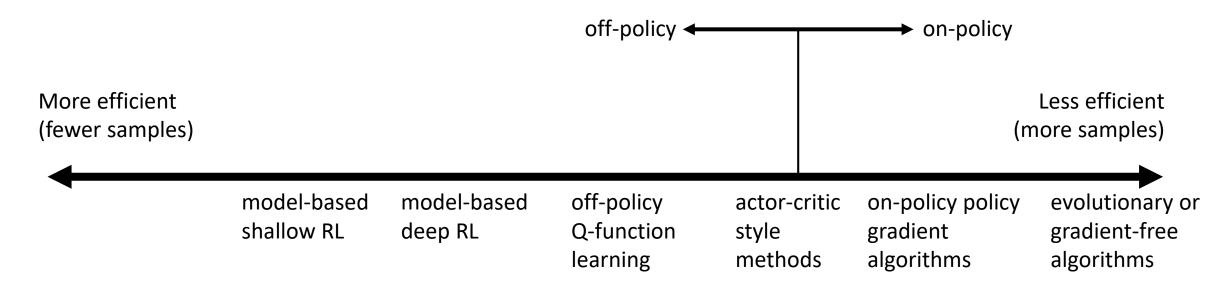


Comparison: sample efficiency

- Sample efficiency = how many samples do we need to get a good policy?
- Most important question: is the algorithm *off policy*?
 - Off policy: able to improve the policy without generating new samples from that policy
 - On policy: each time the policy is changed, even a little bit, we need to generate new samples



Comparison: sample efficiency



Why would we use a *less* efficient algorithm? Wall clock time is not the same as efficiency!

Comparison: stability and ease of use

- Does it converge?
- And if it converges, to what?
- And does it converge every time?

Why is any of this even a question???

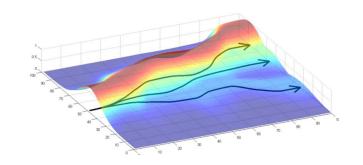
- Supervised learning: almost *always* gradient descent
- Reinforcement learning: often *not* gradient descent
 - Q-learning: fixed point iteration
 - Model-based RL: model is not optimized for expected reward
 - Policy gradient: *is* gradient descent, but also often the least efficient!

Comparison: stability and ease of use

- Value function fitting
 - At best, minimizes error of fit ("Bellman error")
 - Not the same as expected reward
 - At worst, doesn't optimize anything
 - Many popular deep RL value fitting algorithms are not guaranteed to converge to *anything* in the nonlinear case
- Model-based RL
 - Model minimizes error of fit
 - This will converge
 - No guarantee that better model = better policy
- Policy gradient
 - The only one that actually performs gradient descent (ascent) on the true objective

Comparison: assumptions

- Common assumption #1: full observability
 - Generally assumed by value function fitting methods
 - Can be mitigated by adding recurrence
- Common assumption #2: episodic learning
 - Often assumed by pure policy gradient methods
 - Assumed by some model-based RL methods
- Common assumption #3: continuity or smoothness
 - Assumed by some continuous value function learning methods
 - Often assumed by some model-based RL methods



Examples of specific algorithms

- Value function fitting methods
 - Q-learning, DQN
 - Temporal difference learning
 - Fitted value iteration
- Policy gradient methods
 - REINFORCE
 - Natural policy gradient
 - Trust region policy optimization
- Actor-critic algorithms
 - Asynchronous advantage actor-critic (A3C)
 - Soft actor-critic (SAC)
- Model-based RL algorithms
 - Dyna
 - Guided policy search

We'll learn about most of these in the next few weeks!

Example 1: Atari games with Q-functions

- Playing Atari with deep reinforcement learning, Mnih et al. '13
- Q-learning with convolutional neural networks

Example 2: robots and model-based RL

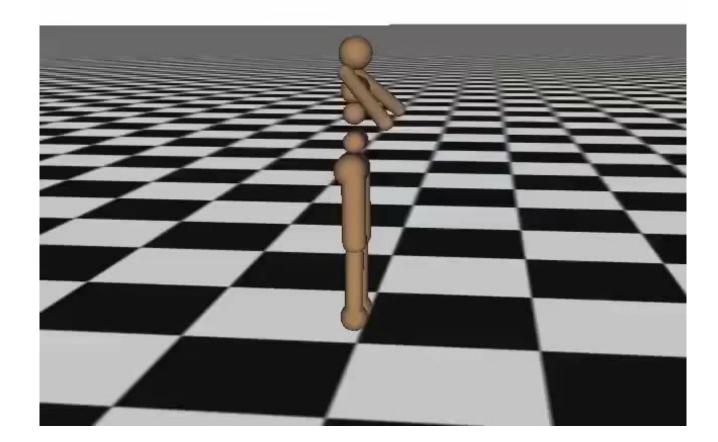
- End-to-end training of deep visuomotor policies, L.*, Finn* '16
- Guided policy search (model-based RL) for image-based robotic manipulation

Various Experiments Including the policy input

Example 3: walking with policy gradients

- High-dimensional continuous control with generalized advantage estimation, Schulman et al. '16
- Trust region policy optimization with value function approximation

Iteration 0



Example 4: robotic grasping with Q-functions

- QT-Opt, Kalashnikov et al. '18
- Q-learning from images for real-world robotic grasping

