Class notes

1. Homework 5 due Tuesday, November 13th 11:59pm

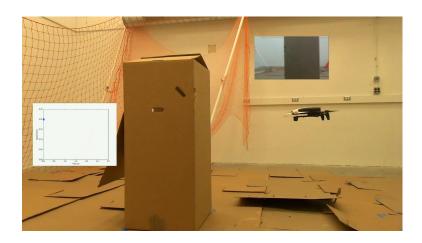
Real-World Robot Learning: Safety and Flexibility

CS294-112: Deep Reinforcement Learning

Gregory Kahn

Why should you care?

Safety



Flexibility

Outline

Topics

- Safety
- Flexibility

Algorithms

- Imitation learning
- Model-free
- Model-based

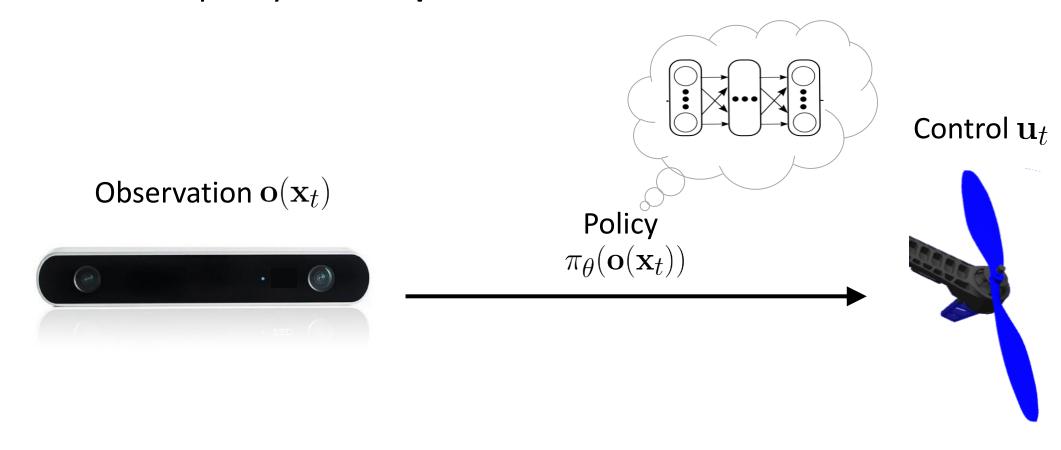
2 * 3 = 6 papers we'll cover By no means the best / only papers on these topics

PLATO: Policy Learning using Adaptive Trajectory Optimization

Gregory Kahn¹, Tianhao Zhang¹, Sergey Levine¹, Pieter Abbeel^{1,2,3}

Goal

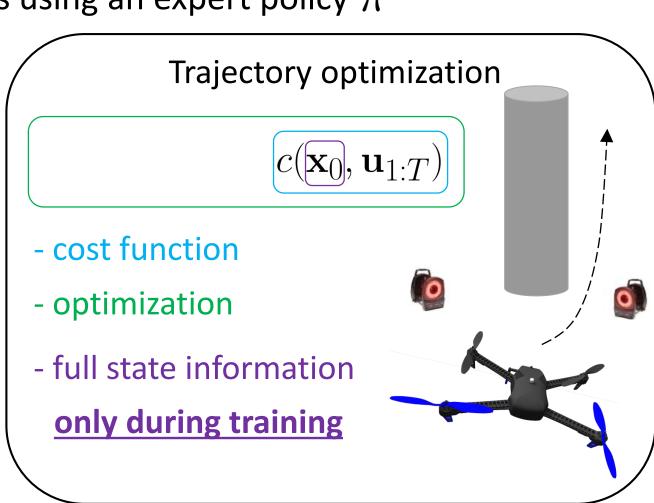
Learn control policy that maps observations to controls



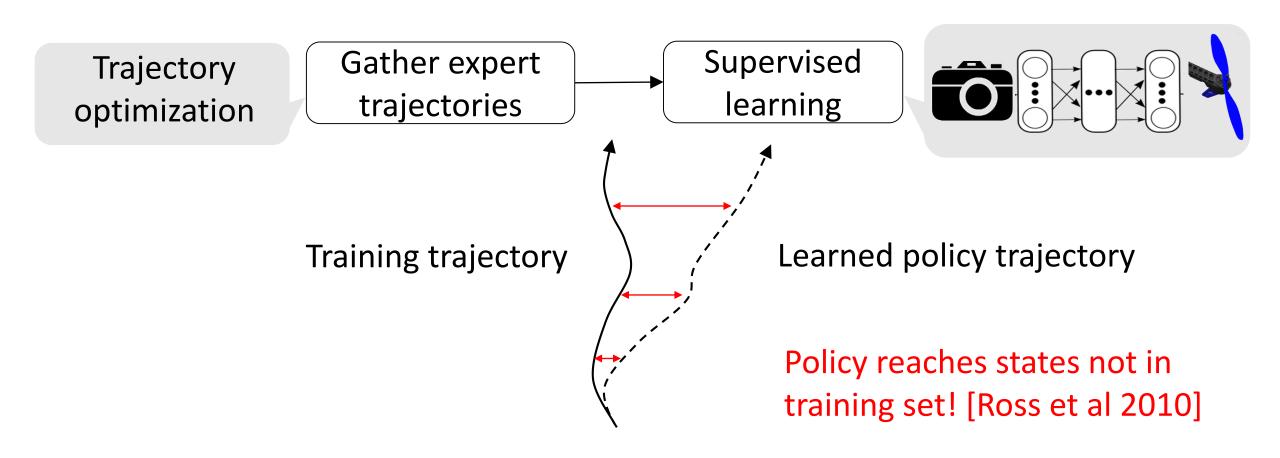
Assumption

Able to generate good trajectories using an expert policy π^*

Human expert



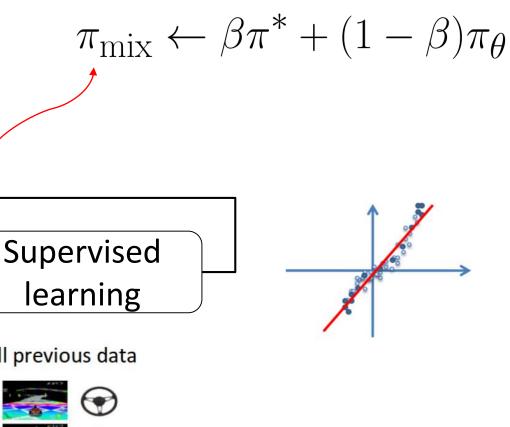
Supervised Learning

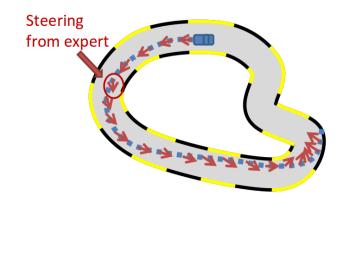


Problem: training and test distributions differ

Dataset Aggregation (DAgger)

