Supervised Learning of Behaviors

CS 294-112: Deep Reinforcement Learning

Sergey Levine

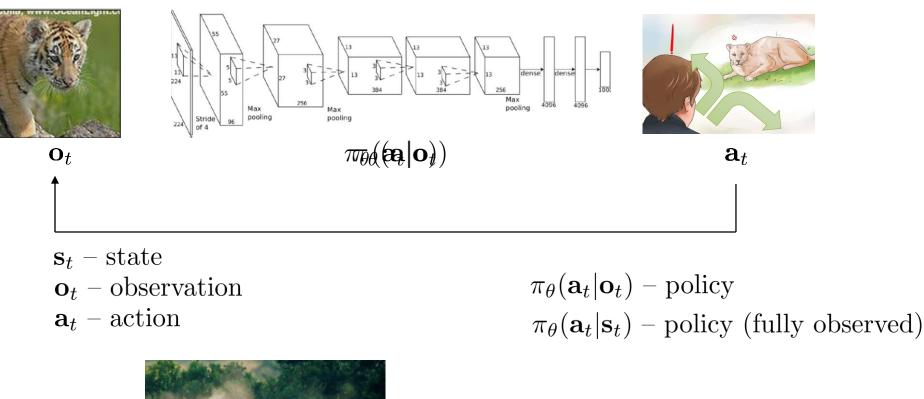
Class Notes

- 1. Make sure you sign up for Piazza!
- 2. Homework 1 is now out
- 3. Remember to start forming final project groups

Today's Lecture

- 1. Definition of sequential decision problems
- 2. Imitation learning: supervised learning for decision making
 - a. Does direct imitation work?
 - b. How can we make it work more often?
- 3. Case studies of recent work in (deep) imitation learning
- 4. What is missing from imitation learning?
- Goals:
 - Understand definitions & notation
 - Understand basic imitation learning algorithms
 - Understand their strengths & weaknesses

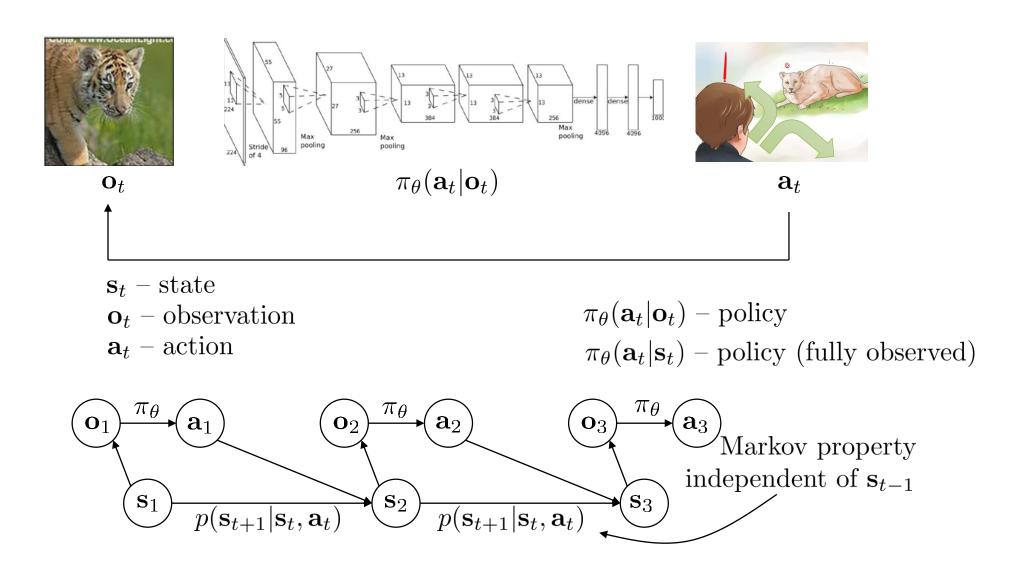
Terminology & notation




```
\mathbf{o}_t – observation
```

