Transfer and Multi-Task Learning

CS 294-112: Deep Reinforcement Learning
Sergey Levine

Class Notes

- 1. The project milestone is next week!
- 2. HW4 due tonight!
- 3. HW5 releases shortly (Wed or Fri)
 - Three different options: maximum entropy RL, exploration, meta-learning
 - (meta-learning portion taking a little bit longer to set up, Piazza post shortly)

How can we frame transfer learning problems?

No single solution! Survey of various recent research papers

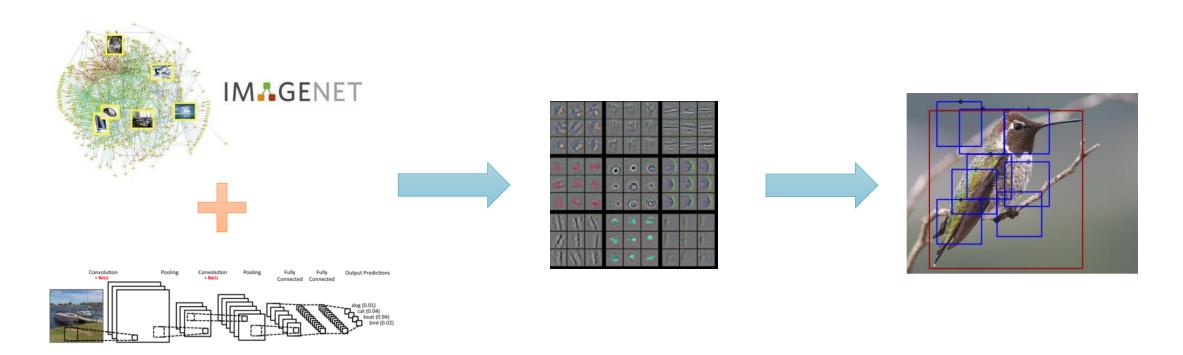
- 1. "Forward" transfer: train on one task, transfer to a new task
 - a) Just try it and hope for the best
 - b) Finetune on the new task
 - c) Architectures for transfer: progressive networks
 - d) Randomize source task domain
- 2. Multi-task transfer: train on many tasks, transfer to a new task
 - a) Model-based reinforcement learning
 - b) Model distillation
 - c) Contextual policies
 - d) Modular policy networks
- 3. Multi-task meta-learning: learn to learn from many tasks
 - a) RNN-based meta-learning
 - b) Gradient-based meta-learning

How can we frame transfer learning problems?

- 1. "Forward" transfer: train on one task, transfer to a new task
 - a) Just try it and hope for the best
 - b) Finetune on the new task
 - c) Architectures for transfer: progressive networks
 - d) Randomize source task domain
- 2. Multi-task transfer: train on many tasks, transfer to a new task
 - a) Model-based reinforcement learning
 - b) Model distillation
 - c) Contextual policies
 - d) Modular policy networks
- 3. Multi-task meta-learning: learn to learn from many tasks
 - a) RNN-based meta-learning
 - b) Gradient-based meta-learning

Finetuning

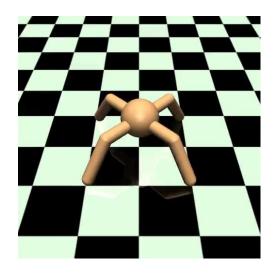
The most popular transfer learning method in (supervised) deep learning!



Where are the "ImageNet" features of RL?

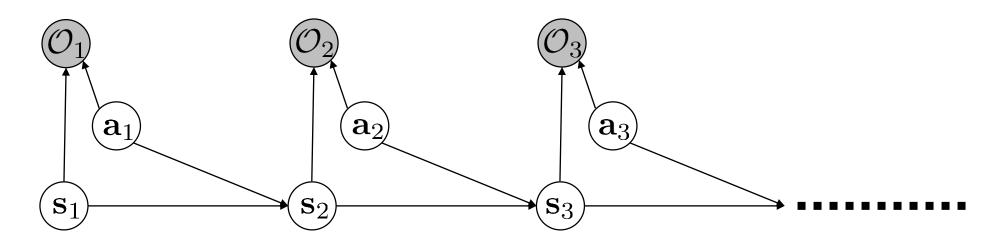
Challenges with finetuning in RL

- 1. RL tasks are generally much less diverse
 - Features are less general
 - Policies & value functions become overly specialized
- 2. Optimal policies in fully observed MDPs are deterministic
 - Loss of exploration at convergence
 - Low-entropy policies adapt very slowly to new settings



Finetuning with maximum-entropy policies

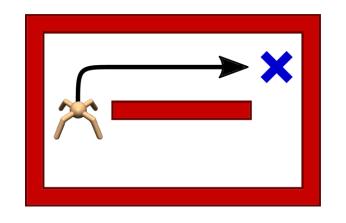
How can we increase diversity and entropy?

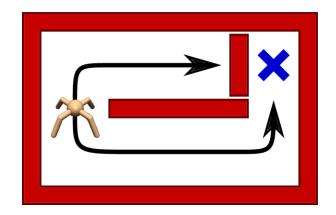


$$\pi(\mathbf{a}|\mathbf{s}) = \exp(Q_{\phi}(\mathbf{s}, \mathbf{a}) - V(\mathbf{s})) \text{ optimizes } \sum_{t} E_{\pi(\mathbf{s}_{t}, \mathbf{a}_{t})}[r(\mathbf{s}_{t}, \mathbf{a}_{t})] + E_{\pi(\mathbf{s}_{t})}[\mathcal{H}(\pi(\mathbf{a}_{t}|\mathbf{s}_{t}))]$$
policy entropy

Act as randomly as possible while collecting high rewards!

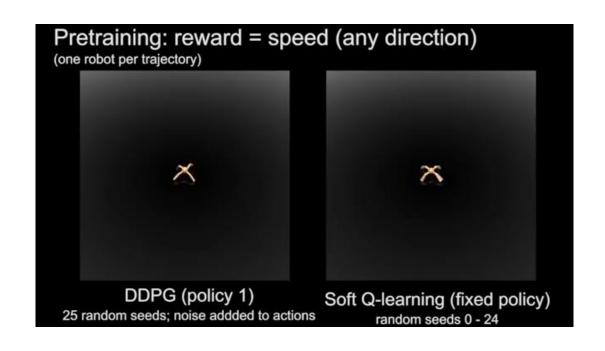
Example: pre-training for robustness

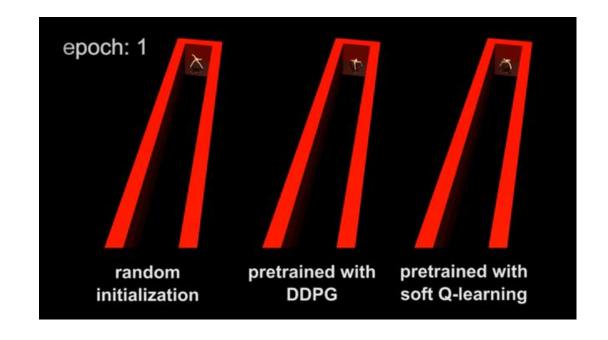


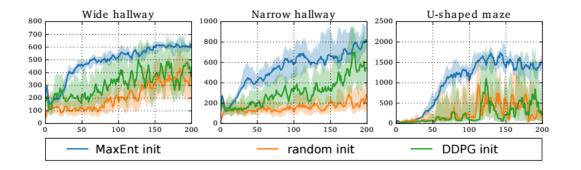


Learning to solve a task **in all possible ways** provides for more robust transfer!

