
Exploration: Part 2

CS 294-112: Deep Reinforcement Learning

Sergey Levine



Class Notes

1. Homework 4 due next Wednesday!



Recap: what’s the problem?

this is easy (mostly) this is impossible

Why?



Recap: classes of exploration methods in deep RL

• Optimistic exploration:
• new state = good state
• requires estimating state visitation frequencies or novelty
• typically realized by means of exploration bonuses

• Thompson sampling style algorithms:
• learn distribution over Q-functions or policies
• sample and act according to sample

• Information gain style algorithms
• reason about information gain from visiting new states



Count-based exploration

But wait… what’s a count?

Uh oh… we never see the same thing twice!

But some states are more similar than others



Recap: exploring with pseudo-counts

Bellemare et al. “Unifying Count-Based Exploration…”



What kind of model to use?

need to be able to output densities, but doesn’t 
necessarily need to produce great samples

opposite considerations from many popular 
generative models in the literature (e.g., GANs)

Bellemare et al.: “CTS” model: condition 
each pixel on its top-left neighborhood



Counting with hashes

What if we still count states, but in a different space?

Tang et al. “#Exploration: A Study of Count-Based Exploration”



Implicit density modeling with exemplar models

need to be able to output densities, but doesn’t 
necessarily need to produce great samples

Fu et al. “EX2: Exploration with Exemplar Models…”

Can we explicitly compare the new state to past states?

Intuition: the state is novel if it is easy to distinguish from all 
previous seen states by a classifier



Implicit density modeling with exemplar models

Fu et al. “EX2: Exploration with Exemplar Models…”



Posterior sampling in deep RL

Thompson sampling:
What do we sample?

How do we represent the distribution?

since Q-learning is off-policy, we don’t care 
which Q-function was used to collect data



Bootstrap

Osband et al. “Deep Exploration via Bootstrapped DQN”



Why does this work?

Osband et al. “Deep Exploration via Bootstrapped DQN”

Exploring with random actions (e.g., epsilon-greedy): oscillate 
back and forth, might not go to a coherent or interesting place

Exploring with random Q-functions: commit to a randomized 
but internally consistent strategy for an entire episode

+ no change to original reward function

- very good bonuses often do better



Reasoning about information gain (approximately)

Info gain:

Generally intractable to use exactly, regardless of what is being estimated!



Reasoning about information gain (approximately)
Generally intractable to use exactly, regardless of what is being estimated

A few approximations:

(Schmidhuber ‘91, Bellemare ‘16)

intuition: if density changed a lot, the state was novel

(Houthooft et al. “VIME”)



Reasoning about information gain (approximately)
VIME implementation:

Houthooft et al. “VIME”



Reasoning about information gain (approximately)
VIME implementation:

Houthooft et al. “VIME”

+ appealing mathematical formalism

- models are more complex, generally 
harder to use effectively

Approximate IG:



Exploration with model errors

Stadie et al. 2015:
• encode image observations using auto-encoder
• build predictive model on auto-encoder latent states
• use model error as exploration bonus

Schmidhuber et al. (see, e.g. “Formal Theory of Creativity, Fun, and Intrinsic Motivation):
• exploration bonus for model error
• exploration bonus for model gradient
• many other variations

Many others!



Recap: classes of exploration methods in deep RL

• Optimistic exploration:
• Exploration with counts and pseudo-counts
• Different models for estimating densities

• Thompson sampling style algorithms:
• Maintain a distribution over models via bootstrapping
• Distribution over Q-functions

• Information gain style algorithms
• Generally intractable
• Can use variational approximation to information gain



Suggested readings

Schmidhuber. (1992). A Possibility for Implementing Curiosity and Boredom in Model-Building 
Neural Controllers.

Stadie, Levine, Abbeel (2015). Incentivizing Exploration in Reinforcement Learning with Deep 
Predictive Models.

Osband, Blundell, Pritzel, Van Roy. (2016). Deep Exploration via Bootstrapped DQN.

Houthooft, Chen, Duan, Schulman, De Turck, Abbeel. (2016). VIME: Variational Information 
Maximizing Exploration.

Bellemare, Srinivasan, Ostroviski, Schaul, Saxton, Munos. (2016). Unifying Count-Based 
Exploration and Intrinsic Motivation.

Tang, Houthooft, Foote, Stooke, Chen, Duan, Schulman, De Turck, Abbeel. (2016). #Exploration: 
A Study of Count-Based Exploration for Deep Reinforcement Learning.

Fu, Co-Reyes, Levine. (2017). EX2: Exploration with Exemplar Models for Deep Reinforcement 
Learning.



Break



Next: transfer learning

1. The benefits of sharing knowledge across tasks

2. The transfer learning problem in RL

3. Transfer learning with source and target domains

4. Next week: multi-task learning, meta-learning



Back to Montezuma’s Revenge

• We know what to do because we understand what 
these sprites mean!

• Key: we know it opens doors!

• Ladders: we know we can climb them!

• Skull: we don’t know what it does, but we know it 
can’t be good!