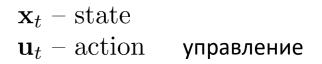
 \mathbf{s}_t – state

Terminology & notation

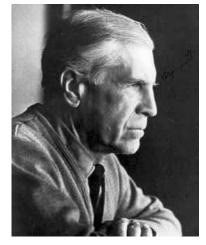


Aside: notation

 $\mathbf{s}_t - ext{state}$ $\mathbf{a}_t - ext{action}$

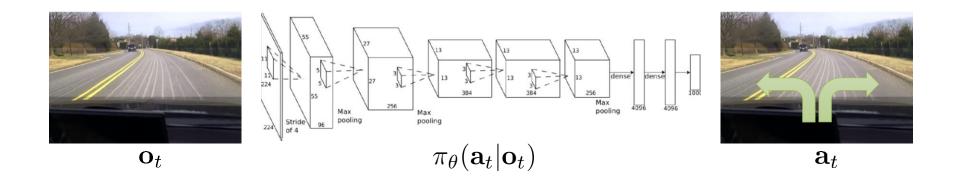


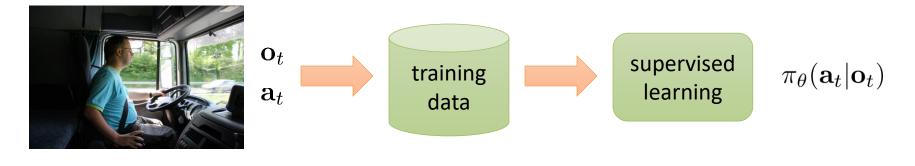
Richard Bellman



Lev Pontryagin

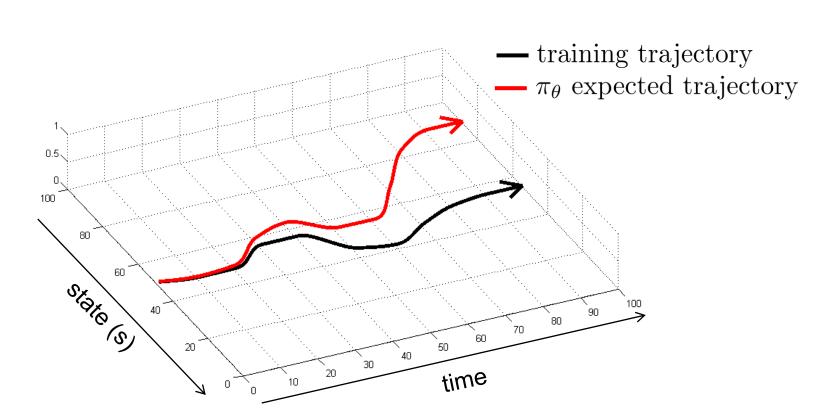
Imitation Learning





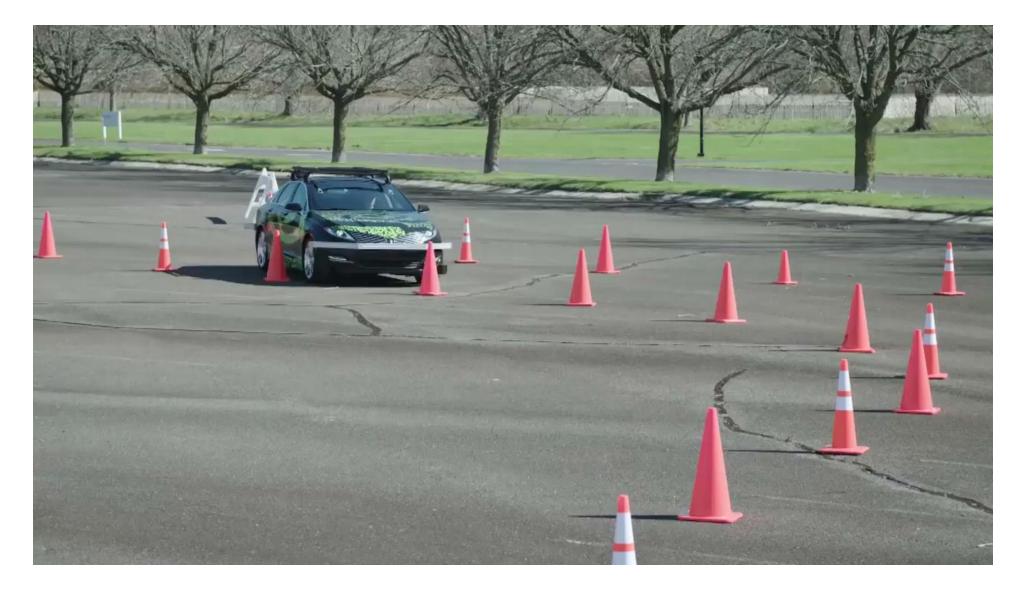
behavior cloning

Does it work?

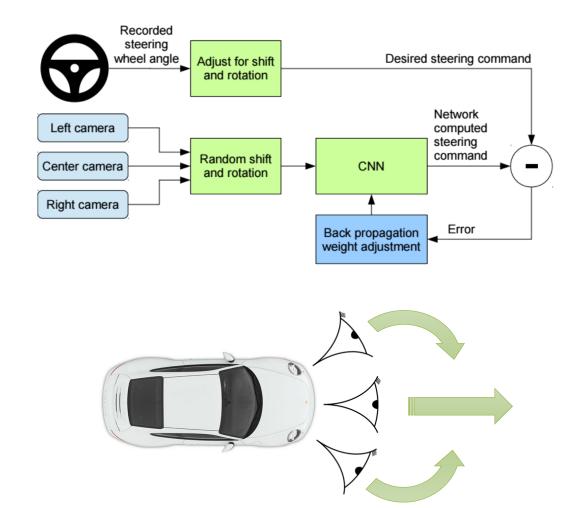


No!

