Transfer and Multi-Task
Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine



Class Notes

1. The project milestone is next week!
2. HW4 due tonight!

3. HWS5 releases shortly (Wed or Fri)
* Three different options: maximum entropy RL, exploration, meta-learning
* (meta-learning portion taking a little bit longer to set up, Piazza post shortly)



How can we frame transfer learning problems?

1.

No single solution! Survey of various recent research papers

“Forward” transfer: train on one task, transfer to a new task
a) Justtry it and hope for the best

b) Finetune on the new task

c) Architectures for transfer: progressive networks

d) Randomize source task domain

Multi-task transfer: train on many tasks, transfer to a new task
a) Model-based reinforcement learning

b) Model distillation

c) Contextual policies

d) Modular policy networks

Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning



How can we frame transfer learning problems?

1. “Forward” transfer: train on one task, transfer to a new task
a) Justtry it and hope for the best
b) Finetune on the new task
c) Architectures for transfer: progressive networks
d) Randomize source task domain



Finetuning

The most popular transfer learning method in (supervised) deep learning!

‘i IMAGENET

nnnnnnnnnnnnnn

Where are the “ImageNet” features of RL?



Challenges with finetuning in RL

1. RL tasks are generally much less diverse
* Features are less general
 Policies & value functions become overly specialized

2. Optimal policies in fully observed MDPs are
deterministic
* Loss of exploration at convergence
* Low-entropy policies adapt very slowly to new settings




Finetuning with maximum-entropy policies

How can we increase diversity and entropy?

m(als) = exp(Qg¢(s,a)—V (s)) optimizes ), Fr(s, a,)[7(St, ar)|+Ers) [H(m(ar]s))]

policy entropy

Act as randomly as possible while collecting high rewards!



Example: pre-training for robustness

Learning to solve a task in all possible ways provides for more robust
transfer!



Example: pre-training for diversity

Pretraining: reward = speed (any direction)

(one robot per trajectory)

‘ random pretrained with pretrained with
DDPG (policy 1) Soft Q-learning (fixed policy) initialization DDPG soft Q-learning

25 random seeds; noise addded to actions random seeds 0 - 24

Wide hallway 1000 Narrow hallway 2500 U-shaped maze

q 2000
A 1500 F--eommveee oo b DO A
s 1000 [ S Rl L LT WA

1 L L 1 1
0 50 100 150 200 0 50 100 150 200 1} 50 100 150 200

—— MaxEnt init random init —— DDPG init

I o
.

Haarnoja*, Tang*, et al. “Reinforcement Learning with Deep Energy-Based Policies”



Architectures for transfer: progressive networks

* An issue with finetuning
* Deep networks work best when they are big

* When we finetune, we typically want to use a little
bit of experience

m(als)

* Can we somehow finetune a small network, but still

finetune only this?

} (comparatively)

small FC layer

* Little bit of experience + big network = overfitting A } big FC layer

pretrain a big network?

* |dea 1: finetune just a few layers
* Limited expressiveness
* Big error gradients can wipe out initialization

big
= convolutional
tower




Architectures for transfer: progressive networks

* An issue with finetuning
* Deep networks work best when they are big

* When we finetune, we typically want to use a little
bit of experience

* Little bit of experience + big network = overfitting

* Can we somehow finetune a small network, but still
pretrain a big network?

* |dea 1: finetune just a few layers
* Limited expressiveness
* Big error gradients can wipe out initialization

* |dea 2: add new layers for the new task
* Freeze the old layers, so no forgetting

Rusu et al. “Progressive Neural Networks”



Architectures for transfer: progressive networks

* An issue with finetuning
* Deep networks work best when they are big

* When we finetune, we typically want to use a little
bit of experience

* Little bit of experience + big network = overfitting

* Can we somehow finetune a small network, but still | /
pretrain a big network?

* |dea 1: finetune just a few layers
* Limited expressiveness
* Big error gradients can wipe out initialization

* |dea 2: add new layers for the new task
* Freeze the old layers, so no forgetting

Rusu et al. “Progressive Neural Networks”



Architectures for transfer: progressive networks

Does it work? sort of...
Pong Soup Atari Labyrinth

Mean (%) Median (%) Mean (%) Median (%) Mean (%) Median (%)
Baseline 1 100 100 100 100 100 100
Baseline 2 35 7 41 21 88 85
Baseline 3 181 160 133 110 235 112
Baseline 4 134 131 96 95 185 108
Progressive 2 col 209 169 132 112 491 115
Progressive 3 col 222 183 140 111 — —
Progressive 4 col — — 141 116 — —

Table 1: Transfer percentages in three domains. Baselines are defined in Fig. 3.

source task

target task

11
11
EER

, ]

. random

input it input input input -=-
(1) Baseline 1 (2) Baseline 2 (3) Baseline 3  (4) Baseline 4 (5) Progressive Net (6) Progressive Net fl-r;z;]-;

2 columns 3 columns

Rusu et al. “Progressive Neural Networks”



Architectures for transfer: progressive networks

Does it work? sort of...