Example: pre-training for diversity

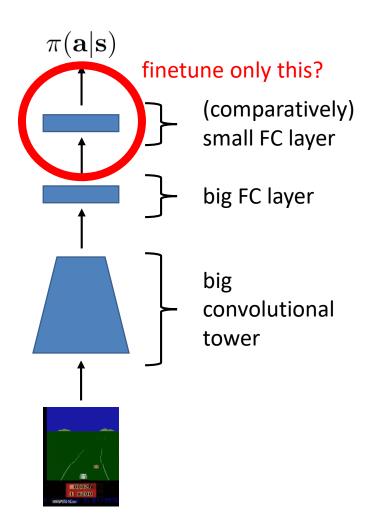




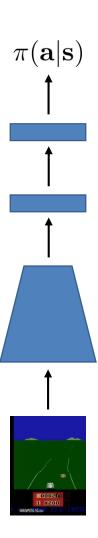


Haarnoja*, Tang*, et al. "Reinforcement Learning with Deep Energy-Based Policies"

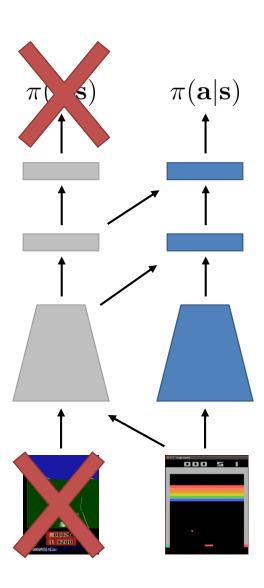
- An issue with finetuning
 - Deep networks work best when they are big
 - When we finetune, we typically want to use a little bit of experience
 - Little bit of experience + big network = overfitting
 - Can we somehow finetune a *small* network, but still pretrain a *big* network?
- Idea 1: finetune just a few layers
 - Limited expressiveness
 - Big error gradients can wipe out initialization



- An issue with finetuning
 - Deep networks work best when they are big
 - When we finetune, we typically want to use a little bit of experience
 - Little bit of experience + big network = overfitting
 - Can we somehow finetune a *small* network, but still pretrain a *big* network?
- Idea 1: finetune just a few layers
 - Limited expressiveness
 - Big error gradients can wipe out initialization
- Idea 2: add *new* layers for the new task
 - Freeze the old layers, so no forgetting



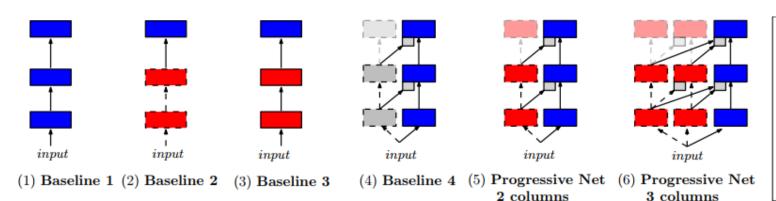
- An issue with finetuning
 - Deep networks work best when they are big
 - When we finetune, we typically want to use a little bit of experience
 - Little bit of experience + big network = overfitting
 - Can we somehow finetune a small network, but still pretrain a big network?
- Idea 1: finetune just a few layers
 - Limited expressiveness
 - Big error gradients can wipe out initialization
- Idea 2: add *new* layers for the new task
 - Freeze the old layers, so no forgetting

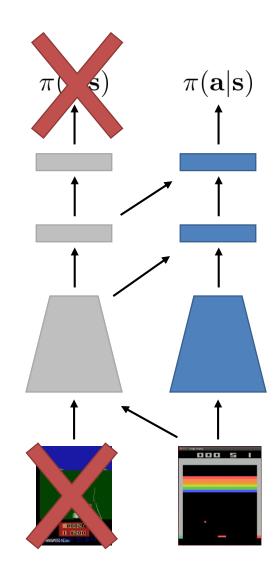


Does it work? sort of...

	Pong Soup		Atari		Labyrinth	
	Mean (%)	Median (%)	Mean (%)	Median (%)	Mean (%)	Median (%)
Baseline 1	100	100	100	100	100	100
Baseline 2	35	7	41	21	88	85
Baseline 3	181	160	133	110	235	112
Baseline 4	134	131	96	95	185	108
Progressive 2 col	209	169	132	112	491	115
Progressive 3 col	222	183	140	111	_	_
Progressive 4 col	_	_	141	116		_

Table 1: Transfer percentages in three domains. Baselines are defined in Fig. 3.





source task

target task

random

frozen

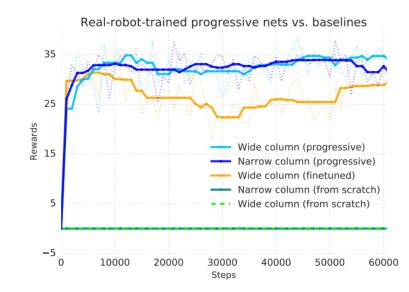
Rusu et al. "Progressive Neural Networks"

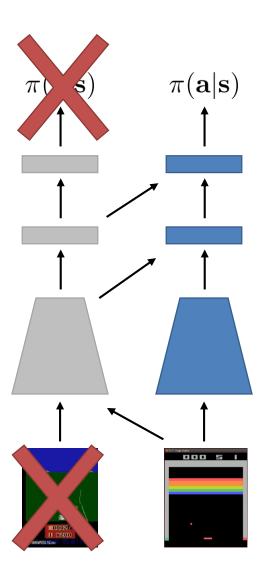
Does it work?

sort of...