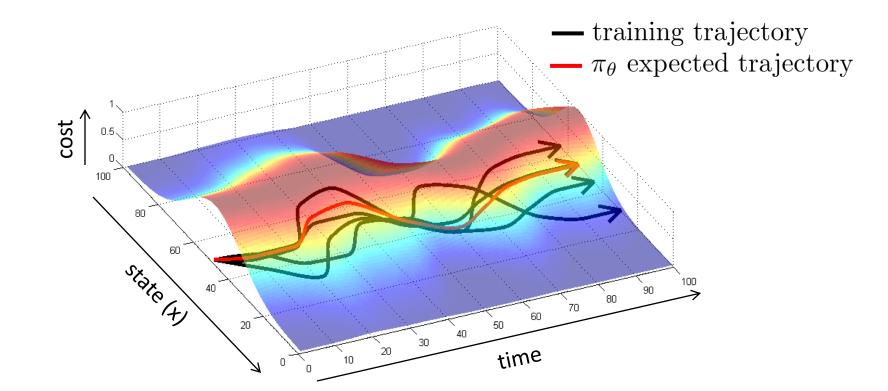
Does it work? Yes!



Why did that work?

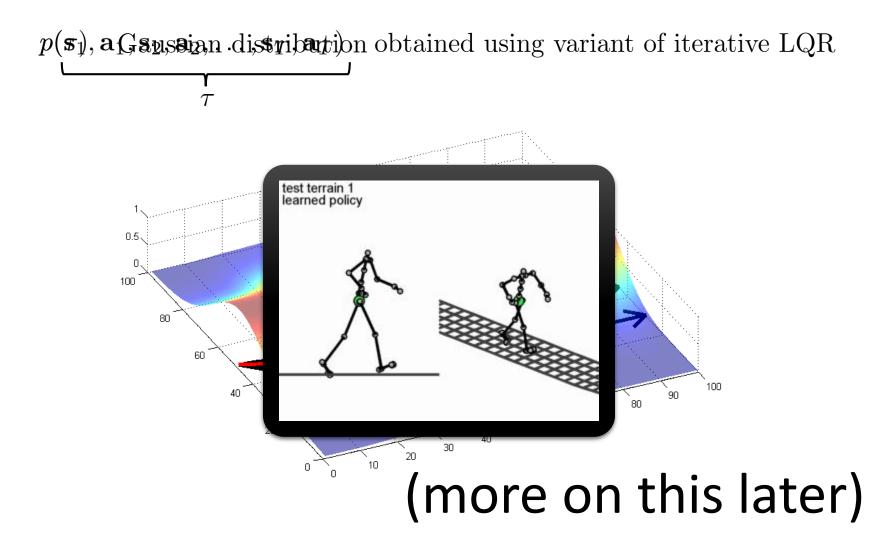


Can we make it work more often?

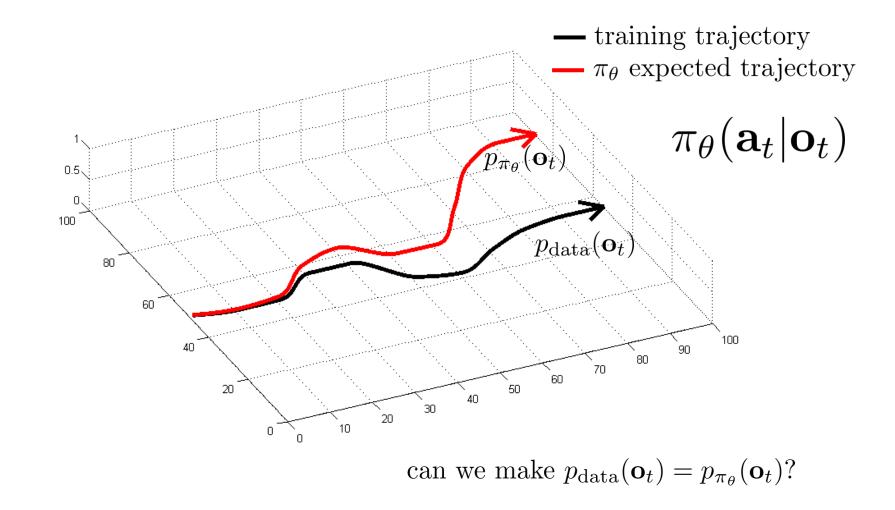


stability

Learning from a stabilizing controller



Can we make it work more often?



Can we make it work more often?

can we make $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$?