• Prior understanding of problem structure can help 
us solve complex tasks quickly!



Can RL use the same prior knowledge as us?

• If we’ve solved prior tasks, we might acquire useful knowledge for 
solving a new task

• How is the knowledge stored?
• Q-function: tells us which actions or states are good
• Policy: tells us which actions are potentially useful

• some actions are never useful!

• Models: what are the laws of physics that govern the world?
• Features/hidden states: provide us with a good representation

• Don’t underestimate this!



Aside: the representation bottleneck

slide adapted from E. Schelhamer, “Loss is its own reward”



Transfer learning terminology

transfer learning: using experience from one set of tasks for faster 
learning and better performance on a new task

in RL, task = MDP!

source domain target domain
“shot”: number of attempts in the 
target domain

0-shot: just run a policy trained in 
the source domain

1-shot: try the task once

few shot: try the task a few times



How can we frame transfer learning problems?

1. “Forward” transfer: train on one task, transfer to a new task
a) Just try it and hope for the best
b) Architectures for transfer: progressive networks
c) Finetune on the new task

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Generate highly randomized source domains
b) Model-based reinforcement learning
c) Model distillation
d) Contextual policies
e) Modular policy networks

3. Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning

No single solution! Survey of various recent research papers



How can we frame transfer learning problems?

1. “Forward” transfer: train on one task, transfer to a new task
a) Just try it and hope for the best
b) Architectures for transfer: progressive networks
c) Finetune on the new task

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Generate highly randomized source domains
b) Model-based reinforcement learning
c) Model distillation
d) Contextual policies
e) Modular policy networks

3. Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning



Try it and hope for the best

Policies trained for one set of circumstances might just work in a new domain, but no promises or guarantees



Try it and hope for the best

Policies trained for one set of circumstances might just work in a new domain, but no promises or guarantees

Levine*, Finn*, et al. ‘16 Devin et al. ‘17



Finetuning

The most popular transfer learning method in (supervised) deep learning!

Where are the “ImageNet” features of RL?



Challenges with finetuning in RL

1. RL tasks are generally much less diverse
• Features are less general

• Policies & value functions become overly specialized

2. Optimal policies in fully observed MDPs are 
deterministic
• Loss of exploration at convergence

• Low-entropy policies adapt very slowly to new settings



Finetuning with maximum-entropy policies

How can we increase diversity and entropy?

policy entropy

Act as randomly as possible while collecting high rewards!



Example: pre-training for robustness

Learning to solve a task in all possible ways provides for more robust 
transfer!



Example: pre-training for diversity

Haarnoja*, Tang*, et al. “Reinforcement Learning with Deep Energy-Based Policies”



Architectures for transfer: progressive networks

• An issue with finetuning
• Deep networks work best when they are big

• When we finetune, we typically want to use a little 
bit of experience

• Little bit of experience + big network = overfitting

• Can we somehow finetune a small network, but still 
pretrain a big network?

• Idea 1: finetune just a few layers
• Limited expressiveness

• Big error gradients can wipe out initialization

big
convolutional
tower

(comparatively)
small FC layer

big FC layer

finetune only this?



Architectures for transfer: progressive networks

• An issue with finetuning
• Deep networks work best when they are big

• When we finetune, we typically want to use a little 
bit of experience

• Little bit of experience + big network = overfitting

• Can we somehow finetune a small network, but still 
pretrain a big network?

• Idea 1: finetune just a few layers
• Limited expressiveness

• Big error gradients can wipe out initialization

• Idea 2: add new layers for the new task
• Freeze the old layers, so no forgetting

Rusu et al. “Progressive Neural Networks”



Architectures for transfer: progressive networks

• An issue with finetuning
• Deep networks work best when they are big

• When we finetune, we typically want to use a little 
bit of experience

• Little bit of experience + big network = overfitting

• Can we somehow finetune a small network, but still 
pretrain a big network?

• Idea 1: finetune just a few layers
• Limited expressiveness

• Big error gradients can wipe out initialization

• Idea 2: add new layers for the new task
• Freeze the old layers, so no forgetting

Rusu et al. “Progressive Neural Networks”



Architectures for transfer: progressive networks

Rusu et al. “Progressive Neural Networks”

Does it work? sort of…



Architectures for transfer: progressive networks

Rusu et al. “Progressive Neural Networks”

Does it work? sort of…

+ alleviates some issues 
with finetuning

- not obvious how 
serious these issues are



Finetuning summary

• Try and hope for the best
• Sometimes there is enough variability during training to generalize

• Finetuning
• A few issues with finetuning in RL

• Maximum entropy training can help

• Architectures for finetuning: progressive networks
• Addresses some overfitting and expressivity problems by construction



1. “Forward” transfer: train on one task, transfer to a new task
a) Just try it and hope for the best
b) Architectures for transfer: progressive networks
c) Finetune on the new task

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Generate highly randomized source domains
b) Model-based reinforcement learning
c) Model distillation
d) Contextual policies
e) Modular policy networks

3. Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning

How can we frame transfer learning problems?

more on this next time!