+ alleviates some issues T e
with finetuning z

o v "
. z == Wide column (progressive)
- not obvious how — Naron column regressve
w Wide column (finetuned)
= Narrow column (from scratch)

Serious these issues are 5 = =+ Wide column (from scratch)

0 10000 20000 30000 40000 50000 60000
Steps

Rusu et al. “Progressive Neural Networks”



Finetuning summary

* Try and hope for the best
* Sometimes there is enough variability during training to generalize

* Finetuning
* A few issues with finetuning in RL
* Maximum entropy training can help

* Architectures for finetuning: progressive networks
* Addresses some overfitting and expressivity problems by construction



What if we can manipulate the source domain?

 So far: source domain (e.g., empty room) and target domain (e.g.,
corridor) are fixed

* What if we can design the source domain, and we have a difficult
target domain?

e Often the case for simulation to real world transfer

 Same idea: the more diversity we see at training time, the better we
will transfer!



EPOpt:

train

L1

adapt

S

4000

3500-
© 3000
g
€ 2500-
€ 2000+
o
€ 1500
& 1000

500

training on single torso mass

—_—m= —_—m=

| — m=

Friction

4

5

Torso Mass

2.4 4
2.2 1
2.0
1.8
1.6
1.4

1.0

2.4
2.2
2.0 1
1.8
1.6
1.4
1.2+

1.0

6 7 8 9 3 4 5 6 7 8 9 3

Torso Mass

ensemble adaptation

Ilter 0

Ilter 1

4 5 6 7
Torso Mass

X

Ilter 2

(@g

5 10 15 20 0O 5 10

Torso Mass

Rajeswaran et al., “EPOpt: Learning robust neural network policies...”

15 20

8

randomizing physical parameters

training on model ensemble

Ensembl

3 4 5 6 7 8 9
Torso Mass

unmodeled effects

Hopper
mass 6.0 1.5 30 9.0

ground friction 2.0 025 15 25
joint damping 2.5 1.0 1.0 4.0

W o low  high

armature 10 025 05 15
Half-Cheetah 4 o low  high
mass 6.0 1.5 3.0 9.0

ground friction 0.5 01 03 07
joint damping 1.5 05 05 25

armature 0.125 0.04 0.05 0.2
4000
3500 4
3000 A
& 2500
[ =
©
£ 2000 4
o
£
& 1500
1000 |
500 —— Ensemble (unmodeled)
—— Maximum-Likelihood
0 - - ; ; :
3 4 5 6 7 8 9

Torso Mass



Preparing for the unknown: explicit system ID

system identification RNN

Xt—1

Us—1 ¢) : (mt—h.:t: ut—h.:t—l) =
-
i i L LR et model parameters (e.g., mass)
7}

Xt—h .
policy y
Ui —p . (:B,p)l—}u IR e s )

,

il i UP = T fﬁ.(mj u} ] 1.0
0.8

Xt4+1

—— UP-true
—— Regular
—— UP-05I

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
COM Offset

Yu et al., “Preparing for the Unknown: Learning a Universal Policy with Online System Identification”



Another example

Xue Bin Peng et al., “Sim-to-Real Transfer of Robotic Control with Dynamics Randomization”



CAD2RL: randomization for real-world control

also called domain randomization

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”



CAD2RL: randomization for real-world control

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”



Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”



Randomization for manipulation

L
N |
! Tobin, Fong, Ray, Schneider, Zaremba, Abbeel

ilil%l% James, Davison, Johns

. —. N;w.



What if we can peek at the target domain?

* So far: pure O-shot transfer: learn in source domain so that we can
succeed in unknown target domain

* Not possible in general: if we know nothing about the target domain,
the best we can do is be as robust as possible

* What if we saw a few images of the target domain?




Better transfer through domain adaptation

lllll taSK
loss

real-syn
weak : 5 : pairwise
pairs loss
lllll task
loss
H real-syn 5 5 | t :
real images nomaligned ! confusion
- - N pairs =

e ]

pose regression convnet
(shared weights)

__gu'®

adversarial loss causes
internal CNN features to be
indistinguishable for sim and real

Tzeng*, Devin*, et al., “Adapting Visuomotor Representations with Weak Pairwise Constraints”



Domain adaptation at the pixel level

can we learn to turn synthetic images into realistic ones?