+ alleviates some issues with finetuning

not obvious how
 serious these issues are





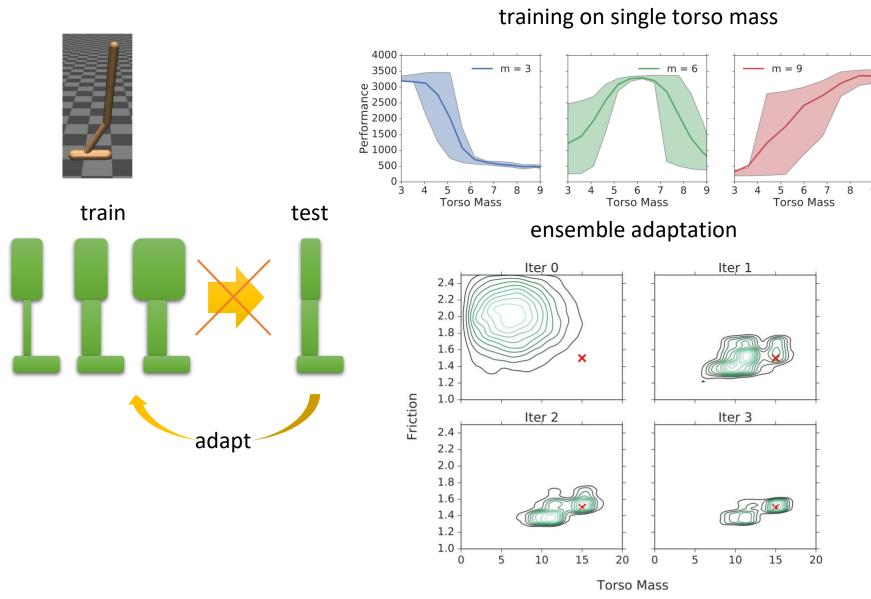
Finetuning summary

- Try and hope for the best
 - Sometimes there is enough variability during training to generalize
- Finetuning
 - A few issues with finetuning in RL
 - Maximum entropy training can help
- Architectures for finetuning: progressive networks
 - Addresses some overfitting and expressivity problems by construction

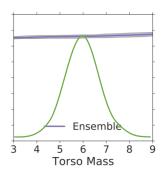
What if we can manipulate the source domain?

- So far: source domain (e.g., empty room) and target domain (e.g., corridor) are fixed
- What if we can design the source domain, and we have a difficult target domain?
 - Often the case for simulation to real world transfer
- Same idea: the more diversity we see at training time, the better we will transfer!

EPOpt: randomizing physical parameters

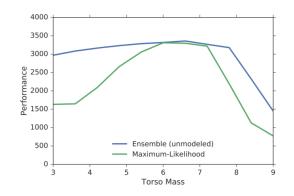


training on model ensemble



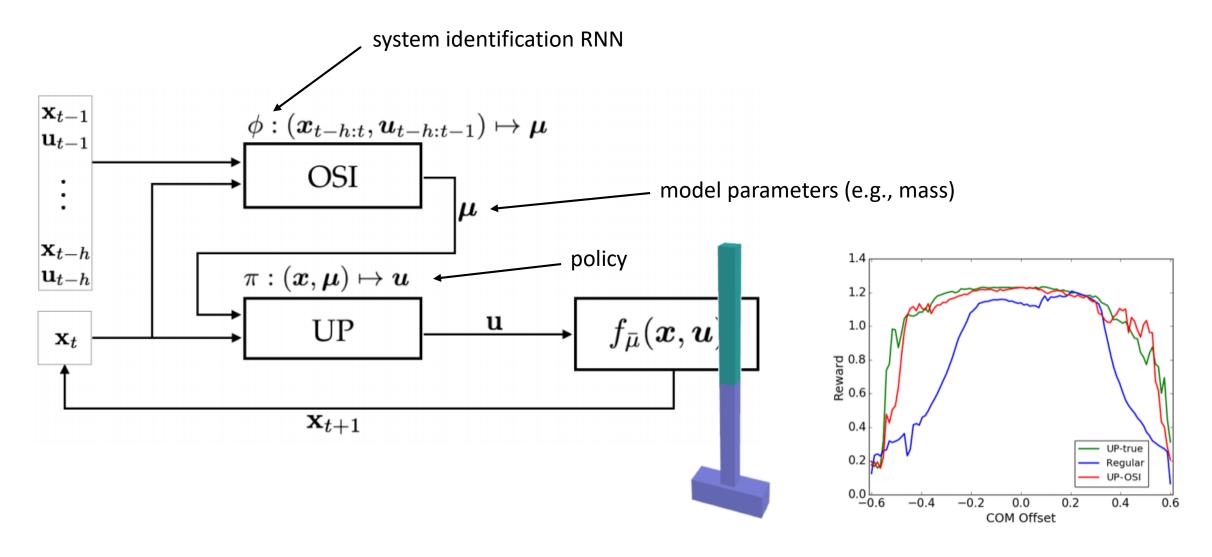
unmodeled effects

μ	σ	low	high
6.0	1.5	3.0	9.0
2.0	0.25	1.5	2.5
2.5	1.0	1.0	4.0
1.0	0.25	0.5	1.5
μ	σ	low	high
6.0	1.5	3.0	9.0
0.5	0.1	0.3	0.7
1.5	0.5	0.5	2.5
	6.0 2.0 2.5 1.0 μ 6.0 0.5	$\begin{array}{cccc} 6.0 & 1.5 \\ 2.0 & 0.25 \\ 2.5 & 1.0 \\ 1.0 & 0.25 \\ \hline \mu & \sigma \\ \hline 6.0 & 1.5 \\ 0.5 & 0.1 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$



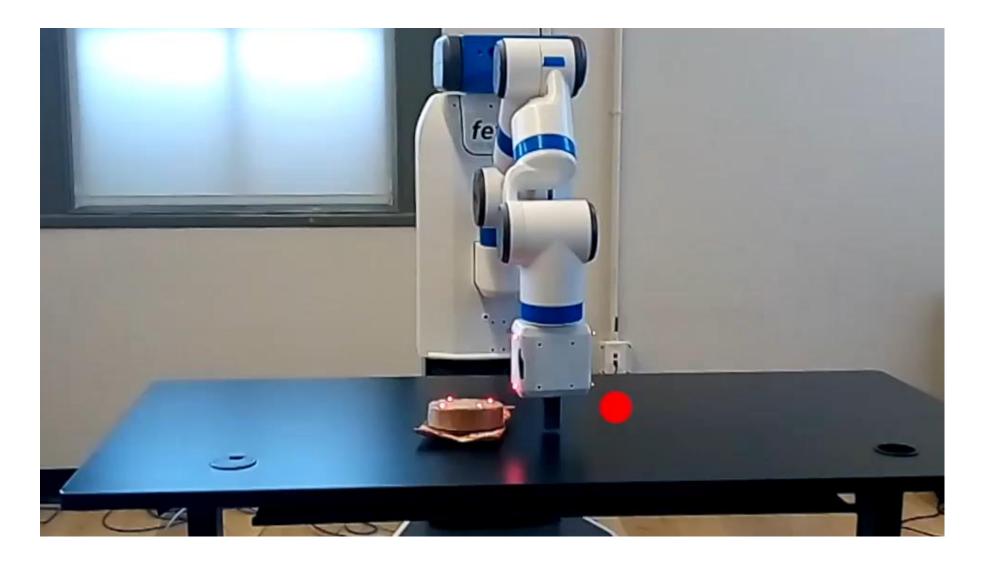
Rajeswaran et al., "EPOpt: Learning robust neural network policies..."

