# Distributed RL

Richard Liaw, Eric Liang

## Common Computational Patterns for RL



How can we better utilize our computational resources to accelerate RL progress?

## History of large scale distributed RL



#### 2013/2015: DQN



```
for i in range(T):
    s, a, s_1, r = evaluate()
    replay.store((s, a, s_1, r))

minibatch = replay.sample()
    q_network.update(mini_batch)

if should_update_target():
        q_network.sync_with(target_net)
```

#### 2015: General Reinforcement Learning Architecture (GORILA)



#### **GORILA Performance**



## 2016: Asynchronous Advantage Actor Critic (A3C)

```
# Each worker:
while True:
    sync_weights_from_master()

for i in range(5):
    collect sample from env

grad = compute_grad(samples)
    async_send_grad_to_master()
```



Each has different exploration -> more diverse samples!

#### A3C Performance

#### Changes to GORILA:

- 1. Faster updates
- 2. **Removes** the replay buffer
- 3. Moves to
  Actor-Critic (from Q learning)

| Method          | Training Time        | Mean   | Median |
|-----------------|----------------------|--------|--------|
| DQN             | 8 days on GPU        | 121.9% | 47.5%  |
| Gorila          | 4 days, 100 machines | 215.2% | 71.3%  |
| D-DQN           | 8 days on GPU        | 332.9% | 110.9% |
| Dueling D-DQN   | 8 days on GPU        | 343.8% | 117.1% |
| Prioritized DQN | 8 days on GPU        | 463.6% | 127.6% |
| A3C, FF         | 1 day on CPU         | 344.1% | 68.2%  |
| A3C, FF         | 4 days on CPU        | 496.8% | 116.6% |
| A3C, LSTM       | 4 days on CPU        | 623.0% | 112.6% |

Table 1. Mean and median human-normalized scores on 57 Atari games using the human starts evaluation metric. Supplementary

### Distributed Prioritized Experience Replay (Ape-X)

A3C doesn't scale very well...

#### Ape-X:

- Distributed DQN/DDPG
- 2. Reintroduces replay
- 3. **Distributed Prioritization:** Unlike
  Prioritized DQN, initial
  priorities are not set to
  "max TD"



## Ape-X Performance



Figure 2: Left: Atari results aggregated across 57 games, evaluated from random no-op starts. Right: Atari training curves for selected games, against baselines. Blue: Ape-X DQN with 360 actors; Orange: A3C; Purple: Rainbow; Green: DQN. See appendix for longer runs over all games.

#### Importance Weighted Actor-Learner Architectures (IMPALA)



## How to correct for Policy Lag? Importance Sampling!



#### Given an actor-critic model:

Apply importance-sampling to policy gradient

$$\mathbb{E}_{a_s \sim \mu(\cdot|x_s)} \left[ \frac{\pi_{\bar{\rho}}(a_s|x_s)}{\mu(a_s|x_s)} \nabla \log \pi_{\bar{\rho}}(a_s|x_s) q_s |x_s \right]$$

2. Apply importance sampling to critic update

#### 4.1. V-trace target

Consider a trajectory  $(x_t, a_t, r_t)_{t=s}^{t=s+n}$  generated by the actor following some policy  $\mu$ . We define the n-steps V-trace target for  $V(x_s)$ , our value approximation at state  $x_s$ , as:

$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left( \prod_{i=s}^{t-1} c_i \right) \delta_t V, \quad (1)$$

#### **IMPALA** Performance



Other interesting distributed

architectures

## AlphaZero



### **Evolution Strategies**

#### **Evolution Strategies as a Scalable Alternative to Reinforcement Learning**

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever OpenAI

```
Algorithm 2 Parallelized Evolution Strategies
```

```
1: Input: Learning rate \alpha, noise standard deviation \sigma, initial policy parameters \theta_0
 2: Initialize: n workers with known random seeds, and initial parameters \theta_0
 3: for t = 0, 1, 2, \dots do
       for each worker i = 1, \dots, n do
          Sample \epsilon_i \sim \mathcal{N}(0, I)
          Compute returns F_i = F(\theta_t + \sigma \epsilon_i)
 6:
       end for
        Send all scalar returns F_i from each worker to every other worker
       for each worker i = 1, \ldots, n do
          Reconstruct all perturbations \epsilon_j for j=1,\ldots,n using known random seeds
10:
          Set \theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{j=1}^n F_j \epsilon_j
11:
       end for
12:
13: end for
```



# RLlib: Abstractions for Distributed Reinforcement Learning (ICML'18)

<u>Eric Liang</u>\*, Richard Liaw\*, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, Ion Stoica

# RL research scales with compute



Fig. courtesy NVidia Inc.