- Problem: training and test distributions differ
- Solution: execute policy during training



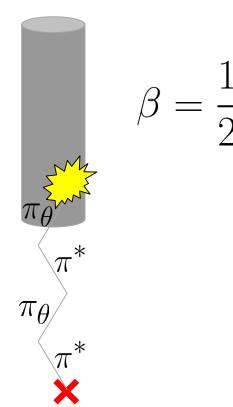


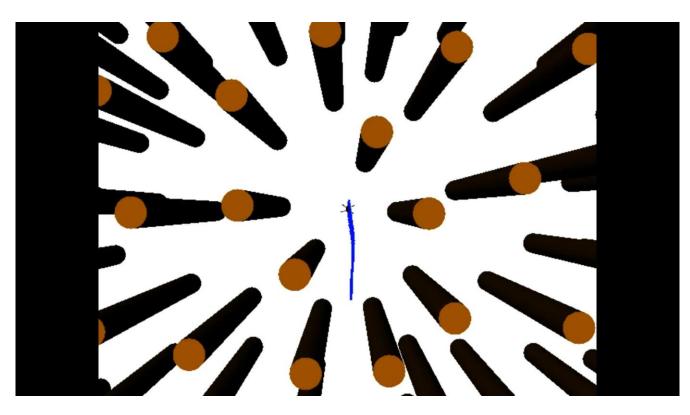
All previous data

Safety during training

DAgger mixes the actions

$$\mathbf{u}_{\text{mix}} \sim \begin{cases} \pi^*(\mathbf{u}|\mathbf{x}_t) & \text{prob. } \beta \\ \pi_{\theta}(\mathbf{u}|\mathbf{x}_t) & \text{prob. } (1-\beta) \end{cases}$$

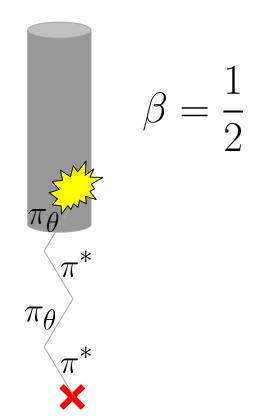




Policy Learning using Adaptive Trajectory Optimization (PLATO)

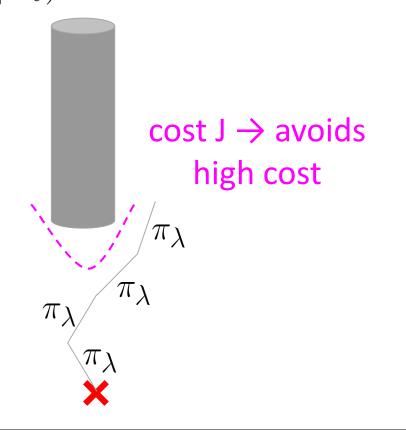
DAgger mixes the actions

$$\mathbf{u}_{\text{mix}} \sim \begin{cases} \pi^*(\mathbf{u}|\mathbf{x}_t) & \text{prob. } \beta \\ \pi_{\theta}(\mathbf{u}|\mathbf{x}_t) & \text{prob. } (1-\beta) \end{cases}$$



PLATO mixes the objectives

$$\mathbf{u}_{\text{mix}} \sim \begin{cases} \pi^*(\mathbf{u}|\mathbf{x}_t) & \text{prob. } \beta \\ \pi_{\theta}(\mathbf{u}|\mathbf{x}_t) & \text{prob. } (1-\beta) \end{cases} \qquad \begin{aligned} \pi_{\lambda} \leftarrow \arg\min_{\pi} J(\pi) + \lambda D_{\text{KL}}(\pi||\pi_{\theta}) \\ \mathbf{u}_{\lambda} \sim \pi_{\lambda}(\mathbf{u}|\mathbf{x}_t) \end{aligned}$$



Algorithm comparisons

approach	sampling policy	safe	similar training and test distributions
supervised learning	π^*	/	×
DAgger	$\pi_{ ext{mix}}$	×	✓
PLATO	π_{λ}	√	✓

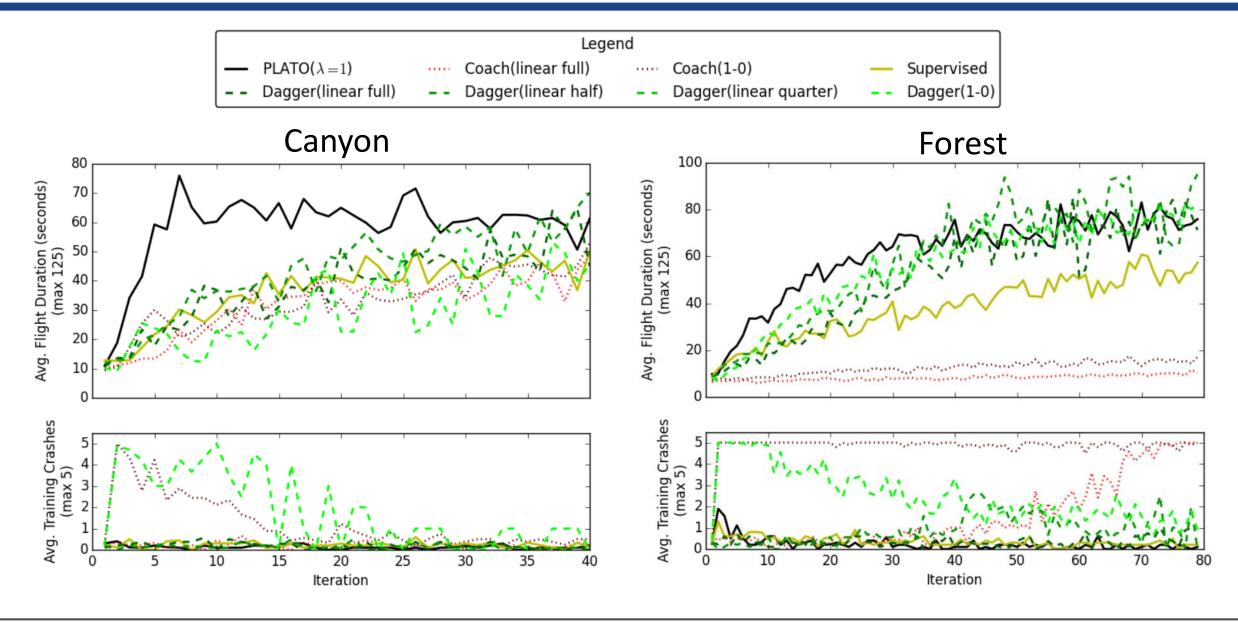
$$\pi_{\text{mix}} \leftarrow \beta \pi^* + (1 - \beta) \pi_{\theta}$$