~ =

Generator G s|s||e
— skip connection i £l Z2ll>
3 5 S 2 2|2l |2
> Q| = 4 5 (§ ® |2 c| c ~
AEERERE T - E
| — .. [] : — w
2] — b 8 A o - e s> b= |l m m
g v | 8 & il = - - @ Ol N 313 <
c||3 |~ re) » I . A= 2| P &
N~ c | = N Q = 8 c 9 x £
x c = |l = ) Z | Z2 -
~ 1 -~ |1 @&
L J 172] & [
[ ) S| |%
S ) G c = ~
\_ A=

)

Discriminator D

W,

Patches
70x70x6

{ real/fake ]

n64s2::relu
n128s2:IN:relu
n256s2:IN:relu
n256s2:IN:relu
n1s1:sigmoid

xfzﬂ
=
. = ) KL J\ )L L k ) /

Bousmalis et al., “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”




Bousmalis et al., “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”



Forward transfer summary

* Pretraining and finetuning
 Standard finetuning with RL is hard
* Maximum entropy formulation can help

* How can we modify the source domain for transfer?
* Randomization can help a lot: the more diverse the better!

* How can we use modest amounts of target domain data?

 Domain adaptation: make the network unable to distinguish observations
from the two domains

 ...or modify the source domain observations to look like target domain

* Only provides invariance — assumes all differences are functionally irrelevant;
this is not always enough!



Forward transfer suggested readings

Haarnoja*, Tang*, et al. (2017). Reinforcement Learning with Deep Energy-Based Policies.
Rusu et al. (2016). Progress Neural Networks.

Rajeswaran, et al. (2017). EPOpt: Learning Robust Neural Network Policies Using Model
Ensembles.

Sadeghi & Levine. (2017). CAD2RL: Real Single Image Flight without a Single Real Image.

Tobin et al. (2017). Domain Randomization for Transferring Deep Neural Networks from
Simulation to the Real World.

Tzeng*, Devin*, et al. (2016). Adapting Deep Visuomotor Representations with Weak Pairwise
Constraints.

Bousmalis et al. (2017). Using Simulation and Domain Adaptation to Improve Efficiency of Deep
Robotic Grasping.



Break



How can we frame transfer learning problems?

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Model-based reinforcement learning
b) Model distillation
c) Contextual policies
d) Modular policy networks



Multiple source domains

* So far: more diversity = better transfer

* Need to design this diversity
e E.g., simulation to real world transfer: randomize the simulation

 What if we transfer from multiple different tasks?
* In a sense, closer to what people do: build on a lifetime of experience

e Substantially harder: past tasks don’t directly tell us how to solve the task in
the target domain!



Model-based reinforcement learning

* If the past tasks are all different, what do they have in common?

 |dea 1: the laws of physics
* Same robot doing different chores
* Same car driving to different destinations
* Trying to accomplish different things in the same open-ended video game

e Simple version: train model on past tasks, and then use it to solve
new tasks

* More complex version: adapt or finetune the model to new task

* Easier than finetuning the policy is task is very different but physics are mostly
the same



Model-based reinforcement learning

Example: 1-shot learning with model priors

Fu et al., “One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation...”



f

R orior: empirical recent

e — o ' estimate: « experience
D s MO 2 ~

(oot ] K (Xtv Ug, Xt-l—l)

Contextual Network

posterior:
21,

Fu et al., “One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation...”



1x Speed (real-time) autonomous execution

Fu et al., “One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation...”



Can we solve multiple tasks at once?

 Sometimes learning a model is very hard

e Can we learn a multi-task policy that can simultaneously perform
many tasks?

e Use simultaneously transfer
* |dea 1: construct a joint MDP

mian|so
/\ a7 S0 ( ) > S > etc. MDPO

pick MDP randomly o (a0]s0)

