Exploration: Part 2

CS 294-112: Deep Reinforcement Learning

Sergey Levine

Class Notes

1. Homework 4 due next Wednesday!

Recap: what’s the problem?

this is easy (mostly) this is impossible

Why?

Recap: classes of exploration methods in deep RL

* Optimistic exploration:
* new state = good state
* requires estimating state visitation frequencies or novelty
e typically realized by means of exploration bonuses
e Thompson sampling style algorithms:
* |earn distribution over Q-functions or policies
* sample and act according to sample
* |nformation gain style algorithms
* reason about information gain from visiting new states

Count-based exploration

use 7 (s,a) = r(s,a) + B(N(s))

But wait... what’s a count?

.u.ﬁ

Uh oh... we never see the same thing twice!

But some states are more similar than others

Recap: exploring with pseudo-counts

¥

fit model py(s) to all states D seen so far
take a step ¢ and observe s;

fit new model py(s) to D U's;
use po(s;) and py (s;) to estimate N (s)

A 1
+_ . —

set 17" =i+ BIN(8)) — psendocom” SV = g

how to get N(s)? use the equations
N(s;) N(si) +1
. — ; S’i — —
po(si) = — por(si) = ———
two equations and two unknowns!
. . 1 — per(si)

N(s;) =n S; n = Po(S;

(8:) = fips(e0) por(s0) —pas) P

I o

Bellemare et a

Unifying Count-Based Exploration...”

What kind of model to use?

¥

Po(s)
need to be able to output densities, but doesn’t

necessarily need to produce great samples

opposite considerations from many popular
generative models in the literature (e.g., GANSs)

Bellemare et al.: “CTS” model: condition

each pixel on its top-left neighborhood i

po(s) = HPH@-,J- (zcz',j'xi—l,j’ xz’,j—lj xi—l,j—lj wi—l,j—}—l)
]

Counting with hashes

What if we still count states, but in a different space?

idea: compress s into a k-bit code via ¢(s), then count N (¢(s))

shorter codes = more hash collisions e
similar states get the same hash? maybe B

. . . (a) Freeway (b) Frostbite (c) Gravitar
improve the odds by learning a compression: o =1 P
Ay ks ; ; iy
W, WY, SN, ool
\\{\ :\ ‘\}:_‘ \"\\ "'\\) H !
\{:\\‘ i \ ~\ t"__ ~,\1\\ '\\ \ 100 200 300 300 500 00 306 300 00 00 166 706 300
N \ , \\ ™, \3’:\ R (d) Montezuma’s Revenge (e) Solaris (f) Venture
6|6 . ‘;.[.J ® 6 . -ﬁ ® 6 . l.‘1; q EJI linear softmax
\\'. .":’l\‘ \‘\‘ "'\ ‘__ \-.\
' oo S ™, " N, ",
N W/ %x5x5 N N\ \ \
Y 96 % 10 10 by \\
“O06 = 24 % 24 O % 24 % 24 N ,
1 %52 %52 1 %52 %52 64 %52 %52

| o
.

Tang et al. “#Exploration: A Study of Count-Based Exploration”

Implicit density modeling with exemplar models

(S) need to be able to output densities, but doesn’t
Pe necessarily need to produce great samples

Can we explicitly compare the new state to past states?

Intuition: the state is novel if it is easy to distinguish from all
previous seen states by a classifier

for each observed state s, fit a classifier to classify that state against all past
states D, use classifier error to obtain density

probability that classifier assigns that s is “positive”

— 1 — DS(S) i positives: {s}
DS(S) negatives: D

po(s)

Fu et al. “EX2: Exploration with Exemplar Models...”

Implicit density modeling with exemplar models

hang on... aren’t we just checking if s = s?
if s € D, then the optimal Dg(s) # 1

in fact: DZ(s)
in reality, each state is unique, so we reqularize the classifier

isn’t one classifier per state a bit much?

train one amortized model: single network that takes in exemplar as input!

X

Encoder I H

‘X‘ iEncoderi H

1 + p(s)

|

|

1

D_.(x)

Figure 9: DoomMyWayHome+

Fu et al. “EX2: Exploration with Exemplar Models...”

Posterior sampling in deep RL

Thompson sampling:

. What do we sample?
917"'79an(917"'79?’£) p
a = arg max Ep [r(a)] How do we represent the distribution?
bandit setting: p(#4,...,0,) is distribution over rewards

MDP analog is the ()-function!