$$\pi_{\lambda} \leftarrow \arg\min_{\pi} J(\pi) + \lambda D_{\mathrm{KL}}(\pi||\pi_{\theta})$$

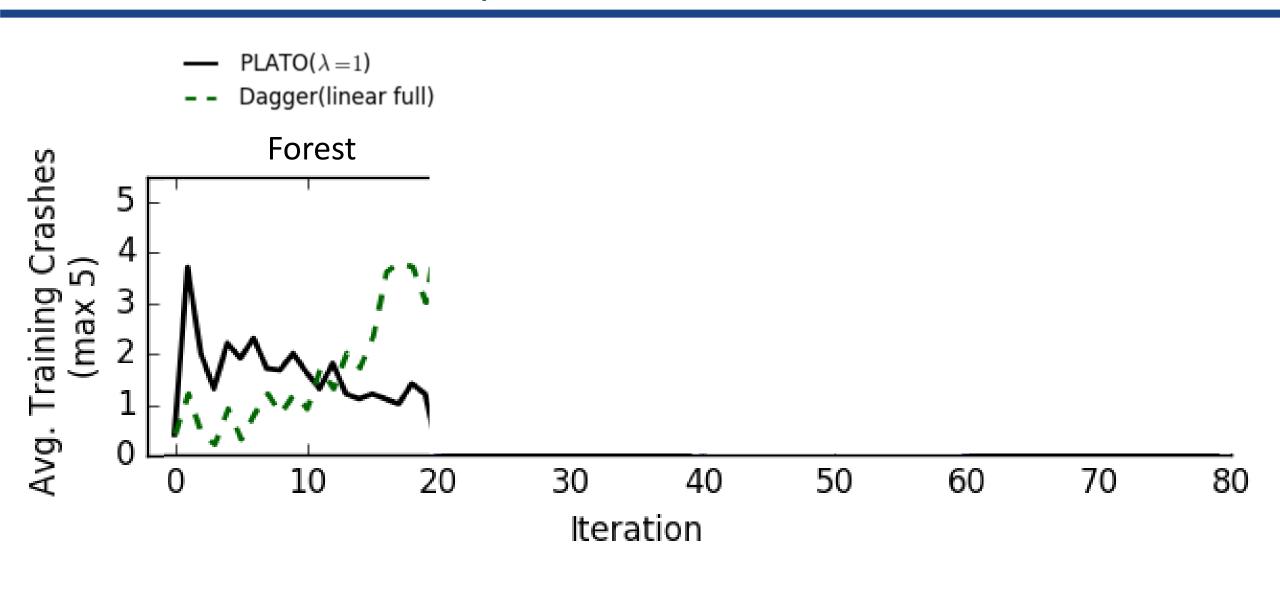
Experiments: final neural network policies



Experiments: metrics



Experiments: metrics



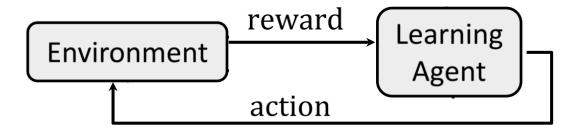
Safe Reinforcement Learning via Shielding

Mohammed Alshiekh¹, Roderick Bloem², Rüdiger Ehlers³, Bettina Könighofer², Scott Niekum¹, Ufuk Topcu¹

Safety Flexibility Imitation learning Model-free Model-based

Goal

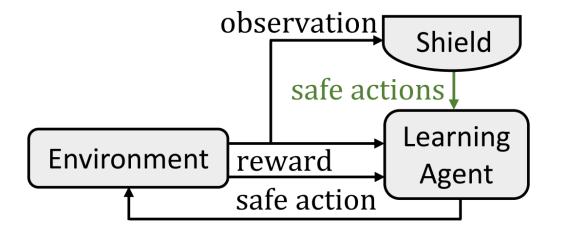
NOT SAFE



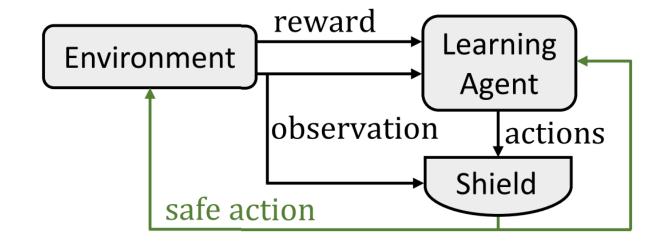
Safety Flexibility Imitation learning Model-free Model-based