Preparing for the unknown: explicit system ID



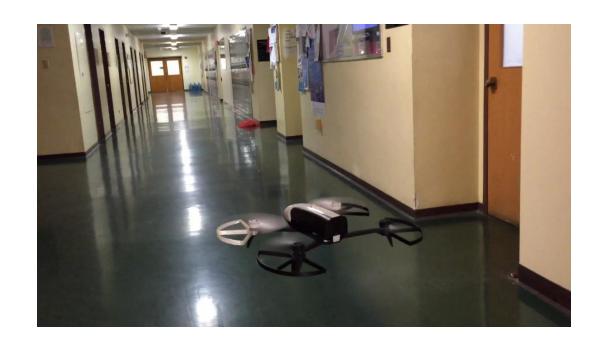
Yu et al., "Preparing for the Unknown: Learning a Universal Policy with Online System Identification"

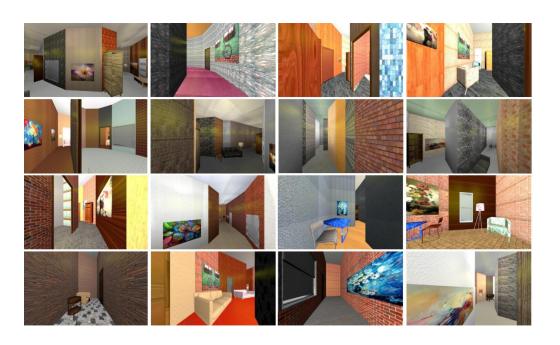
Another example



Xue Bin Peng et al., "Sim-to-Real Transfer of Robotic Control with Dynamics Randomization"

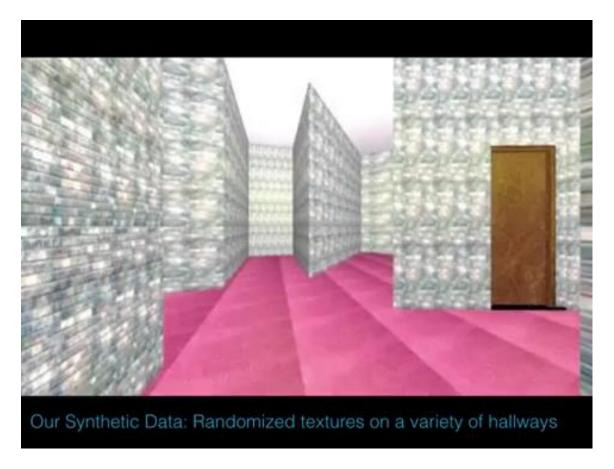
CAD2RL: randomization for real-world control



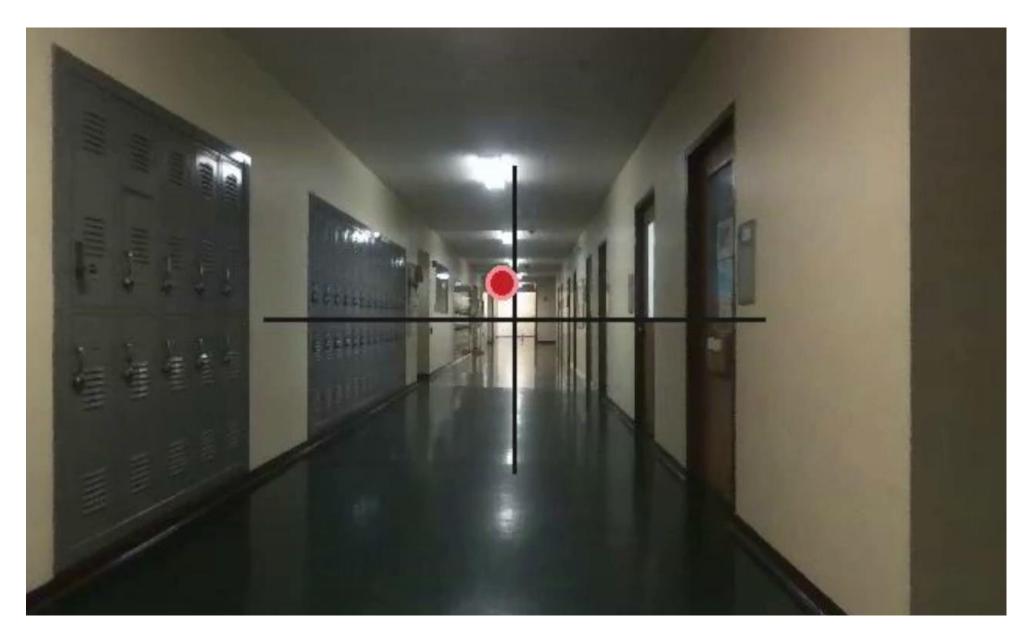


also called domain randomization

CAD2RL: randomization for real-world control

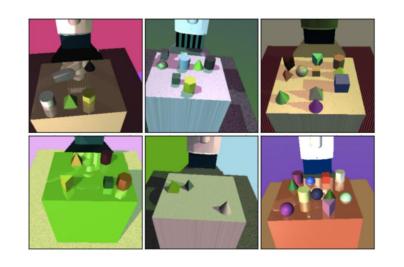


Sadeghi et al., "CAD2RL: Real Single-Image Flight without a Single Real Image"

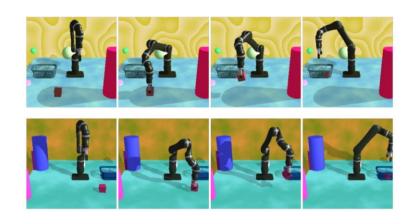


Sadeghi et al., "CAD2RL: Real Single-Image Flight without a Single Real Image"

Randomization for manipulation



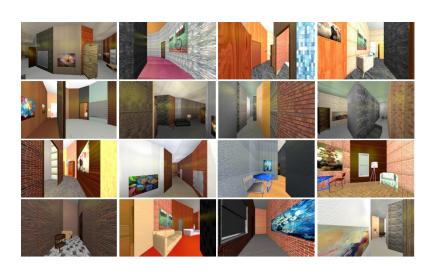
Tobin, Fong, Ray, Schneider, Zaremba, Abbeel



James, Davison, Johns

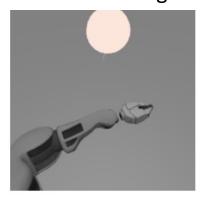
What if we can peek at the target domain?

- So far: pure 0-shot transfer: learn in source domain so that we can succeed in **unknown** target domain
- Not possible in general: if we know nothing about the target domain, the best we can do is be as robust as possible
- What if we saw a few images of the target domain?