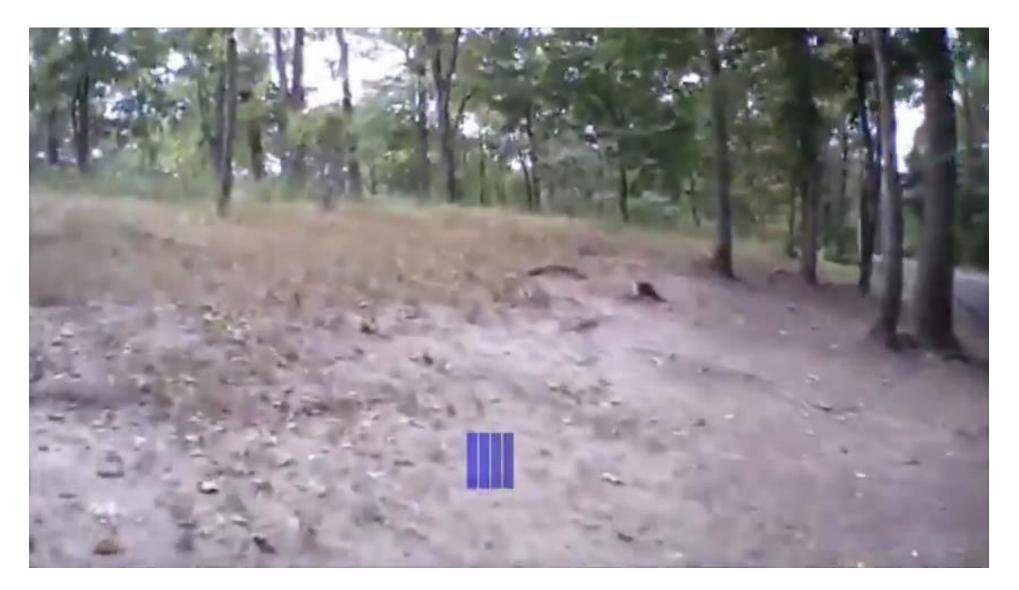
idea: instead of being clever about $p_{\pi_{\theta}}(\mathbf{o}_t)$, be clever about $p_{\text{data}}(\mathbf{o}_t)$!

DAgger: Dataset Aggregation

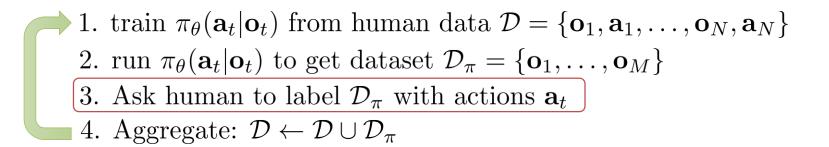
goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ but need labels \mathbf{a}_t !

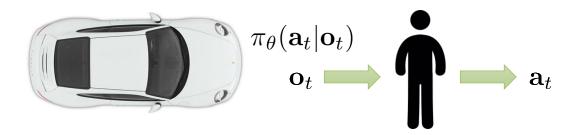
1. train $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example



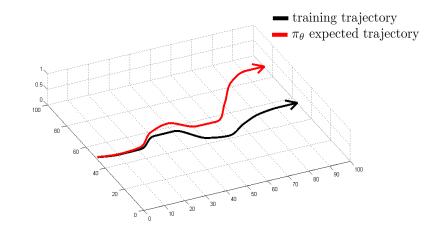
What's the problem?





Can we make it work without more data?

- DAgger addresses the problem of distributional "drift"
- What if our model is so good that it doesn't drift?
- Need to mimic expert behavior very accurately
- But don't overfit!



- 1. Non-Markovian behavior
- 2. Multimodal behavior

 $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$

behavior depends only on current observation

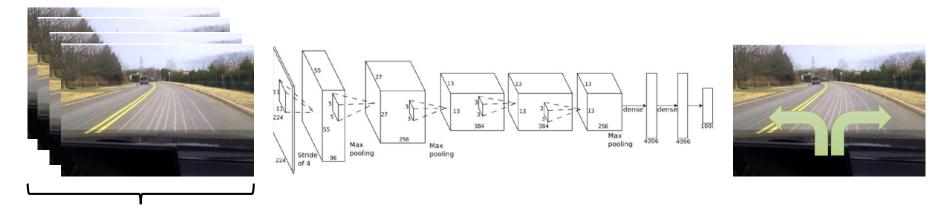
 $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_1, ..., \mathbf{o}_t)$

behavior depends on all past observations

If we see the same thing twice, we do the same thing twice, regardless of what happened before

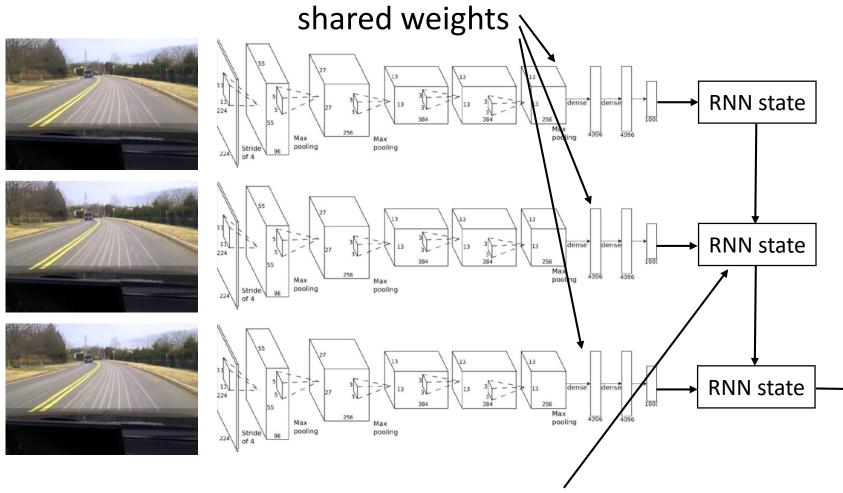
Often very unnatural for human demonstrators

How can we use the whole history?