Shielding

Pre-emptive shielding



Post-posed shielding



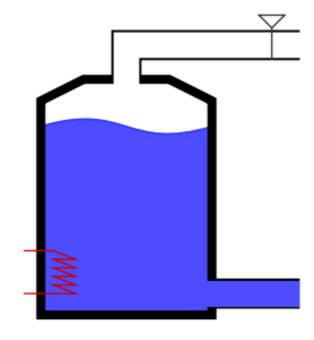
Like learning in a transformed MDP

Shield can be used at test time

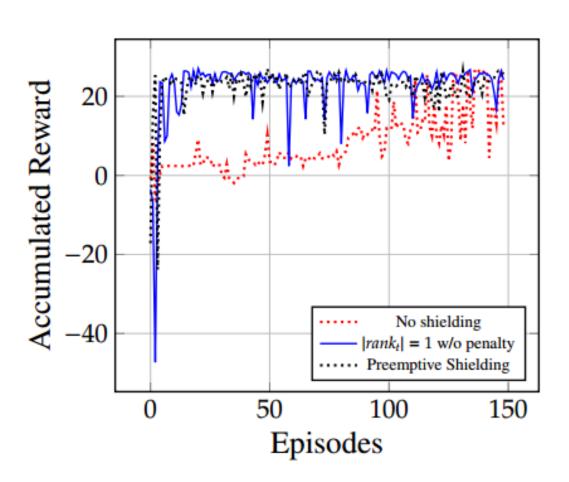
How to shield: linear temporal logic

- Encode safety with temporal logic
- Assumption: Known approximate/conservative transition dynamics

```
G(level > 0)
 \land G(level < 100)
 \land G((open \land Xclose) \rightarrow XXclose \land XXXclose)
 \land G((close \land Xopen) \rightarrow XXopen \land XXXopen)
```

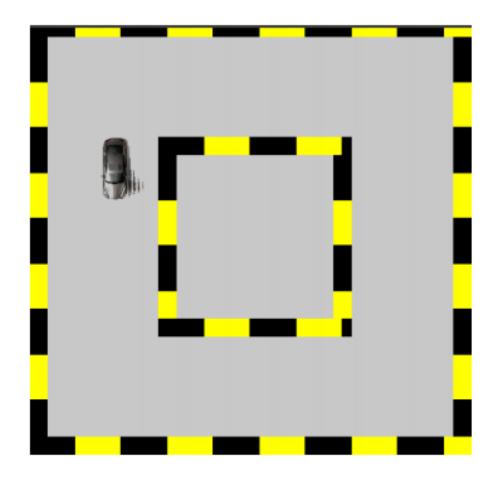


Experiments

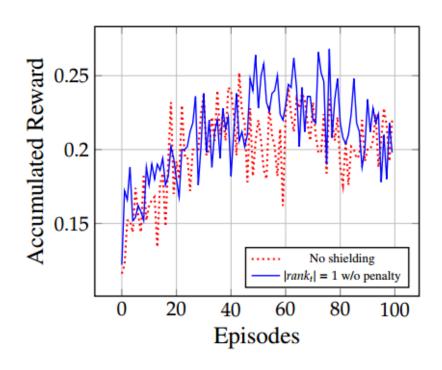


Safety criteria

Don't crash



Experiments



Safety criteria

- Don't run out of oxygen
- If enough oxygen,
 don't surface w/o divers

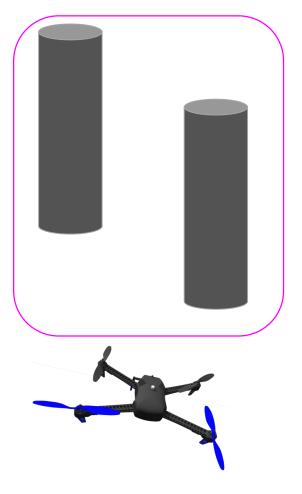
Uncertainty-Aware Reinforcement Learning for Collision Avoidance

Gregory Kahn*, Adam Villaflor*, Vitchyr Pong*, Pieter Abbeel*†, Sergey Levine*

Safety Flexibility Imitation learning Model-free Model-based

Goal

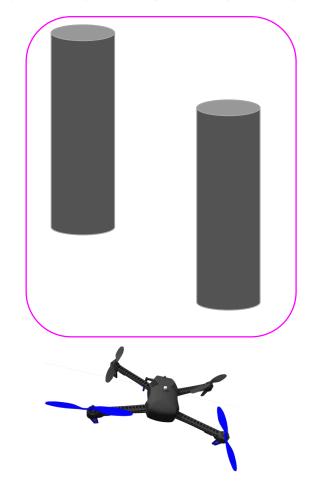
unknown environment



How to do reinforcement learning without destroying the robot during training using only onboard images

Approach

unknown environment



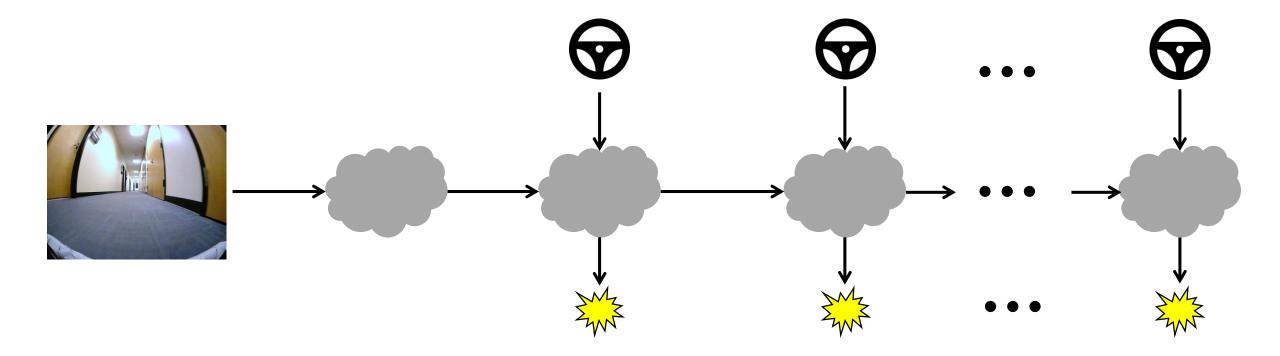
$$c(\tau) = c_{\text{TASK}}(\tau) + c_{\text{COLL}}(\tau)$$