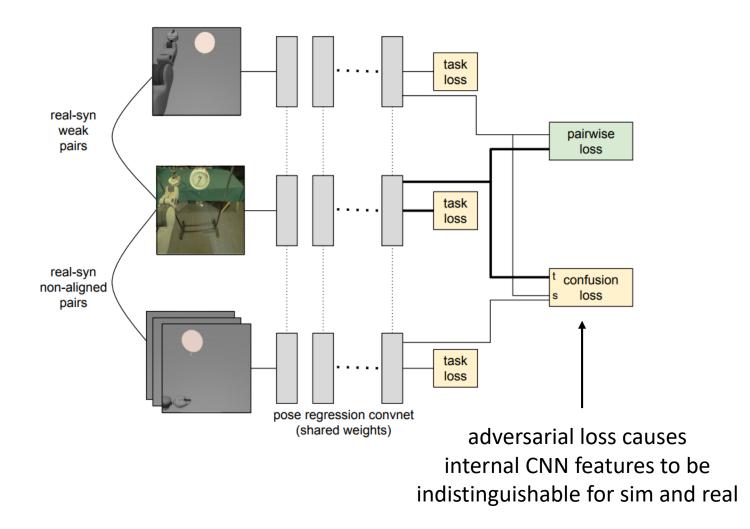


Better transfer through domain adaptation

simulated images



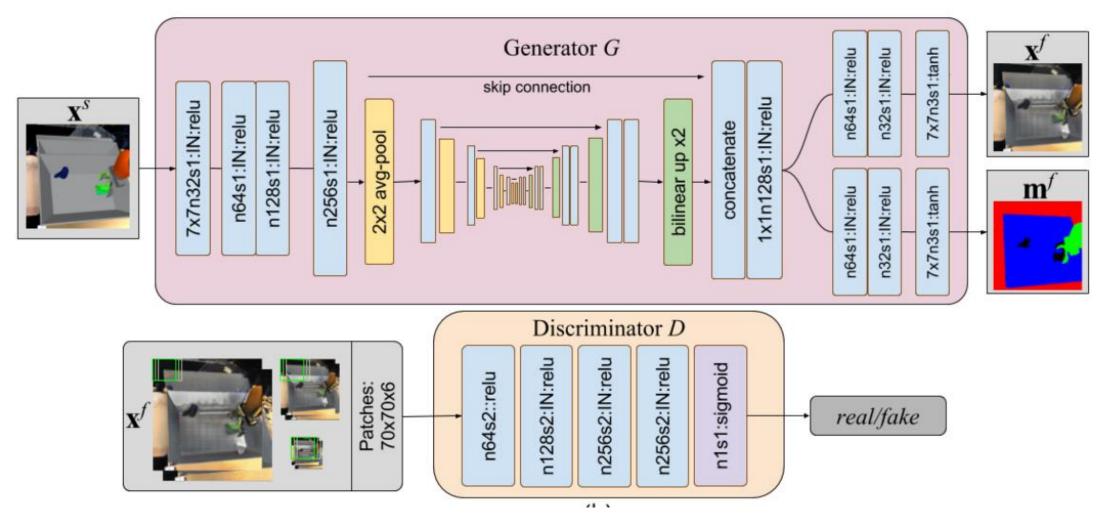
real images



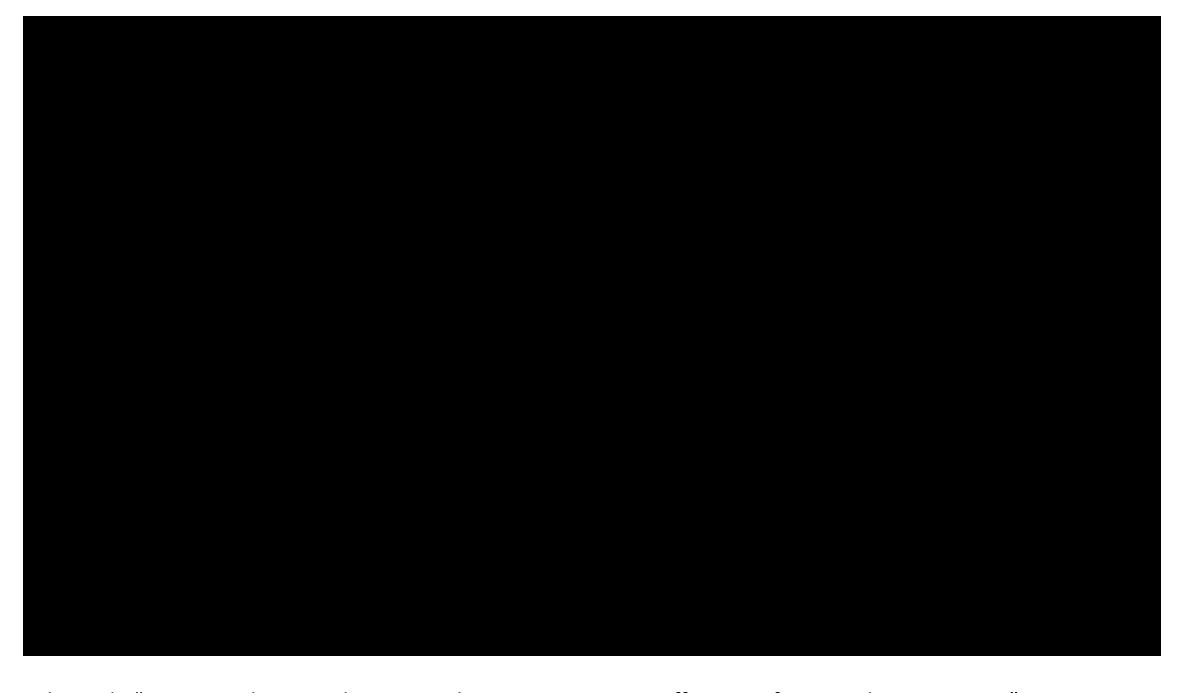
Tzeng*, Devin*, et al., "Adapting Visuomotor Representations with Weak Pairwise Constraints"

Domain adaptation at the pixel level

can we *learn* to turn synthetic images into *realistic* ones?



Bousmalis et al., "Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping"



Bousmalis et al., "Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping"

Forward transfer summary

- Pretraining and finetuning
 - Standard finetuning with RL is hard
 - Maximum entropy formulation can help
- How can we modify the source domain for transfer?
 - Randomization can help a lot: the more diverse the better!
- How can we use modest amounts of target domain data?
 - Domain adaptation: make the network unable to distinguish observations from the two domains
 - ...or modify the source domain observations to look like target domain
 - Only provides invariance assumes all differences are functionally irrelevant;
 this is not always enough!