1. sample Q-function @ from p(Q)

2. act according to () for one episode

) since Q-learning is off-policy, we don’t care
3. update p(Q)) which Q-function was used to collect data

how can we represent a distribution over functions?

Bootstrap

given a dataset D, resample with replacement /N times to get Dy,...,Dn
train each model fp, on D;

to sample from p(#), sample ¢ € [1,..., N| and use foy,

(b) Gaussian process posterior (c) Bootstrapped neural nets

training N big neural nets is expensive, can we avoid it?

Shared network

Frame

Osband et al. “Deep Exploration via Bootstrapped DQN”

Why does this work?

Exploring with random actions (e.g., epsilon-greedy): oscillate
back and forth, might not go to a coherent or interesting place

Exploring with random Q-functions: commit to a randomized
but internally consistent strategy for an entire episode

0e+00 le+08 2¢+08 Algorithm
— Bootstrapped DQN

- very good bonuses often do better

Average score per episode

0e+00 le+08 2e+08 0e+00 le+08 2e+08 0e+00 le+08 2e+08
Total training frames

Osband et al. “Deep Exploration via Bootstrapped DQN”

Reasoning about information gain (approximately)

Info gain: IG(z,y|a)

information gain about what?
information gain about reward r(s,a)? not very useful if reward is sparse
state density p(s)? a bit strange, but somewhat makes sense!

information gain about dynamics p(s’[s,a)? good proxy for learning the MDP, though still heuristic

Generally intractable to use exactly, regardless of what is being estimated!

Reasoning about information gain (approximately)

Generally intractable to use exactly, regardless of what is being estimated

A few approximations:

prediction gain: log pg:(s) — log pe(s) (Schmidhuber ‘91, Bellemare ‘16)

intuition: if density changed a lot, the state was novel

variational inference: (Houthooft et al. “VIME”)

IG can be equivalently written as Dy, (p(z|y)||p(2))

learn about transitions pg(s¢i1|se,a): z =0 Dx1(p(0|h, s¢,aq, si41)||p(0]R))
Y= (St’ @t St"'l) model parameters for pg(s¢i1|st, at) / \ \

history of all prior transitions

newly observed transition

intuition: a transition is more informative if it causes belief over 6 to change
idea: use variational inference to estimate q(0|¢) ~ p(0|h)

given new transition (s, a,s’), update ¢ to get ¢’

Reasoning about information gain (approxmately)

VIME implementation:

IG can be equivalently written as Dkr,(p(0|h, s¢, az, si11)||p(0|h))
e [

history of all prior transitions

model parameters for pg(s;i1]ss, ay
newly observed transition

q(0)9) ~ p(0|h) specifically, optimize variational lower bound Dky,(q(0|®)||p(h|0)p(6))

represent q(6|¢) as product of independent Gaussian parameter distributions

with mean ¢ (see Blundell et al. “Weight uncertainty in neural networks”)

given new transition (s, a,s’), update ¢ to get ¢’ p(0|D) = Hp (60:|D)

this corresponds to updating the network weight means and variances
p(0:|D) = N(M,Ui)
use Dxkr,(q(0|9")||q(0]|¢)) as approximate bonus X/

Houthooft et al. “VIME”

Reasoning about information gain (approximately)

VIME implementation:

IG can be equivalently written as Dkr,(p(0|h, s¢, az, si11)||p(0|h))
q(0|¢) =~ p(6|h) specifically, optimize variational lower bound Dkr,(q(0|®)||p(h|0)p(8))

use Dk1,(q(0|¢")||q(0|0)) as approximate bonus

Approximate IG:

- models are more complex, generally
harder to use effectively

(a) CartPole (b) CartPoleSwingup (c) DoublePendulum (d) MountainCar

Houthooft et al. “VIME”

Exploration with model errors

Dx1,(q(0|9")||q(0|¢)) can be seen as change in network (mean) parameters ¢

if we forget about IG, there are many other ways to measure this

Stadie et al. 2015:

* encode image observations using auto-encoder

* build predictive model on auto-encoder latent states
* use model error as exploration bonus

Schmidhuber et al. (see, e.g. “Formal Theory of Creativity, Fun, and Intrinsic Motivation):
» exploration bonus for model error

* exploration bonus for model gradient

* many other variations

Many others!