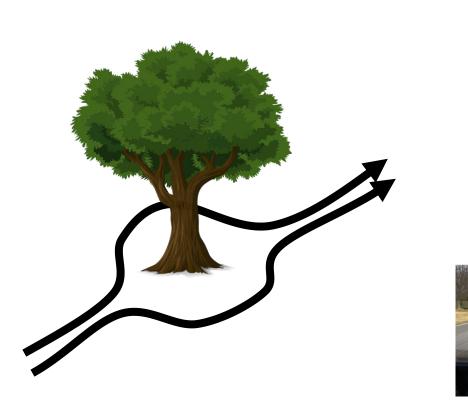
variable number of frames, too many weights

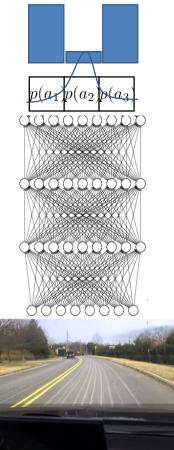
How can we use the whole history?



Typically, LSTM cells work better here

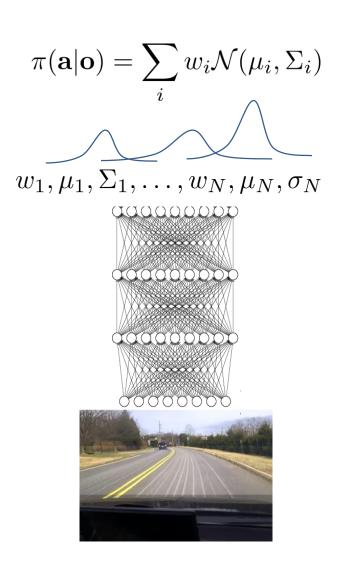
- 1. Non-Markovian behavior
- 2. Multimodal behavior





- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

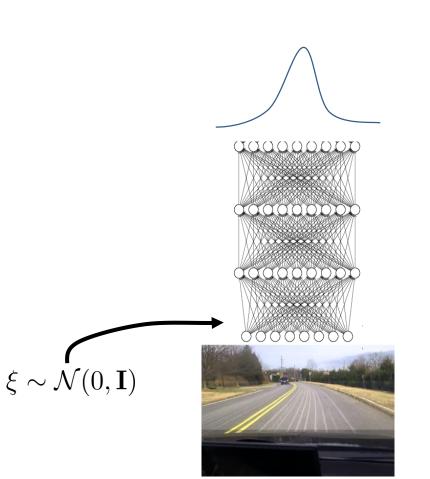
- Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