learn a collision prediction model

$$p(c_{t+H}|\mathbf{o}_t, \mathbf{u}_t, ..., \mathbf{u}_{t+H})$$

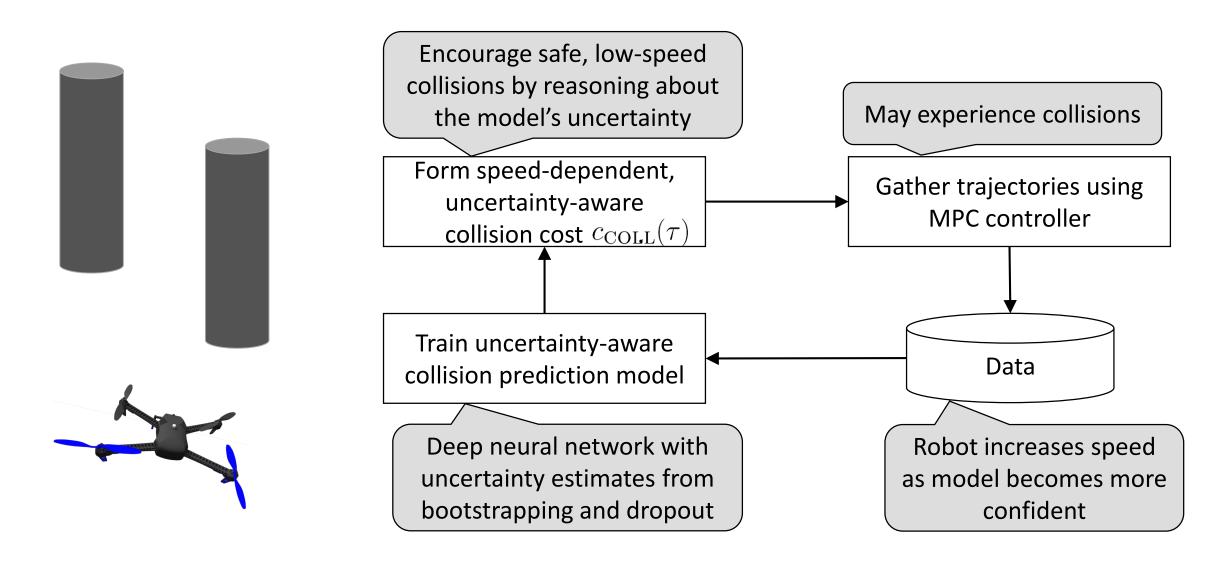
raw image command velocities neural network

Collision prediction model



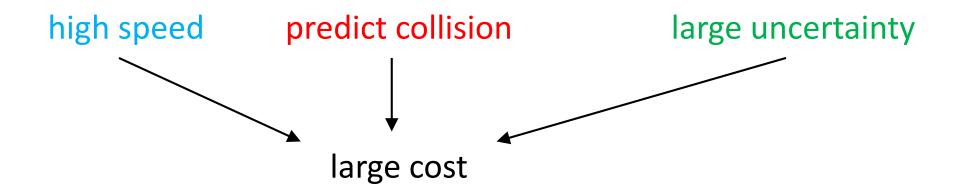
Safety Flexibility Imitation learning Model-free Model-based

Model-based RL using collision prediction model



Collision cost

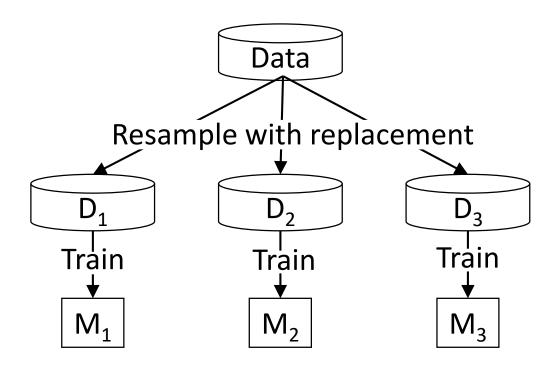
$$c_{\text{COLL}}(\tau) \propto \text{SPEED} \cdot \left(\text{E}[p(c_{t+H}|\tau)] + \sqrt{\text{Var}[p(c_{t+H}|\tau)]} \right)$$



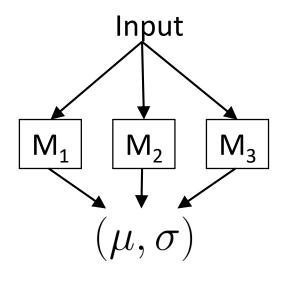
Safety Flexibility Imitation learning Model-free Model-based

Estimating neural network output uncertainty

Bootstrapping

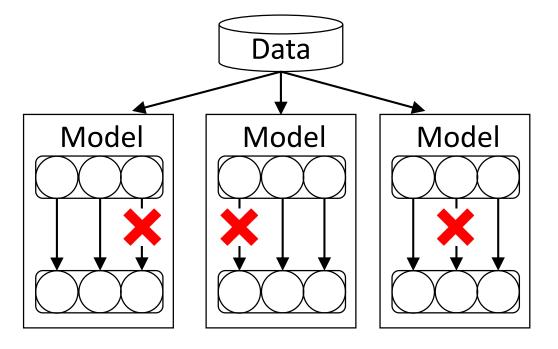


Test time

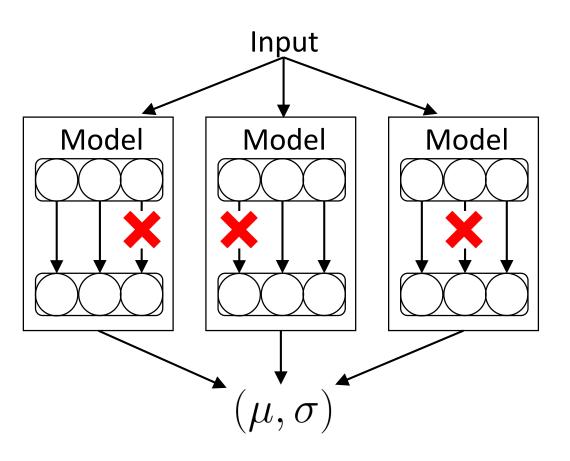


Estimating neural network output uncertainty

Dropout



Test time



Preliminary real-world experiments

Not accounting for uncertainty (higher-speed collisions)

Preliminary real-world experiments

accounting for uncertainty (lower-speed collisions)

Preliminary real-world experiments

successful flight past obstacle

Safety takeaways

- Tradeoff between safety and exploration
- Safety guarantees require expert oversight or known environment + dynamics
- Uncertainty can play a key role