Recap: classes of exploration methods in deep RL

* Optimistic exploration:
 Exploration with counts and pseudo-counts
 Different models for estimating densities

e Thompson sampling style algorithms:
 Maintain a distribution over models via bootstrapping
e Distribution over Q-functions

* |nformation gain style algorithms

 Generally intractable
 (Can use variational approximation to information gain

Suggested readings

Schmidhuber. (1992). A Possibility for Implementing Curiosity and Boredom in Model-Building
Neural Controllers.

Stadie, Levine, Abbeel (2015). Incentivizing Exploration in Reinforcement Learning with Deep
Predictive Models.

Osband, Blundell, Pritzel, Van Roy. (2016). Deep Exploration via Bootstrapped DQN.

Houthooft, Chen, Duan, Schulman, De Turck, Abbeel. (2016). VIME: Variational Information
Maximizing Exploration.

Bellemare, Srinivasan, Ostroviski, Schaul, Saxton, Munos. (2016). Unifying Count-Based
Exploration and Intrinsic Motivation.

Tang, Houthooft, Foote, Stooke, Chen, Duan, Schulman, De Turck, Abbeel. (2016). #Exploration:
A Study of Count-Based Exploration for Deep Reinforcement Learning.

Fu, Co-Reyes, Levine. (2017). EX2: Exploration with Exemplar Models for Deep Reinforcement
Learning.

Break

Next: transfer learning

1. The benefits of sharing knowledge across tasks
2. The transfer learning problem in RL

3.
4

Transfer learning with source and target domains
Next week: multi-task learning, meta-learning

Back to Montezuma’s Revenge

e We know what to do because we understand what
these sprites mean!

* Key: we know it opens doors!
e Ladders: we know we can climb them!

e Skull: we don’t know what it does, but we know it
can’t be good!

* Prior understanding of problem structure can help
us solve complex tasks quickly!

Can RL use the same prior knowledge as us?

< ",”'n‘ Ay "‘».».
5 » Hea T et i

* If we've solved prior tasks, we might acquire useful knowledge for
solving a new task

* How is the knowledge stored?
* Q-function: tells us which actions or states are good
* Policy: tells us which actions are potentially useful
* some actions are never useful!
* Models: what are the laws of physics that govern the world?

* Features/hidden states: provide us with a good representation
* Don’t underestimate this!

Aside: the representation

Pong

100}

score %

— original |
. - recovery
| 1 1 1 1

0 1 2 3 4 5 6
steps le7

100

Qbert

bottleneck

100
80

60 |
40|

20

Seaquest

160}
140+
120

100

Spacelnvaders

To decouple reinforcement learning from representation learning, we decapitate an
agent by destroying its policy and value outputs and then re-train end-to-end.

The representation remains and the policy is swiftly recovered. The gap between
Initial optimization and recovery shows a representation learning bottleneck.

slide adapted from E. Schelhamer, “Loss is its own reward”

Transfer learning terminology

transfer learning: using experience from for faster
learning and better performance on a new task

in RL, task = VIDP!

_ “shot”: number of attempts in the
targetdomain t4reet domain

0-shot: just run a policy trained in
the source domain

1-shot: try the task once
few shot: try the task a few times

How can we frame transfer learning problems?

1.

No single solution! Survey of various recent research papers

“Forward” transfer: train on one task, transfer to a new task
a) Justtry it and hope for the best

b) Architectures for transfer: progressive networks

c) Finetune on the new task

Multi-task transfer: train on many tasks, transfer to a new task
a) Generate highly randomized source domains

b) Model-based reinforcement learning

c) Model distillation

d) Contextual policies

e) Modular policy networks

Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning

How can we frame transfer learning problems?

1. “Forward” transfer: train on one task, transfer to a new task
a) Justtry it and hope for the best
b) Architectures for transfer: progressive networks
c) Finetune on the new task

Try it and hope for the best

Policies trained for one set of circumstances might just work in a new domain, but no promises or guarantees

Learned Visuomotor Policy: Bottle Task

Try it and hope for the best

Policies trained for one set of circumstances might just work in a new domain, but no promises or guarantees

real time autonomous execution

Levine®, Finn*, et al. ‘16 Devin et al. ‘17

Finetuning

The most popular transfer learning method in (supervised) deep learning!

‘i IMAGENET

nnnnnnnnnnnnnn

Where are the “ImageNet” features of RL?

Challenges with finetuning in RL

1. RL tasks are generally much less diverse
* Features are less general
 Policies & value functions become overly specialized

2. Optimal policies in fully observed MDPs are
deterministic
* Loss of exploration at convergence
* Low-entropy policies adapt very slowly to new settings

Finetuning with maximum-entropy policies

How can we increase diversity and entropy?

m(als) = exp(Qg¢(s,a)—V (s)) optimizes), Fr(s, a,)[7(St, ar)|+Ers) [H(m(ar]s))]

policy entropy

Act as randomly as possible while collecting high rewards!