Forward transfer suggested readings

Haarnoja*, Tang*, et al. (2017). Reinforcement Learning with Deep Energy-Based Policies.

Rusu et al. (2016). Progress Neural Networks.

Rajeswaran, et al. (2017). **EPOpt: Learning Robust Neural Network Policies Using Model Ensembles.**

Sadeghi & Levine. (2017). CAD2RL: Real Single Image Flight without a Single Real Image.

Tobin et al. (2017). **Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World.**

Tzeng*, Devin*, et al. (2016). Adapting Deep Visuomotor Representations with Weak Pairwise Constraints.

Bousmalis et al. (2017). Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping.

Break

How can we frame transfer learning problems?

- 1. "Forward" transfer: train on one task, transfer to a new task
 - a) Just try it and hope for the best
 - b) Finetune on the new task
 - c) Architectures for transfer: progressive networks
 - d) Randomize source task domain
- 2. Multi-task transfer: train on many tasks, transfer to a new task
 - a) Model-based reinforcement learning
 - b) Model distillation
 - c) Contextual policies
 - d) Modular policy networks
- 3. Multi-task meta-learning: learn to learn from many tasks
 - a) RNN-based meta-learning
 - b) Gradient-based meta-learning

Multiple source domains

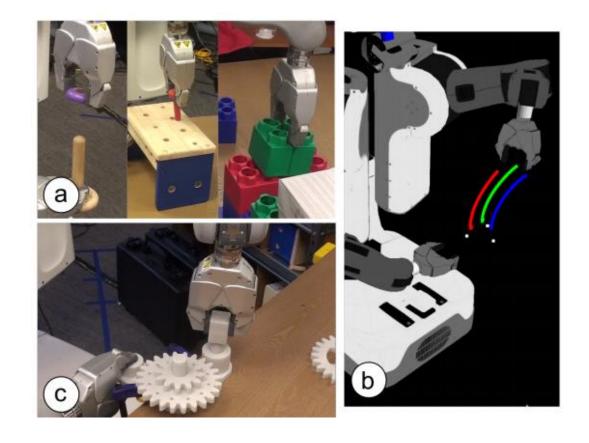
- So far: more diversity = better transfer
- Need to design this diversity
 - E.g., simulation to real world transfer: randomize the simulation
- What if we transfer from multiple different tasks?
 - In a sense, closer to what people do: build on a lifetime of experience
 - Substantially harder: past tasks don't directly tell us how to solve the task in the target domain!

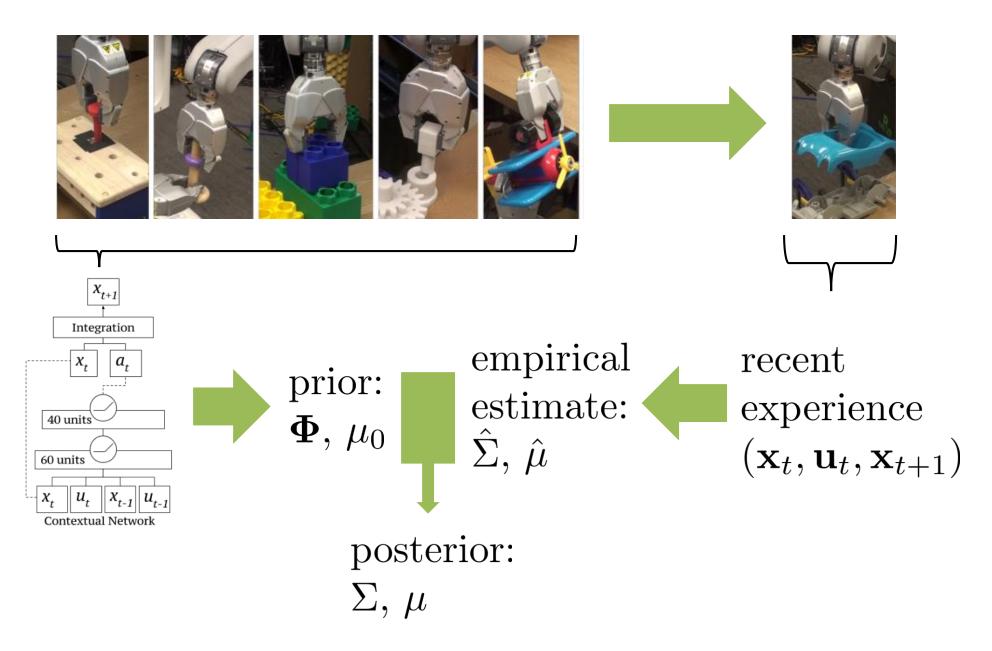
Model-based reinforcement learning

- If the past tasks are all different, what do they have in common?
- Idea 1: the laws of physics
 - Same robot doing different chores
 - Same car driving to different destinations
 - Trying to accomplish different things in the same open-ended video game
- Simple version: train model on past tasks, and then use it to solve new tasks
- More complex version: adapt or finetune the model to new task
 - Easier than finetuning the policy is task is very different but physics are mostly the same

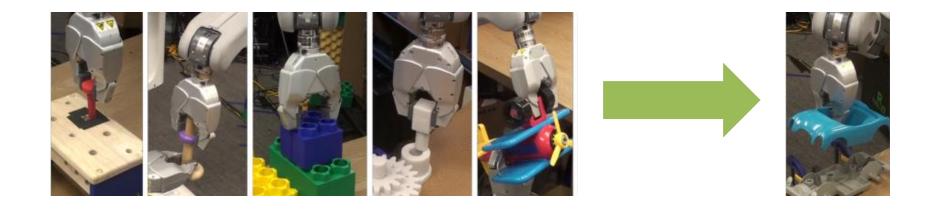
Model-based reinforcement learning

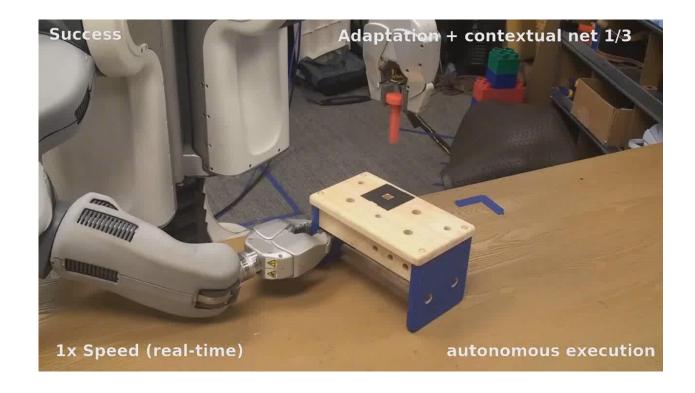
Example: 1-shot learning with model priors





Fu et al., "One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation..."