End-to-end Driving via Conditional Imitation Learning

Felipe Codevilla^{1,2} Matthias Müller^{1,3} Antonio López² Vladlen Koltun¹ Alexey Dosovitskiy¹

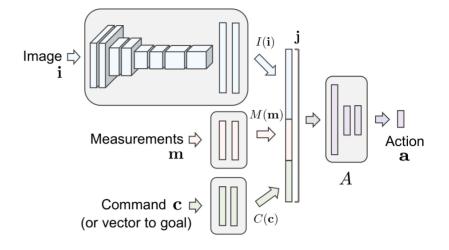
Goal

$$\min_{\theta} \|\pi_{\theta}(\mathbf{a}|\mathbf{s}) - \pi^{*}(\mathbf{a}|\mathbf{s})\| \longrightarrow \min_{\theta} \|\pi_{\theta}(\mathbf{a}|\mathbf{s},\underline{\mathbf{c}}) - \pi^{*}(\mathbf{a}|\mathbf{s},\underline{\mathbf{c}})\|$$

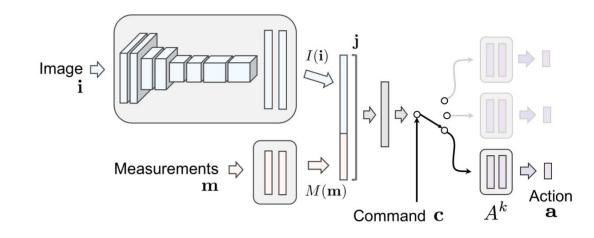
User-specified command

Approach

Option A: Input command



Option B: Branch using command



- + empirically better
- only works for discrete commands

Approach

Important details

- Data augmentation
 - Contrast
 - Brightness
 - Tone
 - Gaussian blur
 - Salt-and-pepper noise
 - Region dropout
- Adding noise to expert

Generalization

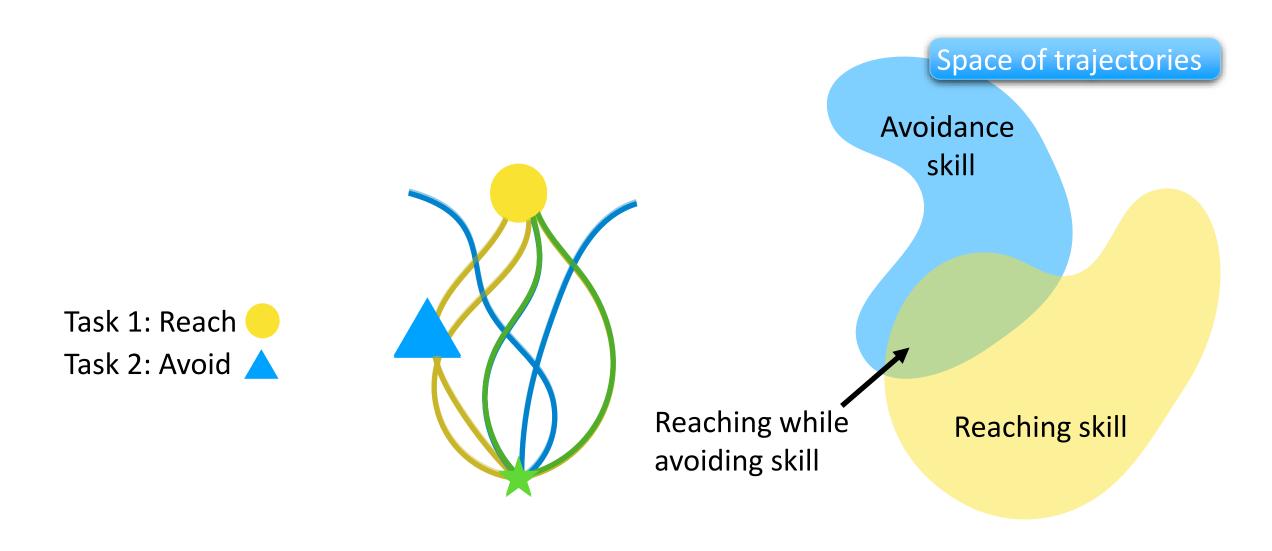
We evaluate how our model generalizes to previously unseen environments with very different appearance.

Composable Deep Reinforcement Learning for Robotic Manipulation

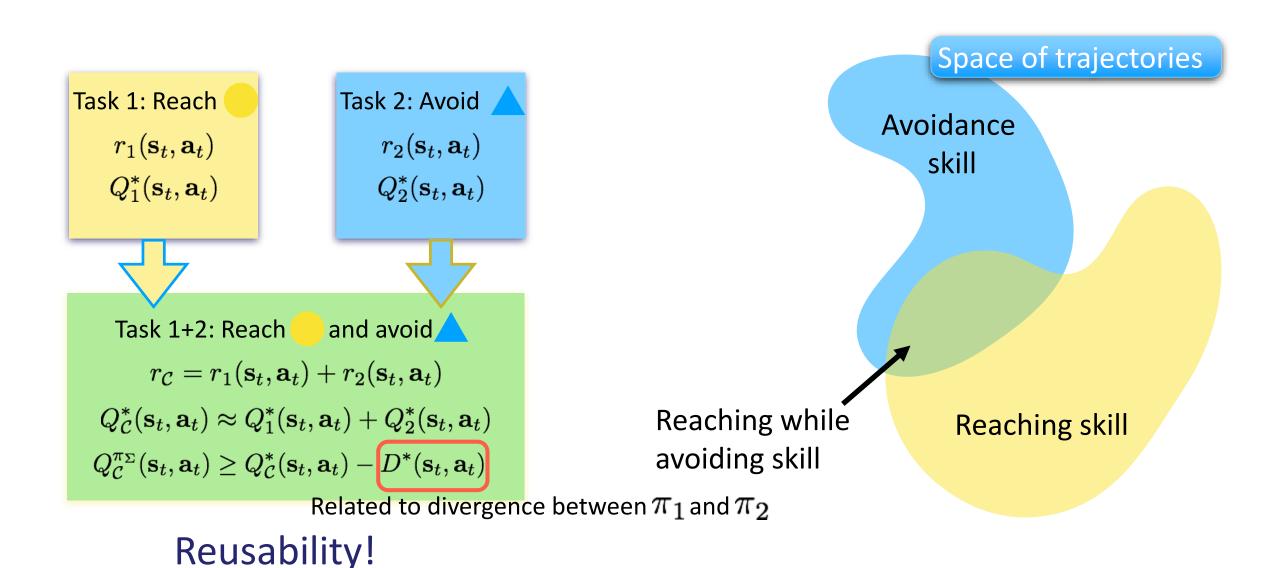
Tuomas Haarnoja¹, Vitchyr Pong¹, Aurick Zhou¹, Murtaza Dalal¹, Pieter Abbeel^{1,2}, Sergey Levine¹