Fig. courtesy OpenAl

# How do we leverage this hardware?



# Systems for RL today



- Many implementations (7000+ repos on GitHub!)
  - how general are they (and do they scale)?

PPO: multiprocessing, MPI AlphaZero: custom systems

Evolution Strategies: Redis IMPALA: Distributed TensorFlow

A3C: shared memory, multiprocessing, TF

 Huge variety of algorithms and distributed systems used to implement, but little reuse of components

# Challenges to reuse

1. Wide range of physical execution strategies for one "algorithm"



# Challenges to reuse

2. Tight coupling with deep learning frameworks







Different parallelism paradigms:

– Distributed TensorFlow vs TensorFlow + MPI?

# Challenges to reuse

#### 3. Large variety of algorithms with different structures

| Algorithm Family            | Policy Evaluation | Replay Buffer | Gradient-Based Optimizer | Other Distributed Components       |
|-----------------------------|-------------------|---------------|--------------------------|------------------------------------|
| DQNs                        | X                 | X             | X                        |                                    |
| Policy Gradient             | X                 |               | X                        |                                    |
| Off-policy PG               | X                 | X             | X                        |                                    |
| Model-Based/Hybrid          | X                 |               | X                        | Model-Based Planning               |
| Multi-Agent                 | X                 | X             | X                        |                                    |
| <b>Evolutionary Methods</b> | X                 |               |                          | Derivative-Free Optimization       |
| AlphaGo                     | X                 | X             | X                        | MCTS, Derivative-Free Optimization |

## We need abstractions for RL

Good abstractions decompose RL algorithms into reusable components.

#### Goals:

- Code reuse across deep learning frameworks
- Scalable execution of algorithms
- Easily compare and reproduce algorithms

# Structure of RL computations



# Structure of RL computations



# Many RL loop decompositions

Async DQN (Mnih et al; 2016)

Ape-X DQN (Horgan et al; 2018)





# Common components

Async DQN (Mnih et al; 2016) Ape-X DQN (Horgan et al; 2018) Replay Policy  $\pi_{\theta}(o_{t})$ **Trajectory** postprocessor  $\rho_{\alpha}(X)$ Loss  $L(\theta,X)$ 

# Common components

Async DQN (Mnih et al; 2016) Ape-X DQN (Horgan et al; 2018) Policy  $\pi_{\theta}(o_{t})$ **Trajectory** postprocessor  $\rho_{\rm e}(X)$ Loss  $L(\theta,X)$ 

## Structural differences

Async DQN (Mnih et al; 2016)

- Asynchronous optimization
- Replicated workers
- Single machine

...and this is just one family!

→ No existing system can effectively meet all the varied demands of RL workloads. Ape-X DQN (Horgan et al; 2018)

- Central learner
- Data queues between components
- Large replay buffers
- Scales to clusters
- + Population-Based Training (Jaderberg et al; 2017)
- Nested parallel computations
- Control decisions based on intermediate results

# Requirements for a new system

Goal: Capture a broad range of RL workloads with <u>high</u> <u>performance</u> and <u>substantial code reuse</u>

- 1. Support stateful computations
  - e.g., simulators, neural nets, replay buffers
  - big data frameworks, e.g., Spark, are typically stateless
- 2. Support asynchrony
  - difficult to express in MPI, esp. nested parallelism
- 3. Allow easy composition of (distributed) components

# Ray System Substrate



- RLlib builds on Ray to provide higher-level RL abstractions
- Hierarchical parallel task model with stateful workers
  - flexible enough to capture a broad range of RL workloads (vs specialized sys.)