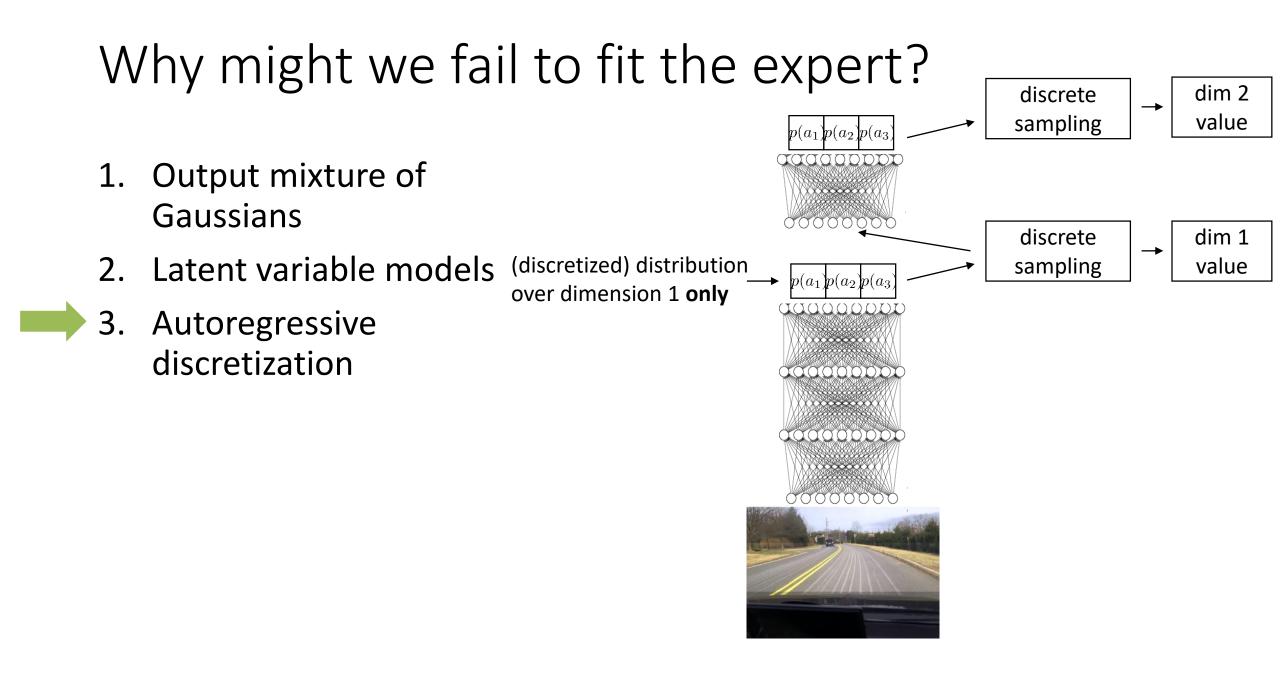


- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

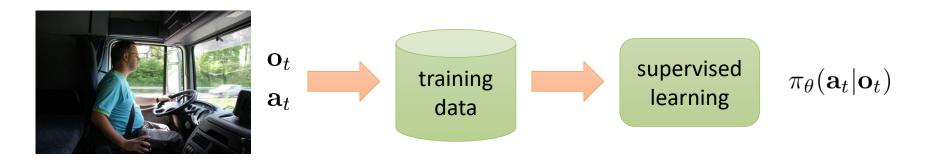
Look up some of these:

- Conditional variational autoencoder
- Normalizing flow/realNVP
- Stein variational gradient descent



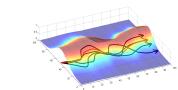


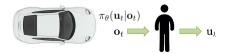
Imitation learning: recap



- Often (but not always) insufficient by itself
 - Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Samples from a stable trajectory distribution
 - Add more **on-policy** data, e.g. using Dagger
 - Better models that fit more accurately





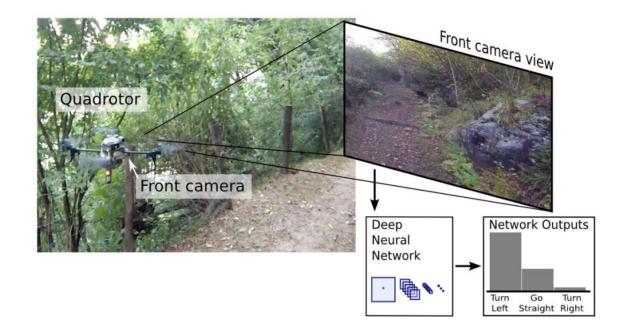


Break

Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

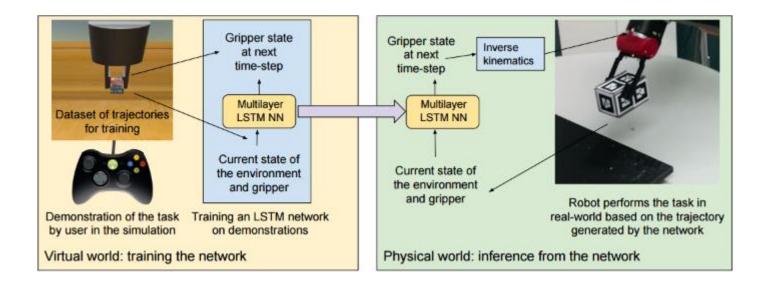
Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹



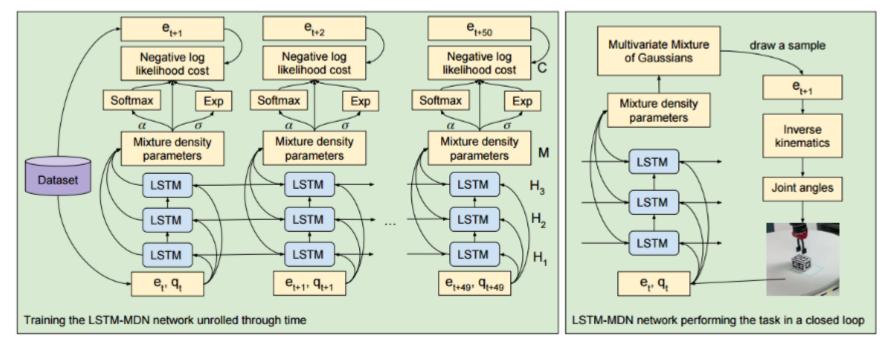
Case study 2: Imitation with LSTMs

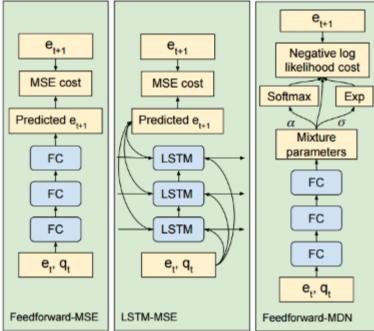
Learning real manipulation tasks from virtual demonstrations using LSTM

Rouhollah Rahmatizadeh¹, Pooya Abolghasemi¹, Aman Behal² and Ladislau Bölöni¹



Learning Manipulation Trajectories Using Recurrent Neural Networks



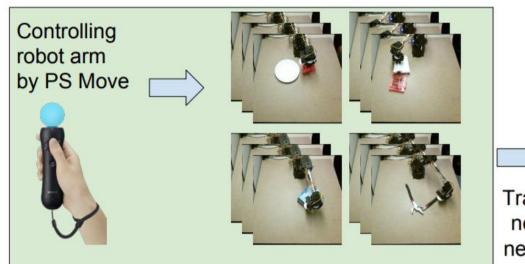


Controller	Pick and place	Push to pose
Feedfoward-MSE	0%	0%
LSTM-MSE	85%	0%
Feedforward-MDN	95%	15%
LSTM-MDN	100%	95%