[slides adapted from Tuomas Haarnoja]

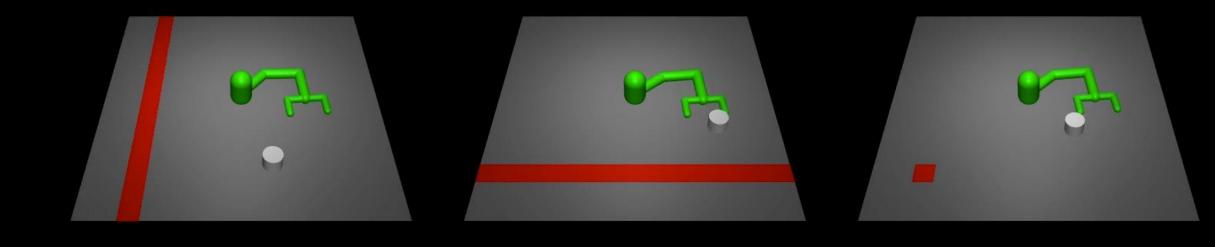
Goal



Policy Composition



Flexibility



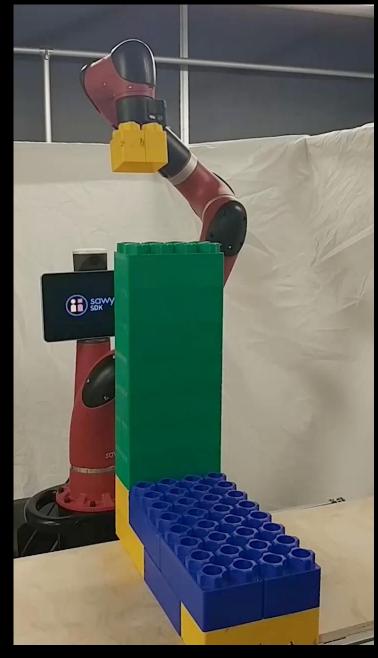
Task 1 $Q_1^*(\mathbf{s}_t, \mathbf{a}_t)$

Task 2 $Q_2^*(\mathbf{s}_t, \mathbf{a}_t)$

$$\mathsf{Task}\ \mathsf{1} + \mathsf{2}$$

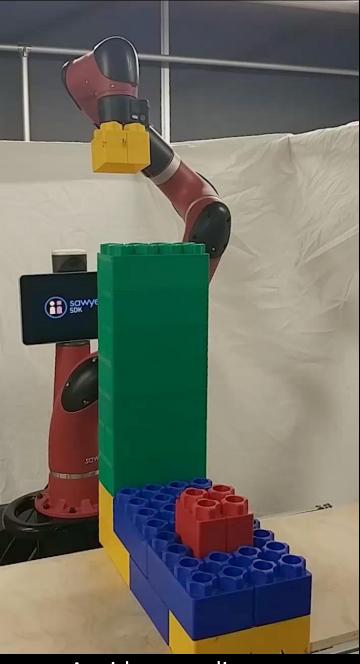
$$Q_1^*(\mathbf{s}_t, \mathbf{a}_t) + Q_2^*(\mathbf{s}_t, \mathbf{a}_t)$$