Example: pre-training for robustness

Learning to solve a task in all possible ways provides for more robust
transfer!

Example: pre-training for diversity

Pretraining: reward = speed (any direction)

(one robot per trajectory)

‘ random pretrained with pretrained with
DDPG (policy 1) Soft Q-learning (fixed policy) initialization DDPG soft Q-learning

25 random seeds; noise addded to actions random seeds 0 - 24

Wide hallway 1000 Narrow hallway 2500 U-shaped maze

q 2000
A 1500 F--eommveee oo b DO A
s 1000 [S Rl L LT WA

1 L L 1 1
0 50 100 150 200 0 50 100 150 200 1} 50 100 150 200

—— MaxEnt init random init —— DDPG init

I o
.

Haarnoja*, Tang*, et al. “Reinforcement Learning with Deep Energy-Based Policies”

Architectures for transfer: progressive networks

* An issue with finetuning
* Deep networks work best when they are big

* When we finetune, we typically want to use a little
bit of experience

m(als)

* Can we somehow finetune a small network, but still

finetune only this?

} (comparatively)

small FC layer

* Little bit of experience + big network = overfitting A } big FC layer

pretrain a big network?

* |dea 1: finetune just a few layers
* Limited expressiveness
* Big error gradients can wipe out initialization

big
= convolutional
tower

Architectures for transfer: progressive networks

* An issue with finetuning
* Deep networks work best when they are big

* When we finetune, we typically want to use a little
bit of experience

* Little bit of experience + big network = overfitting

* Can we somehow finetune a small network, but still
pretrain a big network?

* |dea 1: finetune just a few layers
* Limited expressiveness
* Big error gradients can wipe out initialization

* |dea 2: add new layers for the new task
* Freeze the old layers, so no forgetting

Rusu et al. “Progressive Neural Networks”

Architectures for transfer: progressive networks

* An issue with finetuning
* Deep networks work best when they are big

* When we finetune, we typically want to use a little
bit of experience

* Little bit of experience + big network = overfitting

* Can we somehow finetune a small network, but still | /
pretrain a big network?

* |dea 1: finetune just a few layers
* Limited expressiveness
* Big error gradients can wipe out initialization

* |dea 2: add new layers for the new task
* Freeze the old layers, so no forgetting

Rusu et al. “Progressive Neural Networks”

Architectures for transfer: progressive networks

Does it work? sort of...
Pong Soup Atari Labyrinth

Mean (%) Median (%) Mean (%) Median (%) Mean (%) Median (%)
Baseline 1 100 100 100 100 100 100
Baseline 2 35 7 41 21 88 85
Baseline 3 181 160 133 110 235 112
Baseline 4 134 131 96 95 185 108
Progressive 2 col 209 169 132 112 491 115
Progressive 3 col 222 183 140 111 — —
Progressive 4 col — — 141 116 — —

Table 1: Transfer percentages in three domains. Baselines are defined in Fig. 3.

source task

target task

11
11
EER

,]

. random

input it input input input -=-
(1) Baseline 1 (2) Baseline 2 (3) Baseline 3 (4) Baseline 4 (5) Progressive Net (6) Progressive Net fl-r;z;]-;

2 columns 3 columns

Rusu et al. “Progressive Neural Networks”

Architectures for transfer: progressive networks

Does it work? sort of...

+ alleviates some issues T e
with finetuning z

o v "
. z == Wide column (progressive)
- not obvious how — Naron column regressve
w Wide column (finetuned)
= Narrow column (from scratch)

Serious these issues are 5 = =+ Wide column (from scratch)

0 10000 20000 30000 40000 50000 60000
Steps

Rusu et al. “Progressive Neural Networks”

Finetuning summary

* Try and hope for the best
* Sometimes there is enough variability during training to generalize

* Finetuning
* A few issues with finetuning in RL
* Maximum entropy training can help

* Architectures for finetuning: progressive networks
* Addresses some overfitting and expressivity problems by construction

How can we frame transfer learning problems?

> Memore on this next time! *

b) Model-based reinforcement learning
c) Model distillation

d) Contextual policies

e) Modular policy networks

3. Multi-task meta-learning: learn to learn from many tasks

a) RNN-based meta-learning
b) Gradient-based meta-learning