**Hierarchical Task Model** 

### Hierarchical Parallel Task Model

- 1. Create Python class instances in the cluster (stateful workers)
- 2. Schedule short-running tasks onto workers
  - Challenge: High performance: 1e6+ tasks/s, ~200us task



## Unifying system enables RL Abstractions

Policy Optimizer Abstraction





## RLlib Abstractions in Action



# RLlib Reference Algorithms

#### High-throughput architectures

- Distributed Prioritized Experience Replay (Ape-X)
- Importance Weighted Actor-Learner Architecture (IMPALA)

#### Gradient-based

- Advantage Actor-Critic (A2C, A3C)
- Deep Deterministic Policy Gradients (DDPG)
- Deep Q Networks (DQN, Rainbow)
- Policy Gradients
- Proximal Policy Optimization (PPO)

#### Derivative-free

- Augmented Random Search (ARS)
- Evolution Strategies



Community Contributions



# RLlib Reference Algorithms

| Atari env     | RLlib IMPALA 32-workers @1 hour | Mnih et al A3C 16-workers @1 hour |
|---------------|---------------------------------|-----------------------------------|
| BeamRider     | 3181                            | ~1000                             |
| Breakout      | 538                             | ~10                               |
| Qbert         | 10850                           | ~500                              |
| SpaceInvaders | 843                             | ~300                              |

1 GPU + 64 vCPUs (large single machine)

# Scale your algorithms with RLlib

- Beyond a "collection of algorithms",
- RLlib's abstractions let you easily implement and scale new algorithms (multi-agent, novel losses, architectures, etc)



# Code example: training PPO

```
import ray
import ray.rllib.agents.ppo as ppo
from ray.tune.logger import pretty_print
ray.init()
config = ppo.DEFAULT_CONFIG.copy()
config["num_gpus"] = 0
config["num_workers"] = 1
agent = ppo.PPOAgent(config=config, env="CartPole-v0")
# Can optionally call agent.restore(path) to load a checkpoint.
for i in range(1000):
   # Perform one iteration of training the policy with PPO
   result = agent.train()
   print(pretty_print(result))
  if i % 100 == 0:
       checkpoint = agent.save()
       print("checkpoint saved at", checkpoint)
```

# Code example: multi-agent RL

```
trainer = pg.PGAgent(env="my_multiagent_env", config={
    "multiagent": {
        "policy_graphs": {
            "car1": (PGPolicyGraph, car_obs_space, car_act_space, {"gamma": 0.85}),
            "car2": (PGPolicyGraph, car_obs_space, car_act_space, {"gamma": 0.99}),
            "traffic_light": (PGPolicyGraph, tl_obs_space, tl_act_space, {}),
        },
        "policy mapping fn":
            lambda agent_id:
                "traffic_light" # Traffic lights are always controlled by this policy
                if agent_id.startswith("traffic_light_")
                else random.choice(["car1", "car2"]) # Randomly choose from car policies
        },
   },
})
while True:
    print(trainer.train())
```

# Code example: hyperparam tuning

```
import ray
import ray tune as tune
ray.init()
tune.run_experiments({
    "my_experiment": {
        "run": "PPO",
        "env": "CartPole-v0",
        "stop": {"episode_reward_mean": 200},
        "config": {
            "num_qpus": 0,
            "num_workers": 1,
            "sgd_stepsize": tune.grid_search([0.01, 0.001, 0.0001]),
       },
```

# Code example: hyperparam tuning

```
== Status ==
Using FIFO scheduling algorithm.
Resources requested: 4/4 CPUs, 0/0 GPUs
Result logdir: ~/ray_results/my_experiment
PENDING trials:
   - PPO_CartPole-v0_2_sgd_stepsize=0.0001: PENDING
RUNNING trials:
   - PPO_CartPole-v0_0_sgd_stepsize=0.01: RUNNING [pid=21940], 16 s, 4013 ts, 22 rew
   - PPO_CartPole-v0_1_sgd_stepsize=0.001: RUNNING [pid=21942], 27 s, 8111 ts, 54.7 rew
```





**Summary:** Ray and RLlib addresses challenges in providing scalable abstractions for reinforcement learning.

RLlib is open source and available at <a href="http://rllib.io">http://rllib.io</a>
Thanks!

# Ray distributed execution engine

Ray provides Task parallel and Actor APIs built on dynamic task graphs



• These APIs are used to build distributed applications, libraries and systems

# Ray distributed scheduler

- Faster than
   Python multi processing on a single node
- Competitive with MPI in many workloads