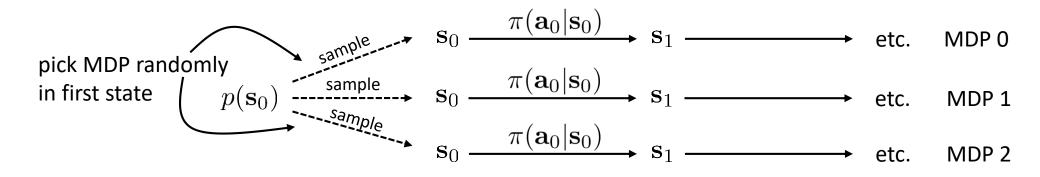




Fu et al., "One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation..."

Can we solve multiple tasks at once?

- Sometimes learning a model is very hard
- Can we learn a multi-task policy that can simultaneously perform many tasks?
- Use simultaneously transfer
- Idea 1: construct a joint MDP



• Idea 2: train in each MDP separately, and then combine the policies

Actor-mimic and policy distillation

Goal: learn a single policy that can play all Atari games

POLICY DISTILLATION

Andrei A. Rusu, Sergio Gómez Colmenarejo, Çağlar Gülçehre, Guillaume Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu & Raia Hadsel Google DeepMind

ACTOR-MIMIC
DEEP MULTITASK AND TRANSFER REINFORCEMENT
LEARNING

Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov Department of Computer Science University of Toronto

Background: Ensembles & Distillation

Ensemble models: single models are often not the most robust – instead train many models and average their predictions this is how most ML competitions (e.g., Kaggle) are won

this is very expensive at test time

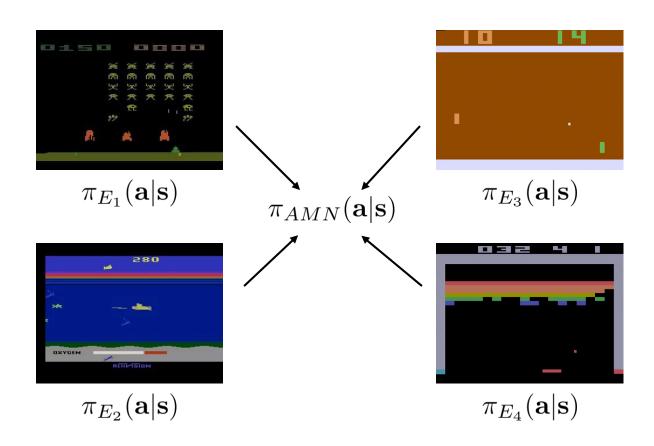
Can we make a single model that is as good as an ensemble?

Distillation: train on the ensemble's predictions as "soft" targets

$$p_i = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)} \leftarrow \text{temperature}$$

Intuition: more knowledge in soft targets than hard labels!

Distillation for Multi-Task Transfer



$$\mathcal{L} = \sum_{\mathbf{a}} \pi_{E_i}(\mathbf{a}|\mathbf{s}) \log \pi_{AMN}(\mathbf{a}|\mathbf{s})$$

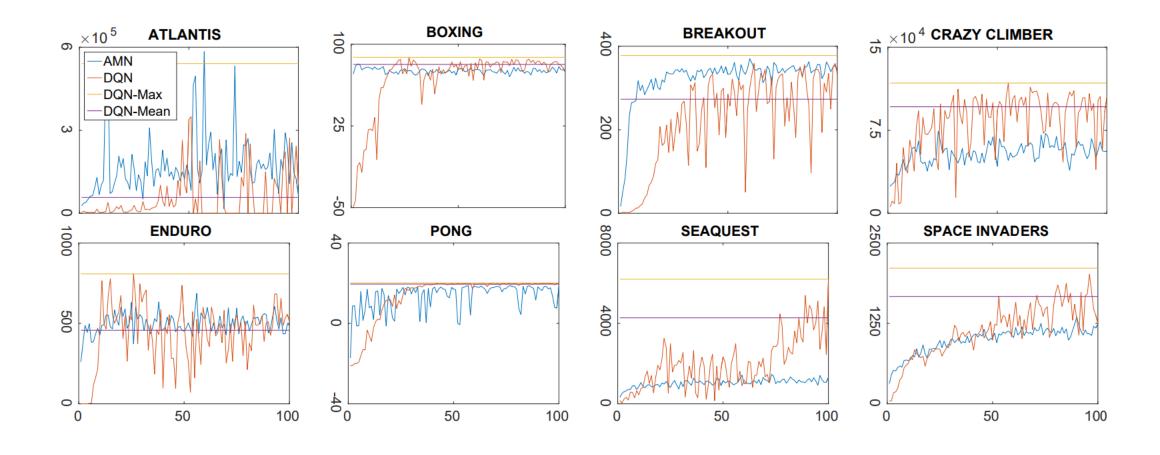
(just supervised learning/distillation)

analogous to guided policy search, but for transfer learning

-> see model-based RL slides

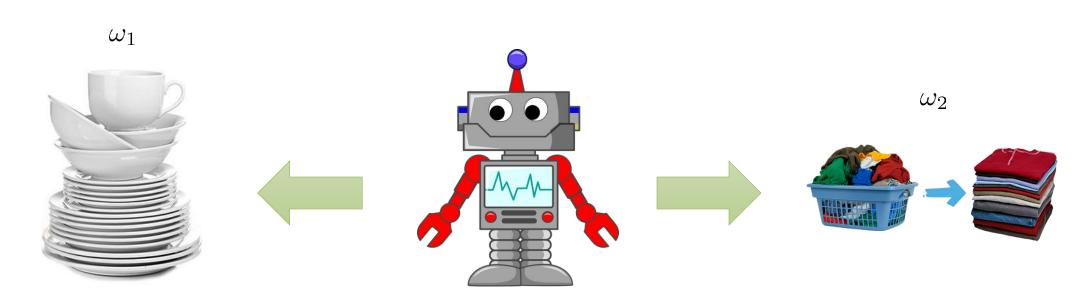
some other details
(e.g., feature regression objective)
– see paper

Distillation Transfer Results



How does the model know what to do?

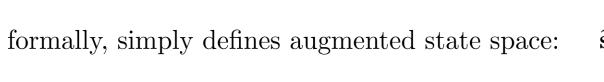
- So far: what to do is apparent from the input (e.g., which game is being played)
- What if the policy can do multiple things in the same environment?