. L - /s
in first state p(so) samele Lo, 01%0) , s » etc. MDP1
‘‘‘‘ amp),

~~~~~ . W(ao So)

S » S > etc. MDP2

* |dea 2: train in each MDP separately, and then combine the policies



Actor-mimic and policy distillation

Goal: learn a single policy that can play all Atari games

POLICY DISTILLATION

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Giilcehre; Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu & Raia Hadsel

Google DeepMind
ACTOR-MIMIC
DEEP MULTITASK AND TRANSFER REINFORCEMENT
LEARNING

Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov
Department of Computer Science
University of Toronto

Slide adapted from C. Finn



Background: Ensembles & Distillation

Ensemble models: single models are often not the most robust —
instead train many models and average their predictions

this is how most ML competitions (e.g., Kaggle) are won
this is very expensive at test time

Can we make a single model that is as good as an ensemble?

Distillation: train on the ensemble’s predictions as “soft” targets

logit —

Oeo=0000°0
exp(z;/T) IR
D; = 222 2L22 0 29
Zj exp(zj/T) temperature 438,33 33 2%7%
FASNYE gy a ¢y
o, ® . 5 535 s
Intuition: more knowledge in soft targets than hard labels! <20 cL077
2FF7Z 0L 70T
/88837738
Slide adapted from G. Hinton, see also Hinton et al. “Distilling the Knowledge in a Neural Network” 19?232999797%



Distillation for Multi-Task Transfer

L= Z T, (als) log man N (als)

(just supervised learning/distillation)

analogous to guided policy search, but
for transfer learning

some other details
(e.g., feature regression objective)

— see paper
Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”



Distillation Transfer Results

%10% ATLANTIS - BOXING I BREAKOUT . %104 CRAZY CLIMBER
(e} T 8 T 8 w T
—AMN
DQN a me "”/| ‘ | .ﬁl| ,
DQN-MaX ﬂ f rlll |1|II|‘|I ll "' I' | 1" f\ I1|J'\I|II[\‘| '. !||\ | ' i
" _F‘)QN'Mean ‘ ‘ 8 - B | ‘ J||I|| I||| || | |'|[ i “I ‘ - | ‘-'I” I||| ||LJ ||| || || |LJII| ||| |I I|| |||I
| ﬂ i ‘ 1] S| |"||| || o | |I *L l Al
i WWM ""1 Bl | i W’ i AS
| R di |
;“.,J /N W | ﬁwl'.ﬁ- I Idr |‘*||I |'| i|"'|1||| | | |/ |
d | ||II\”..II fl 1 I ! I — I | | /
o W T T |[ gl ol . ol .
= ENDURO ~ PONG 24 SEAQUEST ~ SPACE INVADERS
o T o y o T o T
o o o
i
| ﬁ | &l rrw T A |"'.
iy M L |'| L If |||I|%V{,WJ || | I J | | A '“
. 1 |/ | | N | - b Al |
% L | I?y‘ | \A P "h I|r!l4|ll|I ”l' ,ﬂ'”' P“ L\l b = |'|!I'III | | ’ JI l||I|1 'l'l III }
o III:_& lrw\ v |rl|| vl]! n'llﬁ' |“I|-'||‘,'| T\f\rﬁ ||M|:|! I'..}iff\q:rflhili\wﬁ'{ &ql'uf o | N 8 I |"II I\J r‘|lll| % N q W[ '. A WVW W/ ||
II| I ' {f |1 \ I ." | |
'i If I A -
I M
o L : é : o ! ;
0 50 100 0 50 100 100 0 50 100

Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”



How does the model know what to do?

 So far: what to do is apparent from the input (e.g., which game is
being played)

 What if the policy can do multiple things in the same environment?




Contextual policies

standard policy: mg(als) Y

contextual policy: mg(als,w)

e.g., do dishes or laundry

formally, simply defines augmented state space: s = [ i ] S=8x0

w: stack location w: walking direction w: where to hit puck

images: Peng, van de Panne, Peters



Contextual policies

standard policy: mg(als)

contextual policy: m(als. w)

will discuss more in the context
of meta-learning!

w: where to hit puck

w: stack location w: walking direction

images: Peng, van de Panne, Peters



Architectures for multi-task transfer

* So far: single neural network for all tasks (in the end)

* What if tasks have some shared parts and some distinct parts?

* Example: two cars, one with camera and one with LIDAR, driving in two
different cities

* Example: ten different robots trying to do ten different tasks

* Can we design architectures with reusable components?

Modular Policies



Modular networks

Robots

s
B

action

= A

Robot
Specific

e

Task
Specific

Devin*, Gupta™, et al. “Learning Modular Neural Network Policies...”

- A/

state




Modular networks

Robots
3link 3link different config 4link
Tasks
Reach
Push Unseen World

Peg insert




Multi-task learning summary

* More tasks = more diversity = better transfer
e Often easier to obtain multiple different but relevant prior tasks
* Model-based RL: transfer the physics, not the behavior

* Distillation: combine multiple policies into one, for concurrent multi-
task learning (accelerate all tasks through sharing)

* Contextual policies: policies that are told what to do
* Architectures for multi-task learning: modular networks



Suggested readings

Fu etal. (2016). One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and
Neural Network Priors.

Rusu et al. (2016). Policy Distillation.
Parisotto et al. (2016). Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning.

Devin*, Gupta*, et al. (2017). Learning Modular Neural Network Policies for Multi-Task and
Multi-Robot Transfer.



How can we frame transfer learning problems?

more on this next time!

3. Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning