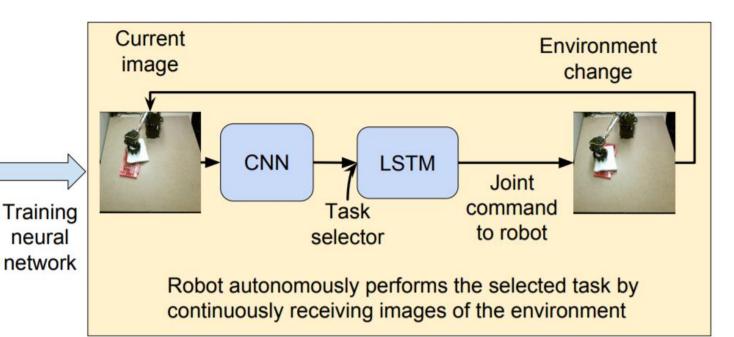
Environment	Pick and place	Push to pose
Virtual world	100%	95%
Physical world	80%	60%

Follow-up: adding vision

Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demonstration



Demonstrating multiple tasks while recording: 1) Sequence of images, 2) Robot joint commands



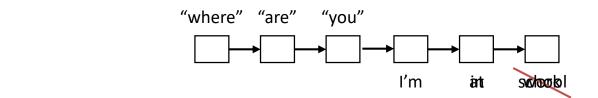
First we demonstrate different tasks to the robot using Leap Motion or PlayStation Move

Other topics in imitation learning

• Structured prediction

x: where are you

y: I'm at work



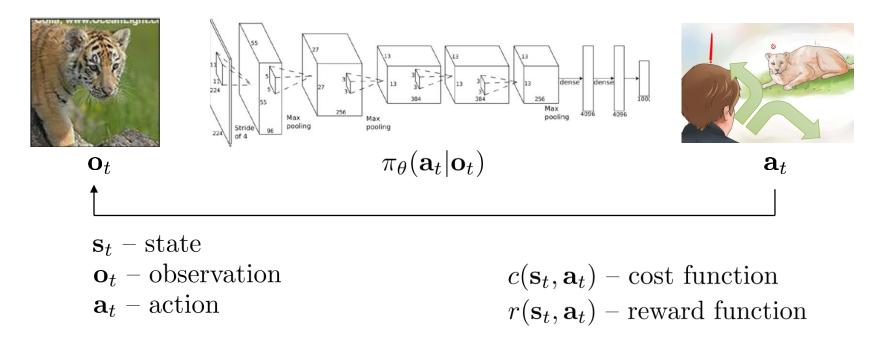
- Inverse reinforcement learning
 - Instead of copying the demonstration, figure out the goal
 - Will be covered later in this course

Imitation learning: what's the problem?

- Humans need to provide data, which is typically finite
 - Deep learning works best when data is plentiful
- Humans are not good at providing some kinds of actions

- Unlimited data from own experience
- Continuous self-improvement

Terminology & notation



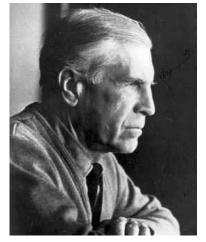
$$\min_{\mathbf{a}_1,\ldots,\mathbf{a}_T} \frac{\sum_{t=1}^T p(\mathbf{s}_t, \mathbf{a}_t) \text{byttiger} + \mathbf{a}_t, (\mathbf{s}_t, \mathbf{a}_t, \mathbf{a}_t) - 1)$$

Aside: notation

$$\mathbf{s}_t$$
 - state
 \mathbf{a}_t - action
 $r(\mathbf{s}, \mathbf{a})$ - reward function

 $\mathbf{x}_t - ext{state}$ $\mathbf{u}_t - ext{action}$ управление $c(\mathbf{x}, \mathbf{u}) - ext{cost}$ function

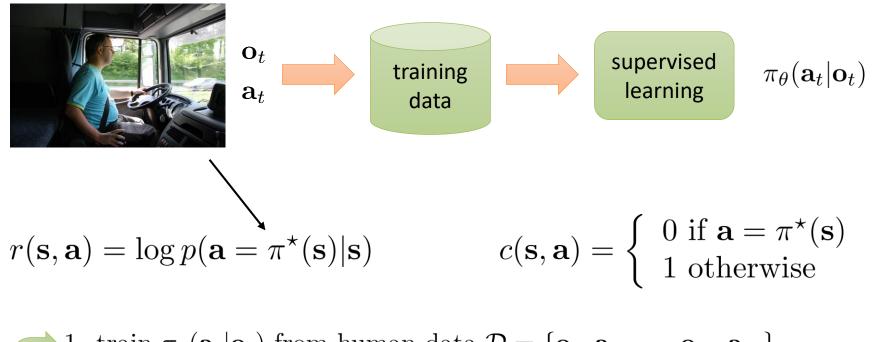
$$r(\mathbf{s}, \mathbf{a}) = -c(\mathbf{x}, \mathbf{u})$$



Lev Pontryagin

Richard Bellman

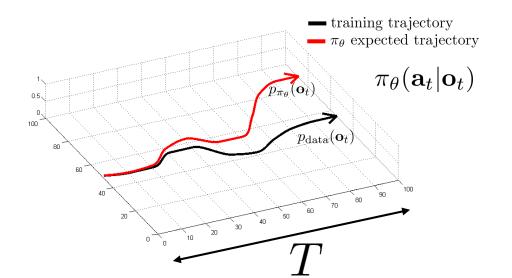
A cost function for imitation?



1. train $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Some analysis

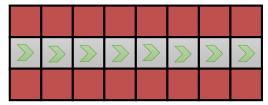
How bad is it?



$$c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^{\star}(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$$

assume:
$$\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$$

for all $\mathbf{s} \in \mathcal{D}_{\text{train}}$



$$E\left[\sum_{t} c(\mathbf{s}_{t}, \mathbf{a}_{t})\right] \leq \epsilon T +$$

$$O(\epsilon T^{2}) \qquad T \text{ terms, each } O(\epsilon T)$$

More general analysis $c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^*(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$

with DAgger, $p_{\text{train}}(\mathbf{s}) \rightarrow p_{\theta}(\mathbf{s})$ assume: $\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$ for all $\mathbf{s} \in \mathcal{D}_{\text{train}}$ for $\mathbf{s} \sim p_{\text{train}}(\mathbf{s})$ $E\left|\sum_{t} c(\mathbf{s}_t, \mathbf{a}_t)\right| \leq \epsilon T$ if $p_{\text{train}}(\mathbf{s}) \neq p_{\theta}(\mathbf{s})$: $p_{\theta}(\mathbf{s}_t) = (1-\epsilon)^t p_{\text{train}}(\mathbf{s}_t) + (1-(1-\epsilon)^t)) p_{\text{mistake}}(\mathbf{s}_t)$ probability we made no mistakes some other distribution $|p_{\theta}(\mathbf{s}_t) - p_{\text{train}}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\text{train}}(\mathbf{s}_t)| \le 2(1 - (1 - \epsilon)^t)$ $\leq 2\epsilon t$ useful identity: $(1-\epsilon)^t \ge 1-\epsilon t$ for $\epsilon \in [0,1]$ $\sum_{t} E_{p_{\theta}(\mathbf{s}_{t})}[c_{t}] = \sum_{t} \sum_{s_{t}} p_{\theta}(\mathbf{s}_{t})c_{t}(\mathbf{s}_{t}) \leq \sum_{t} \sum_{s_{t}} p_{\text{train}}(\mathbf{s}_{t})c_{t}(\mathbf{s}_{t}) + |p_{\theta}(\mathbf{s}_{t}) - p_{\text{train}}(\mathbf{s}_{t})|c_{\max}|$ $\leq \sum \epsilon + 2\epsilon t$ $O(\epsilon T^2)$

For more analysis, see Ross et al. "A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning"

Cost/reward functions in theory and practice

 $r(\mathbf{s}, \mathbf{a}) = \begin{cases} 1 \text{ if object at target} \\ 0 \text{ otherwise} \end{cases}$

$$r(\mathbf{s}, \mathbf{a}) = -w_1 \| p_{\text{gripper}}(\mathbf{s}) - p_{\text{object}}(\mathbf{s}) \|^2 + \\ -w_2 \| p_{\text{object}}(\mathbf{s}) - p_{\text{target}}(\mathbf{s}) \|^2 + \\ -w_3 \| \mathbf{a} \|^2$$

$$r(\mathbf{s}, \mathbf{a}) = \begin{cases} 1 \text{ if walker is running} \\ 0 \text{ otherwise} \end{cases}$$

$$r(\mathbf{s}, \mathbf{a}) = w_1 v(\mathbf{s}) + w_2 \delta(|\theta_{\text{torso}}(\mathbf{s})| < \epsilon) + w_3 \delta(h_{\text{torso}}(\mathbf{s}) \ge h)$$

The trouble with cost & reward functions

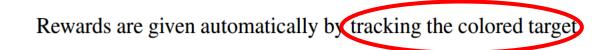
reward

Mnih et al. '15 reinforcement learning agent

what is the reward?

Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, Raia Hadsell

Google DeepMind London, UK {andreirusu, matejvecerik, tcr, heess, razp, raia}@google.com



More on this later...

A note about terminology...

the "R" word

a bit of history...

reinforcement learning (the **problem** statement)

$$\max \sum_{t=1}^{T} E[r(\mathbf{s}_t, \mathbf{a}_t)] \quad \mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

reinforcement learning (the **method**)

without using the **model**

 $\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$

Lev Pontryagin

Richard Bellman

Andrew Barto

Richard Sutton