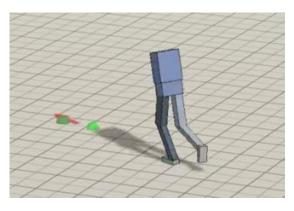
Contextual policies

standard policy: $\pi_{\theta}(\mathbf{a}|\mathbf{s})$

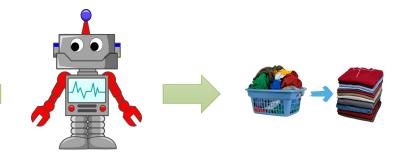
contextual policy: $\pi_{\theta}(\mathbf{a}|\mathbf{s},\omega)$



 ω : stack location



 ω : walking direction



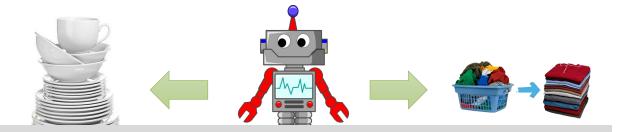
 $\tilde{\mathbf{s}} = \left| \begin{array}{c} \mathbf{s} \\ \omega \end{array} \right| \qquad \tilde{\mathcal{S}} = \mathcal{S} \times \Omega$

 ω : where to hit puck

Contextual policies

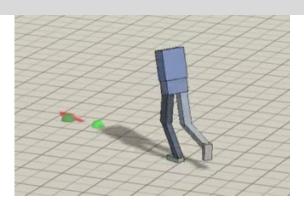
standard policy: $\pi_{\theta}(\mathbf{a}|\mathbf{s})$

contextual policy: $\pi_{\theta}(\mathbf{a}|\mathbf{s},\omega)$



will discuss more in the context of meta-learning!

 ω : stack location



 ω : walking direction

 ω : where to hit puck

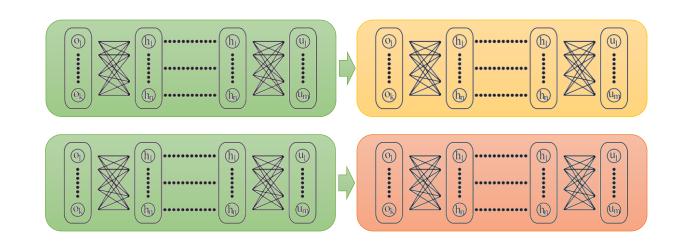
images: Peng, van de Panne, Peters

forr

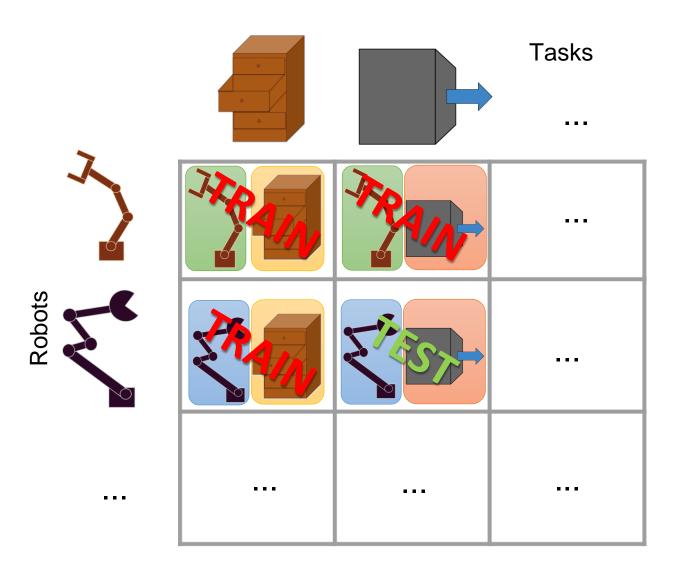
Architectures for multi-task transfer

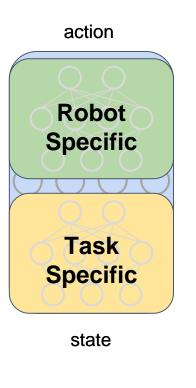
- So far: single neural network for all tasks (in the end)
- What if tasks have some shared parts and some distinct parts?
 - Example: two cars, one with camera and one with LIDAR, driving in two different cities
 - Example: ten different robots trying to do ten different tasks
- Can we design architectures with reusable components?

Modular Policies



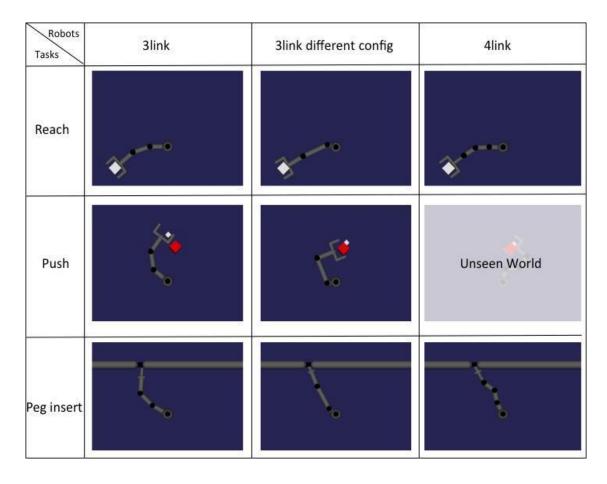
Modular networks

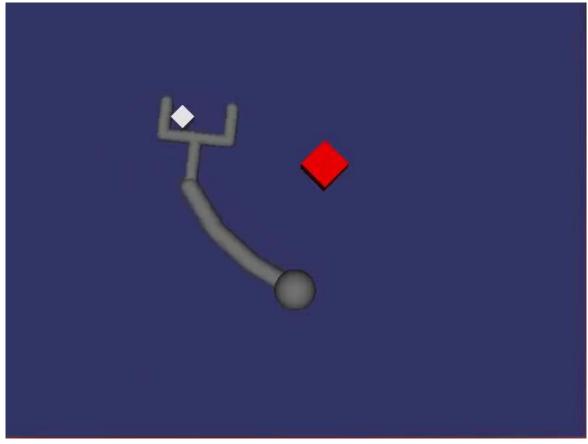




Devin*, Gupta*, et al. "Learning Modular Neural Network Policies..."

Modular networks





Multi-task learning summary

- More tasks = more diversity = better transfer
- Often easier to obtain multiple different but relevant prior tasks
- Model-based RL: transfer the physics, not the behavior
- Distillation: combine multiple policies into one, for concurrent multitask learning (accelerate all tasks through sharing)
- Contextual policies: policies that are told what to do
- Architectures for multi-task learning: modular networks

Suggested readings

Fu etal. (2016). One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors.

Rusu et al. (2016). Policy Distillation.

Parisotto et al. (2016). Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning.

Devin*, Gupta*, et al. (2017). Learning Modular Neural Network Policies for Multi-Task and Multi-Robot Transfer.

How can we frame transfer learning problems?

- 1. "Forward" transfer: train on one task, transfer to a new task
 - a) Just try it and hope for the best
 - Fineti
 - Archi more on this next time!
- 2. Multi-task transfer: train on many tasks, transfer to a new task
 - a) Model-based reinforcement learning
 - Model distillation
 - Contextual policies
 - Modular policy networks
- 3. Multi-task meta-learning: learn to learn from many tasks
 - RNN-based meta-learning
 - Gradient-based meta-learning