Stacking policy

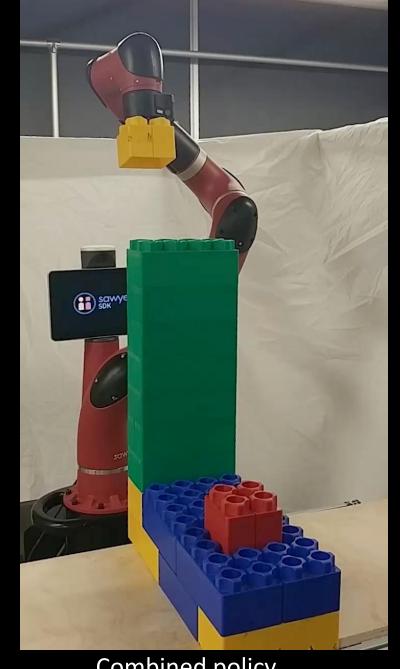


Avoidance policy

Stacking policy



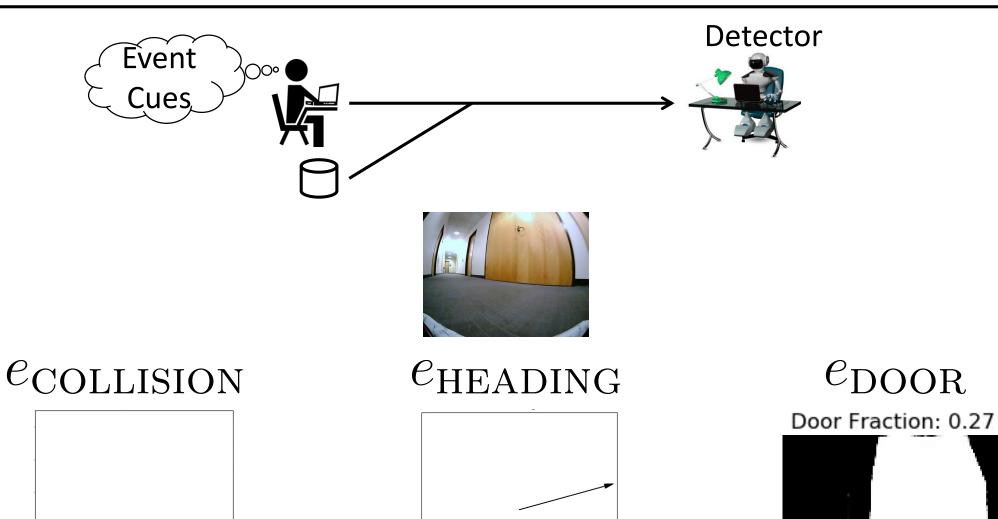
Avoidance policy

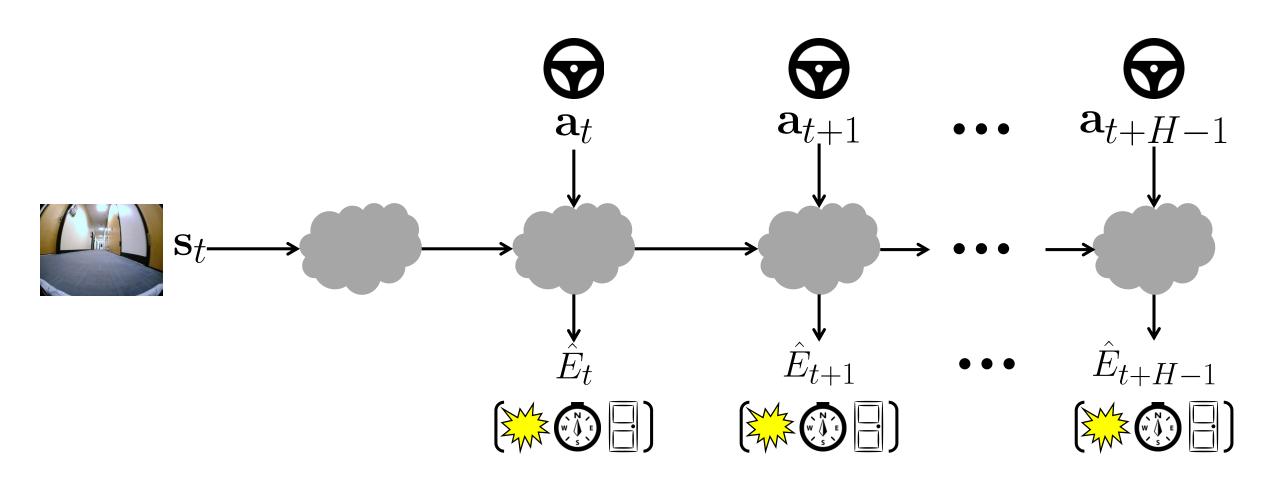


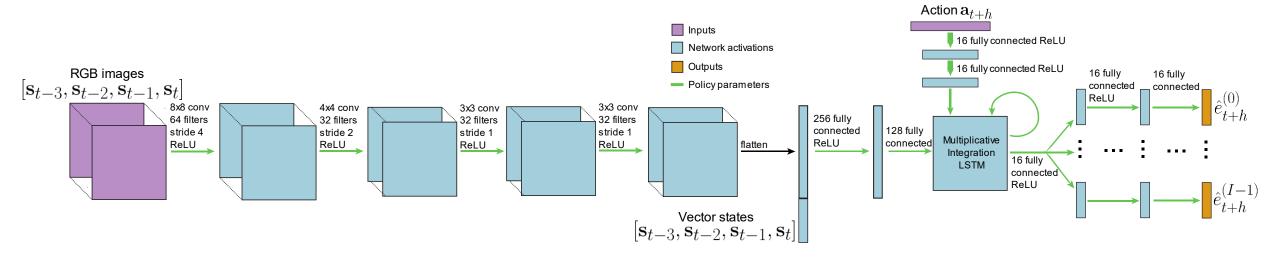
Combined policy

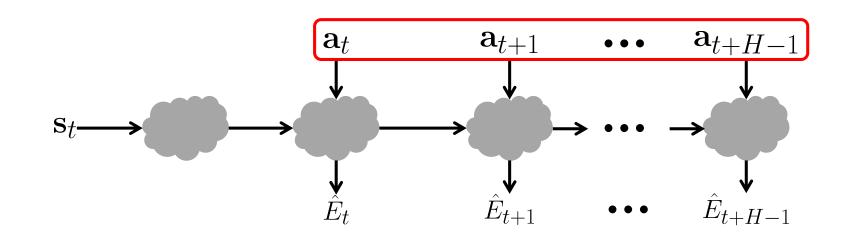
Composable Action-Conditioned Predictors: Flexible Off-Policy Learning for Robot Navigation

Gregory Kahn*, Adam Villaflor*, Pieter Abbeel, Sergey Levine

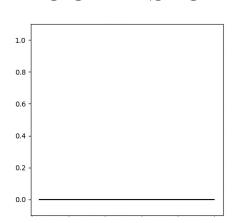




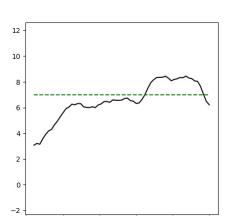




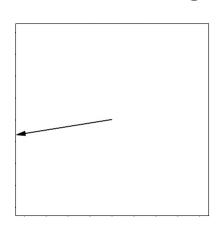
 $e_{\text{COLLISION}}$



 e_{SPEED}



 $e_{\rm HEADING}$



 $e_{\mathrm{LANE_DIFF}}$

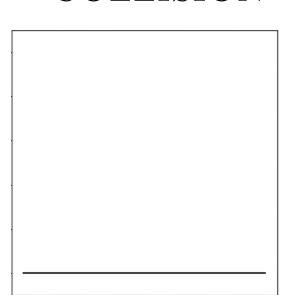
Drive at 7m/s Avoid collisions

Drive in either lane

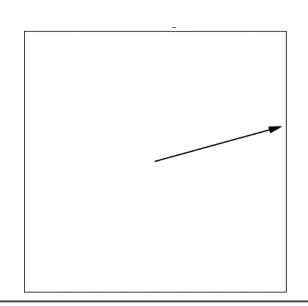
Drive in right lane

CAPs

 $e_{\text{COLLISION}}$



 $e_{\rm HEADING}$



 e_{DOOR}

Door Fraction: 0.27

Collision Avoidance

CAPs

Flexibility takeaways

- Carefully construct how your policy / model deals with goals
- Model-free methods require extra care to reuse
- Model-based methods are flexible by construction